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Abstract

The literature on self-control problems has typically concentrated on immedi-
ate temptations. This paper studies a Gul and Pesendorfer [13, 14] style model in
which decision-makers are affected by temptations that lie in the future. While
temptation is commonly understood to give rise to a demand for commitment, it
is shown that ‘temptation by future consumption’ can induce its absence. The
model also exhibits procrastination, provides an alternative to projection bias as
an explanation for some experimental results, and can simultaneously account for
myopic and hyperopic behavior. The evidence on preference reversals supports
temptation by future consumption, and suggests that it may not be restricted to
short time horizons.

Keywords: Self-Control, Temptation, Commitment, Preference Reversals, Pro-
crastination.

JEL classification number : D11
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1. Introduction

The phenomenon of preference reversals is well documented in the psychology
literature (see Ainslie [1] for references). Preference reversals occur when subjects
prefer, say, $30 in two months to $20 in one month, but prefer $20 now to $30
in one month. That is, they reverse preferences in favor of the smaller/earlier
reward when it is close to the present. This suggests that subjects are tempted
by opportunities of immediate gratification. This, in turn, suggests the existence
of self-control problems, or the inability to fully resist temptations.

Models that incorporate self-control problems have been developed and studied
by Strotz [33], Ainslie [1], Laibson [21], O’Donoghue and Rabin [27] and Gul and
Pesendorfer [13, 14]. An implication of these models is that decision-makers who
are aware of their self-control problems seek commitment opportunities. To see
this, consider a smoker who is deciding whether or not to commit to quitting.
Denoting smoking by s and not smoking by n, his problem is to choose which of
the choice sets

{n} or {n, s}
to face tomorrow. In order to avoid the temptation of s in {n, s}, he chooses {n}.
That is, anticipation of future temptation leads to a preference for commitment.

Given the presumption that self-control problems are common, the models
predict a ‘high’ value for commitment. For instance, Laibson, Repetto and To-
bacman [22] estimate that the value of perfect financial commitment mechanisms
is worth 36% of consumption at age twenty. However, several researchers (for
instance, Gale [4], Kocherlakota [18]) have argued that commitment may not be
so highly valued in the market. Their observations are collected below:

• We observe compulsive behavior. If compulsive behavior is the result of
self-control problems, we should observe addicts taking advantage of commitment
opportunities.1 Yet, in practice, there is a significant problem of non-compliance
with commitment-based treatment procedures among addicts (Ainslie [1], Fuller
and Roth [11], Goldstein [12]). For instance, disulfiram-based treatments for alco-
holics and naltexrone-based treatments for heroin and morphine addicts are known
to be of limited effectiveness, primarily because patients do not comply with the

1Examples of commitment opportunities include treatment involving disulfiram for alcoholics.
Disulfiram leads to a reaction to ingestion of even small quantities of alcohol.
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disulfirum or naltexrone regimen despite exhibiting a desire for the treatment.
Fuller and Roth [11] state that “willingness to take [disulfirum] may not in itself
be sufficient to achieve abstinence - receiving the drug is probably necessary”.
Thus, agents with self-control problems do not necessarily demand commitment,
in contrast with the prediction of the above models.

• Self-control problems have been put forward as an explanation for the
apparent undersaving in the U.S. The earlier noted models imply that undersavers
do not need added incentives to participate in saving schemes such as 401(k) and
IRAs which provide a means to commit to saving for retirement. Yet such saving
schemes have substantial tax benefits associated with them: all contributions are
tax deductible. Furthermore, participation in these schemes is closely related to
the tax benefits. For instance, IRA contributions fell by 62%when the Tax Reform
Act of 1986 excluded higher-income groups from tax benefits (Venti andWise [35],
Poterba, Venti andWise [30]).2 The fall in participation took place although there
was no change in the commitment aspect of IRAs (early withdrawal penalties).
This suggests that the appeal of such saving vehicles is primarily the tax benefits,
not their commitment value (Gale [4]).

• Since agents who value commitment are willing to pay for it, commitment
assets should cost more than the present value of their returns. However, IRAs,
Christmas Clubs, etc. offer competitive rates of return comparable with those
available in the market (Kocherlakota [18]).

• It is hard to find examples of perfect commitment devices. For instance,
401(k)s and illiquid assets can be used as collateral for borrowing. More to the
point, if agents value perfect commitment then firms and workers would write
contracts that commit workers to save. Such contracts are not hard to create and
yet are rarely observed (Gale [4]).

These observations cast doubt on the claim that there is a significant demand
for commitment. This may be regarded as reason not to take self-control problems
seriously. However, it is difficult to ignore the evidence on preference reversals and
the normative implications of models that incorporate temptation.3 Hence, it is
worth asking the question: is an insignificant demand for commitment compatible

2Prior to the decline, IRA contributions accounted for one-fifth of aggregate personal savings
in the U.S.

3See Laibson [21] and O’Donoghue and Rabin [27] for a discussion of normative implications.
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with the existence of self-control problems? This paper provides a positive answer
— we suggest that commitment requires self-control.

To understand why commitment may require self-control, consider again the
smoker who is choosing between

{n} and {n, s}.

As before, anticipation of future temptation in {n, s} leads to a preference for
{n}. However, he may be tempted by {n, s} because it provides the opportunity to
smoke tomorrow. That is, he may be tempted by menus that contain tempting
items. In such a case, choosing {n} requires him to exert self-control and resist
the temptation of {n, s}. Indeed, if the self-control cost is too high, he chooses not
to commit. Put differently, the agent’s problem is to decide whether to exert self-
control today by choosing {n}, or to choose {n, s} and (perhaps unsuccessfully)
exert self-control tomorrow.

The literature has typically assumed that agents experience only immediate
temptations. Under such an assumption, tomorrow’s s (contained in the menu
{n, s}) cannot tempt an agent today. Therefore, to model a smoker that does not
commit, it is necessary to depart from the literature and allow for temptation by
future consumption.

The remainder of the paper proceeds as follows. Section 2 presents our model,
which is based on Gul and Pesendorfer [13, 14]. Section 3 provides axioms and
a representation result, and Section 4 formally defines commitment in our model
and contrasts it with the notion in [13, 14] . Section 5 demonstrates that the model
unifies various behaviors, namely, a demand for commitment, preference reversals
and a preference for early choice. Several applications are considered in Section
6: Normative implications of the model are shown differ from other models in the
temptation literature. The evidence on hyperbolic discounting and preference re-
versals is shown to demonstrate the idea of temptation by future consumption and
also to demonstrate that such temptation is not restricted to short time horizons.
Behavioral evidence on projection bias is shown to be consistent with temptation
by future consumption. The model is used to rationalize procrastination, and it
is also shown to be able to simultaneously exhibit myopia and hyperopia. Section
7 concludes. Proofs are collected in appendices.
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2. The Model

Our model is based on Gul and Pesendorfer [13, 14], who formalize the notions of
temptation and self-control. Before introducing our model it is necessary to first
introduce theirs.

Gul and Pesendorfer (henceforth GP) study an infinite horizon model in [14].
The domain of preference % is the set of infinite horizon choice problems Z. A
choice problem x ∈ Z is a set of lotteries, where each lottery µ is a measure over
present consumption c ∈ C and a continuation choice problem y ∈ Z; a budget set
is an example of an infinite horizon choice problem, since a choice from a budget
set yields immediate consumption and another budget set for tomorrow. Consider
the following time-line:

t=0•
x%y
––––—

t=1•
(c,z)∈x

––––—
t=2•

(c0,z0)∈z
–

At time 0 (the ex-ante stage), the agent makes a choice of menu. The chosen
menu, say x, is faced at time 1, and a choice from x is made. Assuming for
simplicity that objects in x are degenerate lotteries, the choice (c, z) from x yields
some current consumption c, and a continuation menu z that is faced at time 2.
At time 2, a choice from z is made, and the process is repeated ad infinitum.
Thus, in period 0 is there a choice of menu, and in each subsequent period, there
is a choice from a menu. Period 0 choice of menu is dictated by the primitive
preference %.

GP axiomatize ‘Dynamic Self-control’ (DSC) preferences which describe an
agent who experiences temptation by immediate consumption. DSC preferences
are represented by a recursive function W (·) defined, for all x ∈ Z, by

W (x) = max
µ∈x

{U(µ) +
µ
V (µ)−max

η∈x
V (η)

¶
}, (2.1)

such that U(µ) =

Z
C×Z

(u(c) + δW (y)) dµ(c, y),

V (µ) =

Z
C×Z

v(c)dµ(c, y).

To understand the representation, first interpret (2.1). The function U is called
commitment utility since it represents the agent’s utility if he committed to a sin-
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gleton menu x.4 Commitment utility is interpreted as capturing the agent’s view
of his long-run best-interest. On the other hand, the function V is interpreted
as capturing his urges. It is referred to as temptation utility. Resisting tempta-
tion, that is, not choosing the V -maximizing choice, leads to a self-control cost
|V (µ)−maxη∈x V (η)|. Therefore, (2.1) states that utility W (x) is the maximum
over x of commitment utility net of self-control cost. Observe that while W (·)
is just a representation of the period 0 preference over menus, it is suggestive of
how the agent chooses from a menu in subsequent periods: it suggests that when
choosing from x in any period t > 0, the agent maximizes commitment utility net
of self-control cost.

According to the functional forms, U and V are expected utilities. The com-
mitment utility index is the sum of the utility from immediate consumption, and
the utility W of the continuation menu discounted by δ. The temptation utility
index is a function of immediate consumption only. This captures the feature that
only immediate consumption tempts the DSC agent in any period t > 0.

This paper studies agents who are tempted by future consumption as well.
‘DSC preferences with Future Temptation’, or simply, Future Temptation (FT)
preferences, have the same representation as above, except that temptation utility
V is modelled as a recursive function,

V (µ) =

Z
C×Z

¡
v(c) + γV (x)

¢
dµ(c, x),

where V (x) = max
µ∈x

V (µ).

Temptation utility from current consumption is captured by v and that from con-
tinuation menus is captured by V . The main feature of the model is the structure
placed on V : continuation menus are ranked by V according to the most tempt-
ing item contained in them. Thus, future temptations (that is, tempting items
contained in a continuation menu) affect the agent in the form of a temptation
by continuation menus. The discount factor γ parametrizes the strength of this
temptation. DSC preferences obtain if γ = 0.

