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Abstract

Delay functions elicit the form of discount functions with minimal assump-

tions by varying rewards�timing while �xing amounts. We provide conditions

to test for separable discounted utility (SDU) using delay function. After elic-

iting individual delay functions from a representative U.S. sample, we focus

on impatient participants whose discounting can be observed. Assuming SDU,

the majority are classi�ed as exponential discounters. However, we reject the

SDU assumption for 68% in favor of magnitude-dependent discounting with

time distortion. Thus, the behavior of impatient participants in small-stakes

experiments is not informative about large-stakes market behavior, given the

rejection of the SDU assumption.
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1. Introduction

This paper examines time preference using a novel behavioral object we refer to

as a �delay function�. While the empirical literature has debated over individuals

are exponential or hyperbolic discounters,1 both exponential and hyperbolic models

share the common assumption that the agent�s preferences can be represented by a

Separable Discounted Utility (SDU) function of the form U(m; t) = D(t) � u(m).
Here, separability refers to the fact that the evaluation of time and money are un-

related. While SDU is attractive because of its parsimony, it matters for interpreting

the results of experiments: separability implies that the level of discounting shown

in small stakes behavior (as often used in experiments) is informative about more

important decisions, such as saving for retirement. Our delay functions approach

can test the validity of the SDU assumption as well as provide information about the

structure of discounting even if SDU assumptions are violated. Moreover, it o¤ers a

means of quantifying the departure from SDU.

We conduct an experiment measuring delay functions on a sample of the American

population and �nd that the SDU assumption is rejected for 68% of our analysis

sample. The take-away lessons from this result are that (i) non-separable models may

be important for understanding economic behavior, and (ii) experimental estimates

of time preference from low-stakes decisions may not easily translate into high-stakes

contexts outside the lab.2

Empirical discounting studies often work with �money earlier or later�decisions

(Cohen et al. 2020). For instance, in one type of �multiple price list�experiment,

the dates of potential payments are �xed and an amount $l is elicited that makes the

participant indi¤erent between a smaller amount $s at time t1 and larger amount $l

at time t2: Other studies present participants with a series of binary choices between

earlier and later payments. In both cases, researchers then typically assume an SDU

1See e.g. Andreoni and Sprenger [2012], Augenblick, Niederle, and Sprenger [2015].
2This result is consistent with recent research of Ericson et al. [2015], showing that a non-SDU

heuristic model outperforms all common SDU models in a cross-validated prediction exercise. Their
heuristic model, however, is only de�ned for binary choices, not multiple price list or multiple delay
list elicitation methods.
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model and attempt to estimate D and u:

Delay functions take a di¤erent approach and instead ask, what delay �l(s; t)

makes the subject indi¤erent between $s at time t and $l at time �l(s; t)? Delay

functions thus �x the money dimension for both earlier and later rewards, and vary

only the time dimension for the later reward. Speci�cally, for a �xed small reward s

and large reward l; a delay function elicits for each t the delay from time zero �l(s; t)

such that

(s; t) � (l;�l(s; t)): (1.1)

That is, the subject reveals that s at time t is as good as l at time �l(s; t). Delay

functions can be obtained in an experimental setting by using a �multiple delay

list� rather than a �multiple price list�procedure, as we do in our experiment, or

alternatively by the Becker-DeGroot-Marschak mechanism.

Delay functions allow researchers to estimate more general discounting models

that allow participants to discount di¤erent size rewards di¤erently (magnitude-

dependent discounting). Existing evidence suggests that this may be the case: exper-

iments often �nd a magnitude e¤ect in choice, with participants seeming to exhibit

more patience towards larger rewards (Thaler [1981], Frederick et al [2002], Noor

[2011], Andersen et al. [2013]). Whether this observed fact rejects SDU is contro-

versial, because experiments must typically estimate both D (t) and the curvature of

u (m). The delay function approach does not require us to estimate u:

This paper derives an explicit formula for computing the subject�s discount func-

tion on the basis of the data �. This is done for preferences with very little struc-

ture: complete, transitive, continuous preferences that satisfy monotonicity and im-

patience, admitting General Discounted Utility representations of the form

U(m; t) = D(m; t) � u(m);

where D(�; 0) = 1. We provide the general expression for D in terms of �, and

then specialize it for the purpose of experimental applications. In particular, we

are interested in a simple test for the existence of an SDU representation. While

SDU is an attractive theoretical assumption (parsimony, appealing axioms, etc.), its
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descriptive validity is of interest here. We provide a method for data to speak on

whether separability adequately describes observed behavior.