Comments
An important feature of GP’s model (which is inherited by ours) is that period

0 is the period prior to the experience of temptation (see GP [14]). That is,

4If x = {µ} then V (µ)−maxµ∈x V (µ) = 0 and so W ({µ}) = U(µ).
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while choice from a menu in each period t > 0 is subject to temptation, ex-ante
choice between menus is not. Thus, % reflects the agent’s views when he is in a
detached, ‘cool’ state (Lowenstein [23]) and is anticipating being in a ‘hot state’
when choosing from menus in each period t > 0. We emphasize that period 0
should be interpreted as a hypothetical period — the preference % captures how
the agent would behave if he was not affected by temptation. The agent’s observed
choices are those in each period t > 0 when temptation is potentially experienced.
The role of the period 0 preference % is to allow us to provide foundations for the
FT model (Section 3).

To see that the model can capture the behavior of an agent with self-control
problems who does not commit, consider some binary menu

x = {(c, y1), (c, y2)},
where immediate consumption is fixed at c for simplicity, and where the contin-
uation menus y1 and y2 satisfy y1 ⊂ y2. Since there is no choice of immediate
consumption, the choice from x is essentially a choice of what menu to face to-
morrow. The menu y1 offers commitment since y1 ⊂ y2; imagine that y is a
singleton menu that contains only the option to abstain from smoking, whereas z
is a binary menu that also contains the option of smoking.

What determines the agent’s choice from x? Recall from our earlier description
of the FT model that the choice from x (in some period t > 0) solves

max
(c,yi)∈x

{U(c, yi) +
µ
V (c, yi)− max

(c,yj)∈x
V (c, yj)

¶
}.

The functional forms of U and V imply

U(c, yi) = u(c) + δW (yi),

V (c, yi) = v(c) + γV (yi),

where

W (yi) = max
µ∈yi

{U(µ) +
µ
V (µ)−max

η∈yi
V (η)

¶
} and V (yi) = max

µ∈yi
V (µ).

For simplicity, let u(c) = v(c) = 0. Thus, the choice from x solves5

max
(c,yi)∈x

{δW (yi) +
µ
γV (yi)− max

(c,yj)∈x
γV (yj)

¶
}. (2.2)

5Observe that since the term ‘max(c,yj)∈x γV (yj)’ is a constant when x is given, the choice
essentially maximizes δW (·) + γV (·).
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The functions W and V evaluate a continuation menu yi very differently. In-
deed, y1 ⊂ y2 implies

W (y1) ≥W (y2) and V (y1) ≤ V (y2).

This is because temptations in y2 make y2 attractive according to V , but unattrac-
tive according to W ; observe that temptation utility enters W only in the form
of a cost whereas it enters V as a benefit. Thus, the agent is tempted to choose
y2 but believes that choosing y1 is in his best interest. His eventual choice is
determined by (2.2). If he resists temptation and chooses commitment, he incurs
the self-control cost

¯̄
γV (yi)−max(c,yj)∈x γV (yj)

¯̄
, that is, commitment comes at

the cost of self-control. If this cost is too high, he chooses not to commit.

3. Axioms and Representation Result

For any compact metric spaceX, ∆(X) denotes the set of all probability measures
on the Borel σ-algebra of X, endowed with the weak convergence topology; ∆(X)
is compact and metrizable [29]. Let K(X) denote the set of all nonempty compact
subsets of X. When endowed with the Hausdorff topology, K(X) is a compact
metric space [8].

The set C is a compact metric space that denotes possible consumption levels.
The domain of preferences % is the set of choice problems Z. Each choice problem
z ∈ Z is a compact set of lotteries, where each lottery is a measure over current
consumption and a continuation menu. Thus Z can be identified with K(∆(C ×
Z)). See GP [14] for the formal definition of Z and the homeomorphism between
Z and K(∆(C × Z)). In particular, Z is compact metric.

For convenience, ∆(C × Z) is written as ∆. Generic elements of Z are x, y, z
whereas generic elements of ∆ are µ, η, ν. For α ∈ [0, 1], αµ+(1−α)η ∈ ∆ is the
measure that assigns αµ(A) + (1 − α)η(A) to each A in the Borel σ−algebra of
C×Z. Similarly, αx+(1−α)y ≡ {αµ+(1−α)η : µ ∈ x, η ∈ y} ∈ Z is a mixture
of the choice problems x and y.

The axioms imposed on % are related to those in GP [14] and are presented in
three groups to facilitate comparison. The first set is identical to corresponding
axioms in [14] and the second set strengthens corresponding axioms. The last
axiom is the major point of departure.
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Axiom 1 (Order). % is a complete and transitive binary relation on Z.

Axiom 2 (Continuity). The sets {x : x % y} and {x : y % x} are closed.

Axiom 3 (Independence). For any α ∈ (0, 1),

{µ} Â {η} =⇒ {αµ+ (1− α)ν} Â {αη + (1− α)ν}.

Axiom 4 (Set-Betweenness). x % y =⇒ x % x ∪ y % y.

Axiom 5 (Stationarity). z % z0 ⇐⇒ {(c, z)} % {(c, z0)}.

The first two axioms are standard and the third is a version of the Independence
axiom applied to singleton menus. The motivation for Independence is precisely
as in GP [13, 14]. Roughly, Stationarity states that the ranking of choice problems
is unchanged if the choice problems are pushed one period into the future.

To understand Set-Betweenness, begin with the stronger assumption

x % y =⇒ x ∼ x ∪ y % y.

This axiom describes a standard decision-maker who evaluates a menu by its best
element: if the best item in x is better than the best item in y, then x ∼ x ∪ y
since the best item in x and in x ∪ y are the same. The decision-maker is said to
be strategically rational (Kreps [19]). Such a decision-maker is not worse off with
larger menus and thus does not experience temptation. Set-Betweenness allows for
the experience of temptation by permitting a preference for commitment, x Â x∪y.

Set-Betweenness also allows the decision-maker to resist temptation. Let µ, η ∈
∆ be such that {µ} Â {µ, η}, that is, η is tempting. When {µ, η} ∼ {η} holds,
the indifference suggests that the agent would choose the same item when faced
with {µ, η} or {η}. That is, choice from {µ, η} is η and so, the decision-maker
succumbs to temptation. On the other hand, the ranking {µ, η} Â {η} suggests
that µ is chosen from {µ, η} and so, the decision-maker resists temptation.

The next axiom strengthens two axioms in [14]. For any lottery µ ∈ ∆(C×Z),
µ1 denotes the marginal distribution over C and µ2 the marginal distribution over
Z. Let ∆s ⊂ ∆ be the set of lotteries on C × Z with finite support and ∆s(Z)
the set of lotteries on Z with finite support. Let δz denote the lottery degenerate
at menu z.

10



Define ϕ : ∆s(Z) −→ Z by

ϕ(
X

p(x)δx) =
X

p(x)x.

Two lotteries on Z that have the same ϕ−value induce the same uncertainty over
continuation menus in the sense that the probability of ultimately choosing from
a given continuation menu z ∈ Z tomorrow is the same. However, the timing of
the resolution of this uncertainty can be different. For example, consider lotteries
µ, π such that

µ2 = αδz + (1− α)δz0 and π2 = δαz+(1−α)z0 .

Then,

ϕ(µ2) = ϕ(αδz + (1− α)δz0) = αz + (1− α)z0 = ϕ(δαz+(1−α)z0) = ϕ(π2).

Under both µ and π, the uncertainty about the continuation menu is the same:
the agent chooses from z tomorrow with probability α and from z0 with probability
(1−α). However, there is early resolution of uncertainty in the former since, under
µ, the uncertainty is played out today, but under π the uncertainty is resolved
tomorrow.

Axiom 6 (Indifference to Timing). For any µ, η, π, ν ∈ ∆s, if µ1 = π1, η1 =
ν1, ϕ(µ2) = ϕ(π2) and ϕ(η2) = ϕ(ν2), then,

{µ, η} v {π, ν}.

According to the hypothesis, µ and π have the same first marginal and the
same ϕ−value. That is, the two lotteries are similar, except that they may differ
in how uncertainty about the continuation menu is resolved. The same is true
for η and ν. Consequently, the choices available in the menus {µ, η} and {π, ν}
may differ only in how uncertainty is resolved. Hence, indifference between the
menus amounts to an indifference to the timing of resolution of uncertainty. GP
formulate a weaker axiom restricted to singleton menus.

The axiom implicitly imposes a form of separability on preferences as well.
Consider µ, η, π, ν ∈ ∆s such that µ1 = π1, η1 = ν1, µ2 = π2 and η2 = ν2. Since
ϕ(µ2) = ϕ(π2) and ϕ(η2) = ϕ(ν2) holds trivially, Indifference to Timing implies

{µ, η} v {π, ν}.
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Observe that the set of marginals on C induced by both these menus are same,
and so are the induced sets of marginals on Z. Thus, the indifference between
{µ, η} and {π, ν} suggests that ‘only marginals matter’ and hence, preferences are
insensitive to correlations between current consumption and continuation menus.
GP’s axiom ‘Separability’ is implied by our Indifference to Timing axiom — their
axiom adopts the special case where

µ = η =
1

2
(c, z) +

1

2
(c0, z0)

π = ν =
1

2
(c, z0) +

1

2
(c0, z).

Our final axiom departs from GP’s in a more fundamental way. GP’s final
axiom states

Axiom (Temptation by Immediate Consumption). For any µ, η, ν ∈ ∆
such that η1 = ν1, if {µ} Â {µ, η} Â {η} and {µ} Â {µ, ν} Â {ν}, then

{µ, η} ∼ {µ, ν}.
According to the axiom, if the marginal distributions on present consumption
implied by two lotteries are the same, then the lotteries are equally tempting,
implying that continuation problems do not tempt the agent. Our axiom is for-
mulated so that continuation problems may tempt the agent.

Axiom 7 (Temptation Stationarity). x Â x∪y ⇐⇒ {(c, x)} Â {(c, x), (c, y)}.

The ranking x Â x ∪ y reveals that y tempts x, that is, the most tempting
item in y is more tempting than that in x. Similarly, the ranking {(c, x)} Â
{(c, x), (c, y)} reveals that (c, y) is more tempting than (c, x). Thus, the axiom
states that y tempts x if and only if (c, y) tempts (c, x), that is, if and only if
the continuation menu y tempts the continuation menu x. Note that this axiom
provides a way of distinguishing an agent who experiences temptation by future
consumption from one who does not. When y contains temptations, the former
type of agent strictly prefers, ex-ante, not to have the option to choose (c, y),
as reflected in the ranking {(c, x)} Â {(c, x), (c, y)}. An agent who does not
experience temptation by future consumption would not care whether or not he
has (c, y) and hence, he expresses the ranking {(c, x)} ∼ {(c, x), (c, y)}.

12



As mentioned in Section 2, the preference % is meant to capture how the agent
would behave in a special period 0 where he does not experience temptation. This
assumption is crucial for Set-Betweenness and Temptation Stationarity to make
sense. As we argued in the Introduction, temptation by future consumption can
lead to the absence of a preference for commitment. Thus, if such temptation is
experienced in period 0 (that is, if % does not represent behavior in the absence of
temptation), then the absence of a preference for commitment may not imply the
absence of temptation within a menu. That is, it is no longer true that y contains
tempting items if and only if x Â x∪y. The intuition underlying Set-Betweenness
and supporting Temptation Stationarity rests on this equivalence holding.

Representation Result
The preference % is said to be nondegenerate if there exists x, y ∈ Z such that

x ⊃ y and x Â y.

Theorem 3.1. If the nondegenerate preference % satisfies Axioms 1-7 then there
exist δ ∈ (0, 1), γ ∈ (0, 1), functions u, v : C −→ R, V : Z −→ R, and W : Z −→
R that represents % such that for all z ∈ Z,

W (x) = max
µ∈x

{U(µ) +
µ
V (µ)−max

η∈x
V (η)

¶
}, (3.1)

where U(µ) =

Z
C×Z

(u(c) + δW (y)) dµ(c, y),

V (µ) =

Z
C×Z

¡
v(c) + γV (y)

¢
dµ(c, y),

V (x) = max
η∈x

V (η).

Each of the functions u, v, V and W is continuous and V is linear.
Conversely, for any δ ∈ (0, 1), γ ∈ (0, 1), continuous u, v : C −→ R, there is

a unique continuous function W satisfying (3.1), and the preference it represents
satisfies Axioms 1-7.

The preferences in Theorem 3.1 are referred to as DSC preferences with Future
Temptation, or simply Future Temptation (FT) preferences. Note that DSC pref-
erences are not a special case of FT preferences. In the case of DSC preferences,
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temptation utility V has the form

V (µ) =

Z
C

v(c)dµ1(c),

which amounts to our representation with γ = 0. For FT preferences, γ > 0.

For any W as in (3.1) that represents %, the corresponding tuple (u, v, δ, γ) is
referred to as a representation of%. Theorem 3.2 establishes uniqueness properties
of the representation. Say that % exhibits a preference for commitment at y if
there exists x ⊂ y such that x Â y.

Theorem 3.2. Suppose % exhibits a preference for commitment at some y, and
let (u, v, δ, γ) be a representation of %. Then (u0, v0, δ0, γ0) also represents % if and
only if δ = δ0, γ = γ0 and there exist α > 0, and βu, βv ∈ R such that u0 = αu+βu
and v0 = αv + βv.

4. Demand for Commitment

The FT model permits agents to have a preference for commitment, and yet
not demand commitment. This section elucidates the meaning of this statement.
Recall the time-line of the FT model:

t=0•
x%y
––––—

t=1•
(c,z)∈x

––––—
t=2•

(c0,z0)∈z
–

As discussed in Section 2, the ex-ante preference % describes how the agent
would rank menus in a hypothetical period 0 where the agent experiences no
temptation. The observable choices of this agent — the choices that are subject
to temptation — are those in each subsequent period t > 0 where temptation is
experienced. When defining ‘commitment’, GP concentrate on commitment in
period 0:

Definition 4.1. % exhibits a preference for commitment at y if there exists x ⊂ y
such that x Â y. Say that % exhibits a preference for commitment if there exists
y ∈ Z such that % exhibits a preference for commitment at y.

14



Thus, an agent is said to prefer commitment at y if he commits to a subset
in an ex-ante stage, when he is not experiencing temptation. However, we are
interested in the question of whether he would commit to a subset of y if he were
not in the ex-ante stage, and did experience temptation. If he commits in such
a scenario, we say that he has a demand for commitment at y. Since only choice
from a menu is subject to temptation, we define a demand for commitment in
terms of choice of a continuation menu.

Definition 4.2. % exhibits a demand for commitment at y if there exists x ⊂ y
such that

{(c, x), (c, y)} Â {(c, y)},
for some c ∈ C. Say that % exhibits a demand for commitment if it exhibits a
demand for commitment at some y.

The ranking {(c, x), (c, y)} Â {(c, y)} implies that (c, x) is chosen from {(c, x), (c, y)}.
Therefore the definition states that when there is a choice between continuation
menus x and y, the agent is said to demand commitment if he chooses the smaller
continuation menu x, that is, if he chooses (c, x) from {(c, x), (c, y)}. An as-
sumption about the timing of commitment is implicit in Definitions 4.1 and 4.2:
commitment is chosen in the period before it is received. This implies that there
is a passage of time between when commitment is chosen and when it is received;
for example, the time between joining a rehabilitation clinic and actually starting
treatment.

It is important to understand the relationship between the demand and pref-
erence for commitment. A demand for commitment implies a preference for com-
mitment.6 In what follows, we show that the converse is true for DSC preferences,
but not necessarily for FT preferences.

For a DSC agent, a preference for commitment at y implies a demand for
commitment at y: when Temptation by Immediate Consumption is satisfied, con-
tinuation menus are not tempting, and hence, for all x, y,

{(c, x)} ∼ {(c, x), (c, y)}.
6To see this, let x ⊂ y and {(c, x), (c, y)} Â {(c, y)}. Then Set-Betweenness implies {(c, x)} Â

{(c, y)}, which, by Stationarity, implies x Â y.
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By Stationarity, x Â y implies {(c, x)} Â {(c, y)}. Therefore, if x ⊂ y and x Â y,
then

{(c, x)} ∼ {(c, x), (c, y)} Â {(c, y)},
That is, (c, x) is chosen from {(c, x), (c, y)}.

In the FT model, however, a preference for commitment at y may not imply
a demand for commitment at y. To see this, observe that if x ⊂ y, then x Â y is
equivalent to x Â x ∪ y, which by Temptation Stationarity is equivalent to

{(c, x)} Â {(c, x), (c, y)}.

Hence a preference for commitment at y implies a temptation to choose (c, y). By
Definition 4.2, the agent demands commitment when

{(c, x)} Â {(c, x), (c, y)} Â {(c, y)},

that is, when he resists the temptation to choose (c, y). However, if the self-control
cost of resisting the temptation is too high, the agent submits to the temptation
of (c, y),

{(c, x)} Â {(c, x), (c, y)} ∼ {(c, y)}.
In such a case, there is a preference for commitment at y, but no demand.

Hence temptation by future consumption severs the link between the prefer-
ence and demand for commitment that exists in the DSC model. The result that
a preference for commitment does not imply a choice to commit has the same
paradoxical nature as the result in GP [14], where dynamically consistent pref-
erences may produce choices that appear dynamically inconsistent. This wedge
between preferences and choices arises because temptations can make choices ap-
pear inconsistent with preferences. For instance, one may prefer {µ} over {η},
but choose η from {µ, η} due to a temptation to choose η. Temptation by future
consumption serves the purpose of making certain choices tempting, namely mak-
ing (c, y) tempting in {(c, x), (c, y)}. This introduces the appropriate wedge, since
now a preference for commitment (which is equivalent to {(c, x)} Â {(c, y)}) does
not necessarily imply that (c, x) is chosen from {(c, x), (c, y)}.

We close with a comment about the ex-ante preference%. Since period 0 choice
between menus (captured by %) is presumably in the absence of temptation, the
FT agent has no reason not to commit in period 0 if he has a preference for doing
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so. That is, although we set out to model a smoker that does not commit, our FT
smoker would always commit in period 0! This would appear to be a shortcoming
of the model, since the model is meant to describe agents who have self-control
problems and yet do not commit. However, we remind the reader that period 0 is
a hypothetical construct (Section 2); the period 0 preference % describes how the
agent would behave if he did not experience temptation. Only the choices in each
period t > 0 are subject to temptation, and thus, correspond to actual choice.

5. Temptation Discounting

Two primitives of the FT model are δ and γ, the commitment and temptation
discount factors respectively. In this section we define some behaviors and discuss
how they depend on the relative magnitudes of δ and γ. In particular, we discuss
how the demand for commitment depends on δ and γ.

5.1. Preference Reversals

Subjects in psychology experiments on ‘preference reversals’ typically prefer a
small immediate reward to a large delayed reward, but reverse preferences in favor
of the latter when both rewards are pushed into the future by a sufficient number
of periods (see, for instance, Kirby and Hernnstein [16]). For instance, they may
choose ($100, now) over ($110, one month), but after both rewards are delayed by
two months, they switch preferences and choose ($110, three months) over ($100,
two months). Preference reversals have been interpreted in terms of temptation
by the immediately available reward, which disappears when both rewards are in
the future.

Preference reversals can be defined in our model as follows. For some c ∈ C
and any µ ∈ ∆ let µ+0 = µ and inductively, µ+t = (c, {µ+(t−1)}). That is, µ+t
represents getting the reward µ with a delay of t periods, where in each of the t
periods the agents receives some fixed consumption c.

Definition 5.1. % exhibits preference reversals if {µ} Â {µ, η} ∼ {η} implies the
existence of t∗ such that

{µ+t, η+t} ∼ {η+t} for all t < t∗,

{µ+t, η+t} Â {η+t} for all t ≥ t∗.
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Thus, choices from menus of the form {µ+t, η+t} with different t determine
whether the agent exhibits preference reversals. The rankings

{µ+t, η+t} ∼ {η+t} for t < t∗

state that η+t is chosen from {µ+t, η+t} when t < t∗. The rankings

{µ+t, η+t} Â {η+t} for t ≥ t∗

state that η+t is no longer chosen from {µ+t, η+t} when t ≥ t∗, and thus a reversal
is observed. Note that the hypothesis of the Definition requires that the choice
of η from {µ, η} be subject to overwhelming temptation, thereby suggesting that
temptation is the underlying cause of the preference reversal — % is said to exhibit
preference reversals if an irresistible temptation in the menu {µ, η} is resisted
when both rewards µ and η are pushed sufficiently far into the future.

Definition 5.1 is not restricted to preference reversals involving earlier rewards
and later rewards. It allows for preference reversals between rewards available
at the same date. An examples of such a reversal can be found in Trope and
Liberman [34] who find that subjects tend to prefer watching a noneducational
but entertaining movie now to an educational but unentertaining movie now, yet
they switch preferences when the movie is to be watched at some point in the
future.7 Both rewards are available at the same date.

5.2. Preference for Early Choice

The literature on choice under risk has studied attitudes toward the timing of
resolution of risk, that is, the agent’s preference regarding whether uncertainty
regarding tomorrow’s consumption should resolve today or tomorrow. We consider
a parallel attitude in our framework: the agent’s attitude towards the timing of
self-control, that is, the agent’s preference regarding whether to exert self-control
today when deciding tomorrow’s consumption, or to postpone exerting self-control
until tomorrow.

7Such rewards can be modelled as follows. Let the consumption set C be a subset of R2,
where the first coordinate of (c1, c2) ∈ C represents the ‘education rating’ and the second
represents the ‘entertainment rating’. The movies can thus be represented by elements of C. To
get ‘temptation by entertaining movies’, let v be a function of c2 only, u a function of c1 only,
and u, v strictly increasing.
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Definition 5.2. % exhibits preference for early choice if

{µ} Â {µ, η} Â {η} implies {(c, µ), (c, η)} Â {(c, {µ, η})}.

The hypothesis {µ} Â {µ, η} Â {η} implies that when the agent faces the menu
{µ, η}, he is tempted by η but is able to exert self-control and resist it. Further-
more, by Temptation Stationarity, {µ} Â {µ, η} implies {(c, µ)} Â {(c, µ), (c, η)},
that is, when the agent faces {(c, µ), (c, η)}, he is tempted by (c, η). These two ob-
servations imply the following: Under the menu {(c, µ), (c, η)}, the decision-maker
has the opportunity to exert self-control today and choose to consume µ tomor-
row. Under {(c, {µ, η})}, tomorrow’s consumption has to be chosen tomorrow,
and tomorrow he will exert self-control and choose µ. Thus the agent’s ranking of
the menus {(c, µ), (c, η)} and {(c, {µ, η})} reveals his preference for when to exert
self-control. The axiom states that he has a preference for exerting self-control
today rather than tomorrow.

5.3. A Characterization

Theorem 5.3 reveals that demand for commitment, preference reversals and pref-
erence for early choice are all behavioral manifestations of large temptation dis-
counting.

Theorem 5.3. Let the nondegenerate FT preference % exhibit a preference for
commitment. Then the following statements are equivalent.
(a) γ < δ.
(b) % exhibits demand for commitment.
(c) % exhibits preference reversals.
(d) % exhibits preference for early choice.

The intuition behind the result is that sufficient discounting of the temptation
utility of future consumption makes it possible to resist temptation by future
consumption. There exists a demand for commitment when the agent can resist
the temptation by some menu y, and this is possible only when the temptation
utility of the menu is discounted sufficiently. Large discounting is also responsible
for preference reversals because the latter occurs when an irresistible immediate
temptation is resisted when it is pushed into the future. Finally, {(c, µ), (c, η)} is
strictly preferred to {(c, {µ, η})} (and so there is preference for early choice) if it
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is easier to resist the future temptation of η in {(c, µ), (c, η)} than the immediate
temptation of η in {µ, η}.

The restriction γ < δ is desirable for two reasons. Firstly, there is evidence
in favor of a demand for commitment (Elster [10], Schelling [32]) and preference
reversals (see references in Ainslie [1]). Secondly, γ ≥ δ produces behavior that
is not intuitive. For instance, when γ > δ, the following behavior arises: for any
µ, η ∈ ∆, {µ} Â {µ, η} Â {η} implies the existence of t∗ such that

{µ+t, η+t} Â {η+t} for all t < t∗,

{µ+t, η+t} ∼ {η+t} for all t ≥ t∗.

That is, temptations that can be resisted when they are immediate become ir-
resistible when they are pushed into the future. We normally expect immediate
temptations to be harder to resist.

The main motivation for the FT model was to explain why agents with self-
control problems may not commit. By Theorem 5.3 it would appear that we
need to assume γ ≥ δ. But we just argued that γ < δ is the desirable restriction!
Fortunately, Theorem 5.3 states that when γ < δ, there exists at least one y where
there is a demand for commitment, and therefore does not rule out the possibility
that there are other y where there is a preference for commitment but no demand.
The following table gives conditions under which a demand for commitment does
or does not exist: for x, y such that x ⊂ y and x Â y,

commits does not commit

γ = 0 always —

0 < γ < δ if W (x)−W (y)

V (y)−V (x) > γ
δ

if W (x)−W (y)

V (y)−V (x) ≤
γ
δ

δ ≤ γ — always

See Appendix D for the derivation of the table.
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6. Applications

6.1. Normative Implications

The normative implications of temptation models of addiction are different from
those of models stemming from Becker and Murphy [6]. These latter models
suggest that addiction is a rational choice, and so, the government has no role in
regulating the addict’s choices, except to the extent that his choices impose an
externality on others. On the other hand, models that incorporate self-control
problems, such as GP [15], imply that, along with externalities on others, an
addict imposes negative internalities on himself and hence there is a role for the
government to intervene.

However, the temptation literature has typically hypothesized that agents are
tempted only by immediate consumption. A consequence of this assumption is
that addicts that don’t seek treatment in fact have no self-control problems. That
is, they are ‘happy addicts’ in that they are addicted because it is optimal for
them, and thus require no help. In contrast, the FT model suggests that an
addict that does not seek commitment may be a very unhappy addict.8 He does
not seek commitment because of a lack of self-control. Hence, there is a role for
intervention.

Furthermore, the welfare policy prescription of models that do not permit
temptation by future consumption is simple: introduce commitment mechanisms
into the market. In this way, agents with self-control problems take advantage of
commitment opportunities and thus improve their welfare, whereas agents who
do not have self-control problems are unaffected. But such a prescription may not
be effective if agents experience temptation by future consumption. Such agents
postpone commitment, and thus may never take advantage of the commitment
opportunities. For such agents, narcotics control may be a superior policy.

6.2. Time of Preference Reversals

A large amount of experimental evidence in psychology reveals that agents dis-
count future rewards by using a hyperbolic discount function (see Ainslie [1] for an

8In its current form, the FT model is not a model of addiction since it does not possess
the nonseparability that is presumably characteristic of addiction. However, the model can be
extended appropriately in a manner analogous to [15] in order to accommodate this.
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overview of the literature). In what follows, we restrict attention to Mazur’s [26]
version of the hyperbolic discounting functional form, which has fit experimental
evidence particularly well. According to his formulation, a reward that is delayed
by d periods is discounted by

1

1 + kd
,

where k parameterizes the subject’s sensitivity to delay.

Let s+0 denote a small immediate reward s, and let l+d denote a large reward
l available with a delay of d periods. If a subject chooses s+0 over l+d, then the
hyperbolic discount function implies that in order to induce a preference reversal,
both rewards must be delayed by bτ(s+0, l+d) periods, where

bτ(s+0, l+d) = s(1 + kd)− l

k(l − s)
,

and where k is a parameter that captures the subject’s ‘sensitivity’ to delay.
That is, bτ(s+0, l+d) captures the time at which a preference reversal takes place
for the rewards s+0 and l+d. Observe that bτ(s+0, l+d) is increasing in s and d,
and decreasing in l. The empirical evidence on hyperbolic discounting serves as
indirect empirical evidence in favor of these properties of bτ . Some direct evidence
may be found in Ainslie and Haendel [2].

How does the time-of-reversal function τ of DSC and FT (with γ < δ) agents
compare with the bτ function above? In order to answer this question, we first need
to define a time-of-reversal function (µ, η) 7→ τ(µ, η) for these models. Definition
5.1 guides us. Take any µ, η such that {µ} % {η}. A preference reversal is observed
for the pair of rewards (µ, η) if the hypothesis9

{µ} Â {µ, η} ∼ {η}

in Definition 5.1 holds, in which case we can set τ(µ, η) = t∗, where t∗ > 0 is
as in the Definition. If the hypothesis does not hold, then no preference reversal
is observed for (µ, η), and we set τ(µ, η) = 0. To cover all remaining cases, let
τ(µ, η) = τ(η, µ) for all µ, η.

9This ‘overwhelming temptation’ condition is equivalent to U(µ)−U(η)
V (η)−V (µ) ∈ (0, 1], where U and

V are as in the DSC or FT representation.
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Suppose a preference reversal is observed for the rewards µ, η. Then DSC
agents exhibit,10

τDSC(µ, η) = 1,

whereas FT agents exhibit,11

τFT (µ, η) =
ln U(µ)−U(η)

V (η)−V (µ)

ln γ
δ

,

where U and V are as in the FT representation. That is, for DSC agents, a
single period delay suffices to induce a reversal — DSC agents are only tempted by
immediate consumption, and so a single period delay leads all temptation to be
discounted fully. For FT agents, the required delay depends on the rewards and
on the agent’s discount factors.

First, we inquire whether the τFT function shares the same properties as bτ .
For r = s, l, define r+t as in Section 5.1 and for expositional simplicity, suppose
u(c) = v(c) = 0. If the agent chooses s+0 from {s+0, l+d} and a preference reversal
is observed, then

τFT (s+0, l+d) =
ln δdu(l)−u(s)

v(s)−γdv(l)

ln γ
δ

.

If u and v are strictly increasing functions, then the τFT function makes the same
qualitative predictions as bτ , that is, τFT is increasing in s and d and decreasing
in l. According to the model, the greater the value of s or d, or the smaller the
value of l, the more tempting the small reward is, and so, the greater the number
of periods of delay required in order to induce a preference reversal. Observe that
the role of k in bτ is played by γ

δ
in τFT . Apparently, the ‘sensitivity’ to delay

corresponds to how fast temptation utility is discounted (relative to commitment
utility) when rewards are pushed into the future.

Thus, τFT shares the same features as bτ , while τDSC clearly does not. This
supports the idea that agents are tempted by future consumption.

The evidence on preference reversals also reveals that temptation by future
consumption is not restricted to a short time horizon. For instance, Ainslie and
10Since future temptations do not affect DSC agents, delaying rewards by one period suffices

to induce a preference reversal [14].
11See the proof of "(a) =⇒ (c)" in Appendix C. Strictly speaking, since time is discrete, τFT

should be rounded off to the next integer. The same is true for bτ .
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Haendel [2] and Kirby and Hernnstein [16, Experiment 3] find that the time of a
reversal may be in years — the latter uncovers a preference reversal at almost 3.5
years delay. That is, it may take a delay of 3.5 years before the temptation of a
reward is resistible, suggesting that rewards that are that far in the future may
tempt.

6.3. Projection Bias vs. Temptation by Future Consumption

Various studies suggest that agents exhibit a ‘projection bias’ when predicting
their future tastes: agents tend to systematically exaggerate the extent to which
their future tastes will resemble their current tastes (Lowenstein and Schkade
[24], Lowenstein, O’Donoghue and Rabin [25]). An experiment by Read and van
Leeuwen [31] is often cited as evidence. Read and van Leeuwen give their subjects
a choice between a healthy and unhealthy snack. The snacks are to be received
after one week, either at a time when the subjects are in a hungry state H1

(just before lunch) or a satiated state S1 (immediately after lunch). Subjects
are approached either when they are currently in a hungry state H0 or satiated
state S0. The following table depicts the proportion of subjects who choose the
unhealthy snack in each of the four scenarios:

H1 S1
H0 78% 42%
S0 56% 26%

Thus, for any given current state, subjects choose the unhealthy snack more
often when they anticipate being hungry. This presumably reflects the greater
desire for the unhealthy snack in a hungry state. More interestingly, for any
given future state, subjects choose the unhealthy snack more often when they are
currently hungry. This is taken as evidence of projection bias since subjects who
are currently hungry (and thus desire the unhealthy snack) act as if their future
taste for the unhealthy snack will be similar to their current taste for it.

The choices admit an alternative interpretation: subjects are more sensitive
to future cravings when they are currently experiencing a craving. The unhealthy
snack may tempt subjects — more so when they are hungry — and the idea of
having a tempting snack later is more attractive to them when they are currently
hungry.12 The FT model can capture such a story, once nonstationarity of temp-
12The healthy and unhealthy food items used in the experiment were among those ranked by

a subset of the subjects according to how healthy or unhealthy they were.
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tation preference is allowed for. For a simple illustration, consider the following
generalization of the FT utility function:

Wt(x) = max
µ∈x

{Ut(µ) +

µ
Vt(µ)−max

η∈x
Vt(η)

¶
},

where Ut(µ) =

Z
C×Z

(u(c) + δWt+1(y)) dµ(c, y),

Vt(µ) = λt

Z
C×Z

¡
v(c) + γV t+1(y)

¢
dµ(c, y),

V t(x) = max
η∈x

Vt(η).

The FT representation is the special case where λt = 1 for all t. Thus, the
generalization permits the strength of temptation, parametrized by λt, to vary
from period to period (exogenously).

Let a period be a week long. Thus, the choice problem faced by Read and van
Leeuwen’s subjects is

x = {b+1, h+1},
that is, the set containing the option to commit to the unhealthy snack b or healthy
snack h for the next period; under either option, immediate consumption and the
menu to be received in two periods is the same.13 The choice from x at time t
maximizes Ut(µ) + (Vt(µ)−maxη∈x Vt(η)), which is equivalent to maximizing

Ut(·) + Vt(·)

over x. Given the structure on Ut(·) and Vt(·), the agent chooses b+1 if and only if

δu(b) + λtγλt+1v(b) ≥ δu(h) + λtγλt+1v(h).

Assume that b is tempting, so that u(h) > u(b) and v(b) > v(h). Also, suppose
that λt (resp. λt+1) captures the subject’s state in period t (resp. t+ 1), so that
higher levels of hunger correspond to higher values of λt (resp. λt+1). Under these
assumptions, the model captures the choices of Read and van Leeuwen’s subjects:
higher the value of current and/or future hunger, the more likely the subjects are
to choose the unhealthy snack.

13Formally, for c, b, h ∈ C and z ∈ Z, let b+1 ≡ (c, {(b, z)}) and similarly, h+1 ≡ (c, {(h, z)}).
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6.4. Procrastination

Procrastination occurs when an agent delays doing a task which, in some sense,
he finds preferable to do now rather than later (Akerlof [3]). O’Donoghue and
Rabin [27, 28] develop a theory of procrastination: given some task that is worth
doing now rather than later, they suggest that a decision-maker procrastinates
because, firstly, he incorrectly believes that he will do the task tomorrow if he
delays today, and secondly, given the incorrect belief, it is optimal to delay. The
naivete in expectations is an important ingredient in their theory.

We suggest another explanation: procrastination occurs because delaying is
tempting. Thus, it is possible for a fully self-aware, rational agent to find it
optimal to delay doing a task, despite preferring to commit to doing the task now.
We illustrate how the FT model can be used to produce procrastination in the
context of saving for retirement through a commitment asset.

There are T periods. A finite horizon choice problem xt is an element of Zt,
where ZT = K(∆(C)) and for t < T , Zt = K(∆(C × Zt+1)). The representation
W0 for the preference % is defined inductively as follows. The utility WT of a
period T menu xT is defined by

WT (xT ) = max
cT∈xT

{u(c) + v(c)− max
c0T∈xT

v(c0)},

and inductively, for all t < T ,

Wt(xt) = max
(ct,xt+1)∈xt

{u(c) + δWt+1(xt+1) + v(c) + γV t+1(xt+1)}

− max
(c0t,x

0
t+1)∈xt

{v(c0) + γV t+1(x
0
t+1)}.

Let 0 < γ < δ, u = v and let u be increasing in c. The agent receives an endowment
ωt > 0 every period t < T , but in the last period he has no endowment. In each
period, besides choosing consumption, he decides whether or not to commit d units
of consumption to a 401(k) plan. Contributions to the 401(k) can be consumed
only in the last period, and there are no other saving opportunities. Formally, the
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choice problem is14

x0(w0) = {(c0, x1(w1 − d1)) : c0 ≤ w0 and d1 = 0 or d},
xt(wt − dt) = {(ct, xt+1(wt+1 − dt+1)) : ct ≤ wt − dt and dt+1 = 0 or d}, 0 < t < T,

xT (wT ) = {cT : cT ≤ wT and wT =
T−1P
t=0

dt}.

He enters period 0 with resources w0, chooses current consumption c0 ≤ w0, and
the continuation menu x1(w1 − d1). The choice of continuation menu is made by
choosing d1 ∈ {0, d}, that is, by deciding whether or not to contribute d in the
asset. The same kind of choices are made in every period t < T . In the final

period T , his resources are
T−1P
t=0

dt, the quantity contributed to the 401(k) over his

life, and his only choice is to decide how much of this to consume.

Assume that life-cycle commitment utility is maximized if he begins saving for
retirement from the first period and that life-cycle temptation utility is maximized
if he begins saving by some period t∗ > 0. That is, commitment utility is maxi-
mized when dt = d for all t < T , and temptation utility is maximized when dt = 0
for all t < t∗ and dt = d for all t ≥ t∗. Given γ < δ, this assumption is satisfied if
the time horizon is sufficiently long. Note that there is a temptation to delay until
t∗, so that any commitment before t∗ is at the cost of self-control. For appropriate
parameter values (for instance, a small d), the benefit of committing (that is, the
discounted utility of gaining d units of consumption in the last period) is smaller
than the self-control cost for all t < t∗. For t ≥ t∗, there is no self-control cost
of committing, and so he commits. That is, the agent rationally procrastinates
on saving for retirement until t∗. The reason he eventually starts saving is that
delaying ceases to be tempting once the deadline is close enough.

This demonstrates that the FT model can produce procrastination in using a
commitment device. Turn to the question of how DSC preferences may be used to
produce such behavior. Observe that we assumed that the commitment decision
is made in the period prior to when commitment is received, that is, the agent
specifies in advance the proportion of his income to save in an 401(k). In such
an environment, DSC preferences cannot exhibit procrastination in commitment.

14Recall from Section 4 that commitment is chosen in the period prior to when it is received.
This is evident in the way the choice problems are defined. For instance, at t = 0 the agent
chooses d1.
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A DSC agent is tempted to maximize utility from immediate consumption. Since
the 401(k) contribution is not coming out of current income (it is coming out of
tomorrow’s income), the DSC agent would not be tempted to postpone saving
— he would take advantage of the opportunity to commit in advance. If one
changes the specification of the environment so that first, the 401(k) contribution
is made out of immediate income and second, it is not possible to pre-specify
a contribution rate, then the DSC model can produce procrastination as well.
However, it should be noted that the opportunity to pre-specify a contribution
rate exists in real environments.

6.5. Temptation to Save

While there is evidence that people under-save, procrastinate, over-indulge in
food, tobacco, alcohol or narcotics at the cost of future health problems, etc.,
there is also evidence that some people over-save, over-work, under-indulge etc.
That is, alongside evidence of myopic behavior there is also evidence of hyperopic
behavior. Evidence of under-indulgence is discussed in Kivetz and Simonson [17],
and over-saving lends itself as a possible explanation for why retired people do not
dissave as much as predicted by the life-cycle model and its variants (see Browning
and Crossley [9] and Krusell, Kurusçu and Smith [20]). While myopia is typically
understood in terms of temptation by immediate consumption, hyperopia can
be understood in terms of temptation by consumption in the future. It can be
explained by the FT model, and that too without departing from the restriction
γ < δ, that is, without departing from the assumption that delayed temptations
are easier to resist than immediate consumption. In particular, the model can
simultaneously account for myopia and hyperopia in an agent.

To illustrate this in the context of a temptation to save, assume that v is lin-
ear so that temptation preferences do not care about intertemporal consumption
smoothing, and also that commitment preferences desire some positive consump-
tion in the current period. Then, for any rate of interest r such that

1 + r >
1

γ
,

the agent is tempted to save his entire endowment. This holds even though γ < δ.
Note that the agent switches between being tempted to save and tempted to spend
as 1 + r fluctuates around 1

γ
.
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DSC agents are tempted to maximize temptation utility from immediate con-
sumption. In order to produce a temptation to over-save, one would have to
assume that temptation utility is maximized by reducing immediate consump-
tion. Therefore, DSC preferences cannot account for hyperopic behavior, unless
one makes the counter-intuitive assumption that, given fixed future consumption,
less immediate consumption is more tempting.

6.6. Save More Tomorrow

The results of Benartzi and Thaler [7] suggest that people find it easier to make
delayed commitments than immediate commitments. The authors introduce a
saving-enhancement plan, called the ‘Save More TomorrowTM (SMT) plan’. Sub-
jects in a firm are given the opportunity to commit in advance to allocating a
portion of their future salary increases towards a defined-contributions plan.15

Opting for this plan implies a preference for delayed commitment since subjects
would rather commit portions of future salaries (future budget sets) than portions
of the next salary. The authors implemented the SMT plan in several firms, and
found a significant demand for it. Across the implementations, the percentage of
employees that opted for the plan ranged between 27% (216 of 816) and 78% (162
of 207).16

Benartzi and Thaler suggest several possible stories that would rationalize
these results. The FT model provides an additional explanation: commitment
requires self-control, and it is easier to exert self-control when making delayed
commitments. To illustrate, consider x, y such that x ⊂ y and

{(c, x)} Â {(c, x), (c, y)} ∼ {(c, y)}.

By Stationarity, {(c, x)} Â {(c, y)} implies x Â y, and since x ⊂ y, it follows that
the agent has a preference for commitment at y, in the sense of Definition 4.1. By
Definition 4.2, this agent does not have a demand for commitment at y. Assuming

15Any withdrawals one makes from a defined-contributions plan before the age of 5912 is at a
cost. Thus, such plans provide a means of committing funds for retirement.
16A feature of the SMT plan that is problematic for our purposes is that the allocation

decisions made by participants are not binding. Thus, SMT falls short of providing commitment.
However, the authors point out that only a small proportion of subjects drop out of the plan,
and possible reasons for this include inertia, procrastination, etc. If subjects are aware that
such psychological factors would stop them from dropping out of the plan in the future, then
participating in the plan does serve as a means of commitment.
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γ < δ, Theorem 5.3 implies the existence of a preference reversal (Definition 5.1):
there exists t∗ such that

{(c, x)+t, (c, y)+t} Â {(c, y)+t} for all t ≥ t∗.

That is, if an FT agent has a preference for commitment at y but no demand for
commitment at y, he nevertheless has a demand for delayed commitment at y —
he chooses (c, x)+t over (c, y)+t for sufficiently large t.

A comment is in order. The motivation of the FT model was to explain why a
market for commitment mechanisms may be absent. However, the model predicts
that these agents would nevertheless demand delayed commitment, and this raises
the question why a market for mechanisms providing delayed commitment appears
to be absent. There are two possible answers. First, since the benefit of choosing
delayed commitment lies in the future, the discounting of future utility may lead
FT agents to not value delayed commitment significantly enough to attract a
supply of such mechanisms. Second, uncertainty regarding factors such as future
tastes, which we have abstracted from in this paper, may lead to an off-setting
desire to retain flexibility.

7. Conclusion

While the literature on self-control problems has concentrated on the implications
of immediate temptation, this paper explores the implications of temptation by
future consumption. The model provides an explanation for why agents who
are aware of their self-control problem may not take advantage of commitment
opportunities: the possibility of indulging temptations in the future is itself a
source of temptation, and strategies such as commitment require this temptation
to be resisted. That is, commitment requires self-control.

An alternative explanation for why agents with self-control problems may not
commit is provided by O’Donoghue and Rabin [27], who suggest that agents may
not be fully aware of their self-control problems. They may not recognize that
their future choices will deviate from what is optimal in their current view, and
thus may find no reason to employ commitment devices.17 Such a view suggests

17This explanation is most appealing when coupled with the hypothesis that the agent does
not learn about his self-control problem even though he is continually surprised by the fact that
he never sticks to his plan.
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that agents can be made better-off by educating them about self-control problems.
However, if agents are tempted to postpone commitment, then they may not seek
commitment despite having full knowledge about their self-control problems. In
such a case, efforts to improve agents’ welfare through information and education
may not be effective.

A. Appendix: Proof of Theorem 3.1

⇐=: Given a representationW , necessity of the axioms is straightforward to establish. Necessity

of Indifference to Timing follows from the additive separability of U and V , and the linearity of

W and V . To show that W is unique and well defined, consider the mappings S and T , from

the space of all continuous, real valued functions on Z (endowed with the sup norm) to itself,

defined below:

SV (z) = max
η∈z

Z
v(c) + γV (y)dη,

TW (z) = max
µ∈z

{
Z

u(c) + δW (x) + v(c) + γV (x)dµ−max
η∈z

Z
v(c) + γV (y)dη}.

For any v and γ as defined in Theorem 3.1, Blackwell’s Theorem (see Aliprantis and Border [5])

gives a well-defined and unique V that is a fixed point of S. Using this V in the definition of T

and invoking Blackwell’s Theorem again yields that for any u, v, δ and γ as defined in Theorem

3.1, there is a well-defined and unique W that is the fixed point of T .

=⇒: By Independence, Stationarity and Indifference to Timing, % satisfies the stronger
version of Independence:

x Â y, α ∈ (0, 1) =⇒ αx+ (1− α)z Â αy + (1− α)z. (A.1)

By GP [13, Theorem 1], % satisfies Order, Continuity, Set-Betweenness and (A.1) if and only

if there exist linear and continuous functions U,V : ∆ −→ R and the function W : Z −→ R
defined by

W (z) = max
µ∈z

{U(µ) + V (µ)−max
η∈z

V (η)}, (A.2)

that represents %. Lemma A.1 establishes some facts about (A.2) that will be used throughout
the Appendix. Define V : Z −→ R and U + V : Z −→ R by

V (x) = max
η∈x

V (η),

(U + V )(x) = max
η∈x

U(η) + V (η).
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Lemma A.1. For all x, y,
(a) x Â x ∪ y ⇐⇒ V (y) > V (x) and W (x) > W (y).

(b) x ∪ y Â y ⇐⇒ (U + V )(x) > (U + V )(y) and W (x) > W (y).

(c) x Â x ∪ y Â y ⇐⇒ (U + V )(x) > (U + V )(y) and V (y) > V (x).

Proof. (a) =⇒: Set-Betweenness implies that x Â y, and hence W (x) > W (y). Suppose
by way of contradiction, V (y) ≤ V (x). Then

W (x) = (U + V )(x)− V (x)

W (x ∪ y) = (U + V )(x ∪ y)− V (x).

Because x ⊂ x ∪ y, (U + V )(x ∪ y) ≥ (U + V )(x), and so W (x ∪ y) ≥W (x), a contradiction.

⇐=: Let V (y) > V (x) and W (x) > W (y). There are two cases to consider. If x∪ y ∼ y,
then W (x) > W (y) implies that x Â x ∪ y. If x ∪ y Â y, then

W (x ∪ y) = (U + V )(x ∪ y)− V (y)

> (U + V )(y)− V (y) =W (y),

and so, (U + V )(x ∪ y) > (U + V )(y). It follows that (U + V )(x) = (U + V )(x ∪ y), and so,

W (x) = (U + V )(x)− V (x)

> (U + V )(x ∪ y)− V (y) =W (x ∪ y).

That is, x Â x ∪ y.

(b) =⇒: Set-Betweenness implies that x Â y, and henceW (x) > W (y). Suppose by way
of contradiction that (U + V )(x) ≤ (U + V )(y). Then (U + V )(y) = (U + V )(x ∪ y), and

W (x ∪ y) = (U + V )(y)− V (x ∪ y)
W (y) = (U + V )(y)− V (y).

Because y ⊂ x ∪ y, V (x ∪ y) ≥ V (y), and so W (y) ≥W (x ∪ y), a contradiction.

⇐=: There are two cases to consider. First, V (x) ≥ V (y). Then

W (x) = (U + V )(x)− V (x) =W (x ∪ y)

and since by hypothesisW (x) > W (y), Set-Betweenness implies x∪y Â y. Second, V (x) < V (y).
Then

W (x ∪ y) = (U + V )(x)− V (y)

> (U + V )(y)− V (y) =W (y),

as desired.
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(c) This follows from (a) and (b).

Indifference to Timing implies GP’s axioms 5 and 7, respectively. Hence our axioms 1-6
imply GP’s axioms 1-7. The proof of GP [14, Theorem 1] yields that U(·) can be written as

U(µ) =

Z
C×Z

(u(c) + δW (z)) dµ(c, z),

for some u : C −→ R and δ ∈ (0, 1). We want to show that

V (µ) =

Z
C×Z

¡
v(c) + γV (y)

¢
dµ(c, z),

where V (x) = maxµ∈x
R
C×Z v(c) + γV (y)dµ(c, y). Consider two possibilities:

Case (1) V is constant or U is a positive affine transformations of V.

In either case, we can take U 0 = (U + V ) and V 0 = 0 and U 0, V 0 yield the representation

with v(·) = 0 and any γ. In particular, the representation holds for 0 < γ < 1.

Case (2) V is not constant and U is not a positive affine transformations of V.

It is not possible for there to exist α ≤ −1 such that V = αU + β, β ∈ R, since that
would contradict nondegeneracy. Therefore consider the case that α ∈ (−1, 0) or U is not an

affine transformation of V . The remainder of the proof will establish the result in this case. Let

∆s ⊂ ∆ represent the set of measures on C × Z with finite support.

Lemma A.2. Under Case (2), there exists µ, µ ∈ ∆s such that

{µ} Â {µ, µ} Â {µ}.

Furthermore, for any finite L ⊂ ∆, there exists α ∈ (0, 1] such that for all ν ∈ L,

{µ} Â {µ, ναµ} Â {ναµ}.

Proof. It is established in the proof of GP [14, Theorem 1] that under the conditions of Case
(2), there exist ν, ν such that U(ν)+V (ν)−U(ν)−V (ν) > 0 > V (ν)−V (ν). By Lemma A.1(c),

{ν} Â {ν, ν} Â {ν}.

Since ∆s is dense in ∆, and U, V are continuous, there exist µ, µ ∈ ∆s such that U(µ)+V (µ)−
U(µ)− V (µ) > 0 > V (µ)− V (µ), and so,

{µ} Â {µ, µ} Â {µ}.
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To prove the second part of the Lemma, take any finite L ⊂ ∆. By continuity of % , for
every η ∈ L there exists some αη ∈ (0, 1) such that for all α0η ∈ (0, αη],

{µ} Â {µ, ηα0ηµ} Â {ηα0ηµ}.

Taking α = min{αη}η∈L establishes the result.

The next two Lemmas establish Separability of V .

Lemma A.3.
V (
1

2
(c, z) +

1

2
(c0, z0)) = V (

1

2
(c, z0) +

1

2
(c0, z)).

Proof. Take ν1 = 1
2(c, z) +

1
2(c

0, z0) and ν2 =
1
2(c, z

0) + 1
2(c

0, z). By Lemma A.2, there is µ, µ
and α such that

{µ} Â {µ, ν1αµ} Â {ν1αµ} and {µ} Â {µ, ν2αµ} Â {ν2αµ}.

Observe that all the above measures have finite support, the first marginals of ν1αµ and ν2αµ

are the same, and the second marginals
¡
ν1αµ

¢2
and

¡
ν2αµ

¢2
satisfy ϕ(

¡
ν1αµ

¢2
) = ϕ(

¡
ν2αµ

¢2
).

Hence by Indifference to Timing,

{µ, ν1αµ} ∼ {µ, ν2αµ}.

By the representation (A.2), {µ, ν1αµ} ∼ {µ, ν2αµ}. But
{µ, ν1αµ} ∼ {µ, ν2αµ}
⇐⇒ U(µ) + V (µ)− V (αν + (1− α)µ0) = U(µ) + V (µ)− V (αη + (1− α)µ0)

⇐⇒ V (ν1αµ) = V (ν2αµ)

⇐⇒ αV (ν1) + (1− α)V (µ) = αV (ν2) + (1− α)V (µ) by linearity of V

⇐⇒ V (ν1) = V (ν2).

That is, V (12(c, z) +
1
2(c

0, z0)) = V (12 (c, z
0) + 1

2(c
0, z)).

Lemma A.4. There exists continuous functions v : C −→ R, bV : Z −→ R such that ∀µ ∈ ∆,

V (µ) =

Z
C×Z

v(c) + bV (x)dµ
Proof. Since V is linear and continuous, there exists continuous v : C × Z −→ R such that
V (µ) =

R
v(c, x)dµ for all µ ∈ ∆. By the previous Lemma,

V (
1

2
(c, x) +

1

2
(c, x)) = V (

1

2
(c, x) +

1

2
(c, x)).

Then

V ( 12(c, x) +
1
2(c, x)) = V ( 12(c, x) +

1
2(c, x))
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=⇒ V (c, x) + V (c, x) = V (c, x) + V (c, x)

=⇒ v(c, x) + v(c, x) = v(c, x) + v(c, x)

=⇒ v(c, x) = v(c, x)− v(c, x) + v(c, x).

Define v(c) ≡ v(c, x) − v(c, x) and bV (x) ≡ v(c, x). We can then write v(c, x) = v(c) + bV (x).
Therefore V (µ) =

R
v(c) + bV (x)dµ for all µ ∈ ∆.

The next two Lemmas establish the linearity of bV .
Lemma A.5.

V (α(c, z) + (1− α)(c, z0)) = V ((c, αz + (1− α)z0)).

Proof. Take ν1 = α(c, z) + (1− α)(c, z0) and ν2 = (c, αz + (1− α)z0). By Lemma A.2, there
exists µ, µ ∈ ∆s and β such that

{µ} Â {µ, ν1βµ} Â {ν1βµ} and {µ} Â {µ, ν2βµ} Â {ν2βµ}.

Observe that all the above measures have finite support, the first marginals of ν1βµ and ν2βµ

are the same and the second marginals satisfy ϕ(
¡
ν1βµ

¢2
) = ϕ(

¡
ν2βµ

¢2
). Hence by Indifference

to Timing,
{µ, ν1αµ} ∼ {µ, ν2αµ}.

Arguing as in Lemma A.3,
V (ν1) = V (ν2),

that is, V (α(c, z) + (1− α)(c, z0)) = V ((c, αz + (1− α)z0)).

Lemma A.6. bV is linear.

Proof. By the previous lemma, V ((c, αx+ (1− α)y)) = V (α(c, x) + (1− α)(c, y)). But,

V ((c, αx+ (1− α)y)) = V (α(c, x) + (1− α)(c, y))

=⇒ V ((c, αx+ (1− α)y)) = αV (c, x) + (1− α)V (c, y) by linearity of V

=⇒ v(c) + bV (αx+ (1− α)y) = α[v(c) + bV (x)] + (1− α)[v(c) + bV (y)] by Lemma A.4
=⇒ v(c) + bV (αx+ (1− α)y) = v(c) + αbV (x) + (1− α)bV (y)
=⇒ bV (αx+ (1− α)y) = αbV (x) + (1− α)bV (y)
=⇒ bV is linear.

Recall the function V : Z −→ R defined by

V (x) = max
η∈x

V (η).

The next two Lemmas establish linearity and continuity of V .
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Lemma A.7. V is linear.

Proof. The linearity of V and definition of the mixture αx+(1−α)y implies V (αx+(1−α)y) =
αV (x) + (1− α)V (y).

Lemma A.8. V is continuous.

Proof. Since V : ∆ −→ R is continuous, and the correspondence Φ : Z Ã ∆ defined

by Φ(x) = x is compact-valued and continuous, the Maximum Theorem delivers continuous

V (x) = maxη∈Φ(x) V (η).

The next two Lemmas establish the ordinal equivalence between V and bV .
Lemma A.9. If x Â y, then,

V (y) > V (x)⇐⇒ bV (y) > bV (x).
Proof. If x Â y, then W (x) > W (y), and Stationarity implies W (c, x) > W (c, y). Then by
Lemma A.1(a), x Â y implies

x Â x ∪ y ⇐⇒ V (y) > V (x),

{(c, x)} Â {(c, x), (c, y)}⇐⇒ V (c, y) > V (c, x).

By Temptation Stationarity,

x Â x ∪ y ⇐⇒ {(c, x)} Â {(c, x), (c, y)},

and so V (y) > V (x)⇐⇒ V (c, y) > V (c, x). But, by Lemma A.4, V (c, y) > V (c, x)⇐⇒ bV (x) >bV (y) and we are done.
Lemma A.10. For all x, y,

V (y) > V (x)⇐⇒ bV (y) > bV (x).
Proof. We show that the conclusion of Lemma A.9 also holds when its hypothesis is negated.
So suppose y % x. To establish ‘⇐=’, suppose V (x) ≥ V (y). By Lemma A.2, there exists

w, z ∈ Z such that w Â z and V (w) < V (z).18 Linearity of W and V implies yαw Â xαz and

V (xαz) > V (yαw) for all α ∈ (0, 1). Lemma A.9 implies bV (xαz) > bV (yαw) for all α ∈ (0, 1)
and continuity of bV implies bV (x) ≥ bV (y), as desired.

To establish ‘=⇒’, let bV (x) ≥ bV (y). As above, there is w, z ∈ Z such that w Â z and

V (w) < V (z). By Lemma A.9, bV (w) < bV (z). Therefore, yαw Â xαz and bV (xαz) > bV (yαw)
for all α ∈ (0, 1). Lemma A.9 implies V (xαz) > V (yαw) for all α ∈ (0, 1) and continuity of V
implies V (x) ≥ V (y), as desired.

18Take w = {µ} and z = {µ, µ}.
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Lemma A.11. There exists γ > 0 and θ ∈ R such that bV (x) = γV (x) + θ for all x ∈ Z.

Proof. By Lemma A.10, bV and V are ordinally equivalent. By Lemmas A.4, A.6, A.7 and

A.8, they are also continuous and linear. Moreover, under the conditions of Case 2, both are

nonconstant.19 It follows that bV and V are cardinally equivalent (the proof is analogous to GP

[14, Lemma 9, Step 2]).

Lemma A.12. γ < 1.

Proof. Define zc = {(c, zc)}. Since V is nonconstant (Case 2), we can find η such that V (η) 6=
V (zc), where we have identified zc with (c, zc). Let y1 = {(c, η)} and define yn inductively as
yn = {(c, yn−1)}. Note that yn −→ zc. We shall identify yn with (c, yn−1) below. By Lemma
A.2 there exists α such that

{µ} Â {µ, µαzc} Â {µαzc}.
Since yn −→ zc implies {µ, µαyn} −→ {µ, µαzc} and {µαyn} −→ {µαzc}, Continuity of W
implies W ({µ, µαyn}) −→ W ({µ, µαzc}) and W ({µαyn}) −→ W ({µαzc}). Then, there exists
N∗ such that for all n ≥ N∗,

{µ} Â {µ, µαyn} Â {µαyn}.

Without loss of generality, N∗ = 1. But then,

W ({µ, µαyn}) −W ({µ, µαzc}) −→ 0

=⇒ V (µαyn)− V (µαzc) −→ 0 by representation (A.2),

=⇒ V (yn)− V (zc) −→ 0

=⇒ γn[V (η)− V (zc)] −→ 0.

Since V (η) 6= V (zc) by construction, it follows that γ < 1.

Lemmas A.4 and A.11 establish that V (µ) =
R
(v(c) + γV (x) + θ)dµ. By GP [13, Theorem

4], we can write V (µ) =
R
v(c) + γV (x)dµ.20 It is also established that 0 < γ < 1. Hence, we

are done.

B. Appendix: Proof of Theorem 3.2

First establish that for any (U, V ) representing the preference %, U and V are not constant, and
U is not an affine transformation of V . By hypothesis, % exhibits a preference for commitment,
and so, by Lemma A.1(a) it is clear that U and V are not constant and that U cannot be a
positive affine transformation of V . Suppose by way of contradiction that U is a negative affine

19To see that bV is nonconstant, note that by Temptation Stationarity, {µ} Â {µ, µ} ⇐⇒
{(c, µ)} Â {(c, µ), (c, µ)}, where µ, µ are as in Lemma A.2. By Lemma A.1(a), V (c, µ) 6= V (c, µ),

which implies that bV is nonconstant.
20To see that U is not an affine transformation of V , argue as in Appendix B.
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transformation of V . Then, U(c, x) = −αV (c, x) + β for some α > 0, and so, by the functional
forms of U and V ,

W (x) = −αV (x) + ξ(c), (B.1)

where ξ(c) is some function of c. Observe that by definition of V , for any x, y,

V (x) ≥ V (y) =⇒ V (x) = V (x ∪ y) ≥ V (y). (B.2)

But by Lemma A.2, there is w, z such that

W (w) > W (w ∪ z) > W (z).

It follows by (B.1) that

V (z) > V (w) and V (z) > V (z ∪ w) > V (w),

contradicting (B.2). Hence, for any (U, V ) representing %, U is not an affine transformation of

V .

We prove Theorem 3.2 by exploiting GP [13, Thm 4], whose hypothesis holds given the above

observation. Arguing as in the proof of GP [14, Thm 2] yields that (u0, v0, δ0, γ0) represents % if
and only if δ = δ0 and there exist α > 0, βu, βv ∈ R such that u0 = αu+ βu and V 0 = αV + βv.

We show that γ = γ0 and v0 = αv+(1−γ)βv if and only if V 0 = αV +βv. Begin by noting that,

by hypothesis, there is a preference for commitment at some x and hence V is nonconstant.

Therefore v is nonconstant as well. Also note that V 0 = αV + βv if and only if V
0
= αV + βv.

Now, observe that,

V 0(c, x) = αV (c, x) + βv
⇔ v0(c) + γ0V

0
(x) = α[v(c) + γV (x)] + βv

⇔ v0(c) + γ0V
0
(x) = αv(c) + (1− γ)βv + γ[αV (x) + βv]

⇔ v0(c) + γ0V
0
(x) = αv(c) + (1− γ)βv + γV

0
(x)

⇔ v0(c)− [αv(c) + (1− γ)βv] = (γ − γ0)V
0
(x)

⇔ γ = γ0 and v0 = αv + (1− γ)βv.

The last equivalence holds because v is nonconstant.

C. Appendix: Proof of Theorem 5.3

First, two preliminary lemmas.

Lemma C.1. (a) x ⊂ y =⇒ V (y) ≥ V (x) and W (y) + V (y) ≥W (x) + V (x).

(b) x ⊂ y and y % x =⇒ {(c, x), (c, y)} ∼ {(c, y)}.
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Proof. (a) If x ⊂ y, the definition of V implies

V (y) ≥ V (x).

To see W (y) + V (y) ≥W (x) + V (x), note that x ⊂ y implies

max
µ∈y

{U + V } ≥ max
µ∈x

{U + V }. (C.1)

The result then follows from the fact that for any z ∈ Z,

W (z) + V (z) = max
µ∈z

{U + V }− V (z) + V (z) = max
µ∈z

{U + V }.

(b) By Stationarity and Set-Betweenness, if y ∼ x then {(c, x), (c, y)} ∼ {(c, y)}. Next, if
y Â x, then by Stationarity, {(c, y)} Â {(c, x)} and so U(c, y) > U(c, x). Furthermore, since x ⊂
y, V (y) ≥ V (x) and so V (c, y) ≥ V (c, x). But then by Lemma A.1(a), {(c, y)} - {(c, x), (c, y)}.
Since {(c, y)} Â {(c, x)}, it follows from Set-Betweenness that {(c, x), (c, y)} ∼ {(c, y)}.

Lemma C.2. If {µ} Â {µ, η} Â {η} and {(c, µ)} Â {(c, µ), (c, η)} Â {(c, η)}, then

{(c, µ), (c, η)} % {(c, {µ, η})}⇐⇒ γ ≤ δ.

Proof. If the hypothesis holds, then
{(c, µ), (c, η)} % {(c, {µ, η})}
⇐⇒W ({(c, µ), (c, η)}) ≥W ({(c, {µ, η})
⇐⇒ u(c) + δW (µ) + v(c) + γV (µ)− v(c)− γV (η) ≥ u(c) + δW ({µ, η})
⇐⇒ u(c) + δU(µ) + γ[V (µ)− V (η)] ≥ u(c) + δ(U(µ) + V (µ)− V (η))

⇐⇒ u(c) + δU(µ) + γ[V (µ)− V (η)] ≥ u(c) + δU(µ) + δ[V (µ)− V (η)]

⇐⇒ γ[V (µ)− V (η)] ≥ δ[V (µ)− V (η)]

⇐⇒ γ ≤ δ since V (µ)− V (η) < 0 by {µ} Â {µ, η} and Lemma A.1(a).

Proof of (a)⇐⇒ (b) :

⇐=: We prove the contrapositive, that is, γ ≥ δ implies {(c, x), (c, y)} - {(c, y)} for all
x, y such that x ⊂ y. By Lemma C.1(b), it suffices to prove that γ ≥ δ implies

{(c, x), (c, y)} - {(c, y)} for all x, y such that x ⊂ y and x Â y.

So let γ ≥ δ and take any x, y such that x ⊂ y and x Â y. By Lemma C.1(a),

W (y) + V (y) ≥ W (x) + V (x),

and V (y) ≥ V (x).
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Since γ
δ ≥ 1, it follows that

W (y) +
γ

δ
V (y) ≥W (x) +

γ

δ
V (x),

and so
δW (y) + γV (y) ≥ δW (x) + γV (x).

Adding u(c) + v(c) to both sides gives U(c, y) + V (c, y) ≥ U(c, x) + V (c, x). By Stationarity,
x Â y implies U(c, x) > U(c, y), and so V (c, y) > V (c, x). It follows from Lemma A.1(b) that

{(c, x), (c, y)} - {(c, y)},

as desired.

=⇒: Before proving this, note that by hypothesis there is x, y such that x ⊂ y and

x Â y, and that x Â x∪y since y = x∪y. By Lemma A.1(a), this implies that V is nonconstant

and U is not a positive affine transformation of V . Hence, by Lemma A.2, there is µ, η ∈ ∆
such that {µ} Â {µ, η} Â {η}.

Now prove the contrapositive: Suppose that {(c, x), (c, y)} - {(c, y)} for all x, y such that
x ⊂ y. Then {µ} ⊂ {µ, η} and {µ} Â {µ, η} implies

{(c, µ), (c, {µ, η})} ∼ {(c, {µ, η})}. (C.2)

By Stationarity, {µ} Â {µ, η} implies {(c, µ)} Â {(c, {µ, η}). Then, by Set-Betweenness and
(C.2),

{(c, µ)} Â {(c, µ), (c, {µ, η})} ∼ {(c, {µ, η})}.

It follows from Lemma A.1 that U(c, {µ, η})+V (c, {µ, η}) ≥ U(c, µ)+V (c, µ) and V (c, {µ, η}) >
V (c, µ). But,

U(c, {µ, η}) + V (c, {µ, η}) ≥ U(c, µ) + V (c, µ)

=⇒ δW ({µ, η}) + γV ({µ, η}) ≥ δW ({µ}) + γV ({µ})
=⇒W ({µ, η}) + γ

δ V ({µ, η}) ≥W ({µ}) + γ
δ V ({µ})

=⇒ U(µ) + V (µ)− V (η) + γ
δ V (η) ≥ U(µ) + γ

δ V (µ)

=⇒ γ
δ (V (η)− V (µ)) ≥ V (η)− V (µ).

Furthermore, V (c, {µ, η}) > V (c, µ) implies that V ({µ, η}) > V (µ), and thus V (η)− V (µ) > 0.

Conclude that γ
δ ≥ 1.

Proof of (a)⇐⇒ (c) :

=⇒: Let γ < δ. By Lemma A.1, the hypothesis {µ} Â {µ, η} ∼ {η} implies,

V (η)− V (µ) > 0 (C.3)

U(µ)− U(η) > 0 (C.4)
U(µ)− U(η)

V (η)− V (µ)
≤ 1 (C.5)
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By repeated application of Stationarity, {µ} Â {η} implies {µ+t} Â {η+t}. Then by Lemma
A.1(b) and the structure on U+V , we have {µ+t, η+t} Â {η+t} if and only if U(µ+t)+V (µ+t) >
U(η+t) + V (η+t) if and only if

(
γ

δ
)t <

U(µ)− U(η)

V (η)− V (µ)
.

By (C.3), (C.4) and (C.5), we have 0 < U(µ)−U(η)
V (η)−V (µ) ≤ 1. Define φ(t) ≡ (

γ
δ )

t and note that φ is a
continuous, monotone decreasing function with φ(0) = 1 and φ(∞) = 0. Hence,

φ(∞) < U(µ)− U(η)

V (η)− V (µ)
≤ φ(0).

By the the monotonicity of φ and the Intermediate Value Theorem, there exists a unique t0 > 0,
given by

t0 =
ln U(µ)−U(η)

V (η)−V (µ)
ln γ

δ

,

such that φ(t0) = U(µ)−U(η)
V (η)−V (µ) . Let t

∗ be the smallest integer larger than t0. Then for all t < t∗,

{µ+t, η+t} ∼ {η+t}, and for all t ≥ t∗, {µ+t, η+t} Â {η+t}.
⇐=: Suppose {µ} Â {µ, η} ∼ {η}. Recall from the above that {µ+t, η+t} Â {η+t} if and

only if
U(µ)− U(η) > (

γ

δ
)t(V (η)− V (µ)), (C.6)

and that for t = 0, U(µ) − U(η) < V (η) − V (µ). Suppose by way of contradiction that γ ≥ δ.

It follows that (C.6) never holds for any t, that is, there is no t∗ such that for all t > t∗,

{µ+t, η+t} Â {η+t}, contradicting the hypothesis that % exhibits preference reversals. Hence

γ < δ.

Proof of (a)⇐⇒ (d) :

⇐=: By hypothesis there exists a preference for commitment, and so we are in Case 2
(see proof of 3.1). Then by Lemma A.2, there exists µ, η such that {µ} Â {µ, η} Â {η}. We
show that Preference for Early Choice implies

{(c, µ)} Â {(c, µ), (c, η)} Â {(c, η)}.

The result then follows from Lemma C.2.

By Stationarity and Preference for Early Choice, {µ, η} Â {η} implies

{(c, µ), (c, η)} % (c, {µ, η}) Â {(c, η)},

that is, {(c, µ), (c, η)} Â {(c, η)}. Also, by Temptation Stationarity, {µ} Â {µ, η} implies

{(c, µ)} Â {(c, µ), (c, η)}.
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Therefore, {µ} Â {µ, η} Â {η} implies

{(c, µ)} Â {(c, µ), (c, η)} Â {(c, η)}.

=⇒: Take µ, η ∈ ∆ such that {µ} Â {µ, η} Â {η}. We show that γ ≤ δ implies

{(c, µ)} Â {(c, µ), (c, η)} Â {(c, η)},

and then the result follows from Lemma C.2.

By Temptation Stationarity, {µ} Â {µ, η} implies

{(c, µ)} Â {(c, µ), (c, η)}.

To show that {(c, µ), (c, η)} Â {(c, η)}, by Lemma A.1(b) it suffices to show that U(c, µ) +
V (c, µ) > U(c, η) + V (c, η).21 By hypothesis, {µ, η} Â {η}, and so by Lemma A.1(b), U(µ) +
V (µ) > U(η)+V (η). Also, {µ} Â {µ, η} implies (by Lemma A.1(a)) that V (µ) < V (η). Observe
that U(µ) + V (µ) > U(η) + V (η) implies

U(µ)− U(η) > V (η)− V (µ),

and V (η) > V (µ) and γ ≤ δ implies

V (η)− V (µ) ≥ γ

δ
(V (η)− V (µ)) .

Therefore, U(µ)− U(η) > γ
δ (V (η)− V (µ)). But

U(µ)− U(η) > γ
δ (V (η)− V (µ))

=⇒ δU(µ)− δU(η) > γV (η)− γV (µ)

=⇒ δU(µ) + γV (η) > δU(η) + γV (µ)

=⇒ u(c) + δU(µ) + v(c) + γV (η) > u(c) + δU(η) + v(c) + γV (µ)

=⇒ U(c, µ) + V (c, µ) > U(c, η) + V (c, η),
and hence by Lemma A.1(b),

{(c, µ), (c, η)} Â {(c, η)},

as was to be shown.

D. Appendix: Derivation for Section 5.3

A choice between continuation menus x and y is a choice from

z = {(c, x), (c, y)},

21It suffices because by Set-Betweenness {(c, µ)} Â {(c, µ), (c, η)} implies {(c, µ)} Â {(c, η)},
and so U(c, µ) > U(c, η) already holds.
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and choice from z is determined by maxµ∈z{U(µ) + V (µ)}. By the functional forms for U and
V , choice of continuation menu is determined by

max
{x,y}

{W (·) + γ

δ
V (·)}.

Therefore, the agent chooses to commit if W (x)−W (y)

V (y)−V (x) > γ
δ . Note that by Lemma A.1(a), the

hypotheses x ⊂ y and x Â y imply W (x)−W (y)

V (y)−V (x) > 0. This explains the first two rows of the

table.

To see why the agent never commits when γ ≥ δ, note that for any menu w,

W (w) + γ
δ V (w)

= maxµ∈w{U + V }−maxη∈w V + γ
δ V (w)

= maxµ∈w{U + V }+ kmaxη∈w V, where k = γ
δ − 1 > 0.

Hence, x ⊂ y implies that W (x)−W (y)

V (y)−V (x) ≤
γ
δ .

–––––––—
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