Our main specialization restricts attention to a �exible class of delay functions:

�(m; t) = (a(m)t
 + b(m)
)1=
 :

SDUmodels (whether exponential, generalized hyperbolic, etc. ) correspond to delay

functions that lie in this class. In SDU models, delay functions take the speci�c form

�(m; t) = [1 + kb(m)] t+ b(m);

with k � 0 and b decreasing in m: Our �exible functional form permits nonlinearity

in the delay function and magnitude dependence. For this class of delay functions,

the test for SDU discounting is simply that there is some k � 0 such that a(m) =

1 + kb(m) for all m.

We can quantify deviations from SDU by estimating a more general discount func-

tion. We show that participants who fail the SDU test can nevertheless be attributed

magnitude-dependent discounting with time-distortion of the form: D(m; t) = e�a(m)�t



where a is decreasing in m. In this model, the subject is more patient towards larger

rewards, as suggested by the magnitude e¤ect, and moreover, has a distorted per-

ception of time. Time distortions are motivated by a literature suggesting non-linear

perception of time (e.g. Zauberman et al. [2009], Takahashi [2005]). Magnitude-

dependent discounting could arise from a decision process where the agent�s current

self optimally uses limited cognitive resources to overcome sel�shness and put herself

in the shoes of her future selves (Noor and Takeoka [1]). It may also relate to models

of mental accounting in which larger rewards are assigned to di¤erent accounts, or

models of self-control and temptation preferences (e.g. Gul and Pesendorfer [2001],

Fudenberg and Levine [2006]) in which the degree of self-control implemented may

vary with the magnitude of reward at stake.

We elicit delay functions in an experiment on a representative sample of the

American population recruited from a professional sampling service. We focus on
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our analysis sample: the 40% of individuals who are impatient enough for us to

reliably observe their discounting. In particular, we drop the 26% who ever make

a non-monotonic choice (not rationalized by any discounting model), and the 34%

who are too patient for us to reliably estimate their delay function. We therefore

view our results as characterizing the behavior of relatively impatient participants

in experiments, a population of particular interest.

We conduct all our estimation at the individual level, allowing for heterogeneity

across individuals in preferences and models. We �rst assume that delay functions

are linear (
 = 1 in the above class) and that the individuals have SDU (a(m) =

1+kb(m) for all m). Within this subclass, the individual is exponential if k = 0 and

hyperbolic if k > 0. We �nd that the median k in our analysis sample is virtually

zero, suggesting that more than half of our sample were exponential discounters if

we limited consideration to SDU models with linear delay functions only.3 However,

we then directly test the SDU assumption. For 68% of our analysis sample, we

reject SDU (with or without time distortion), �nding strong evidence of non-SDU

discounting. Using model selection criteria, only 18% of our sample has a best-

�t model that is consistent with SDU. Our results suggest that if researchers only

examine SDUmodels, they may mistakenly conclude that individuals are exponential

discounters.

The rejection of separability has a signi�cant implication for the extrapolation

of experimental results. We �nd magnitude-dependent discounting in a relatively

modest range of stakes ($50 v. $90), indicating magnitude-dependence may be more

important than previously thought. Assuming separability is necessary for behavior

in experiments involving small stakes to be informative about decisions outside the

lab with large stakes. The results also reveal that there is a possibly signi�cant

bene�t to researching economic explanations outside the class of SDU models. A

3Using a related elicitation method, Attema et al [2010] restrict consideration to SDU models
and �nd that 58% of classi�able subjects were exponential discounters. They do not, however, test
the SDU assumption. Other literature has also assumed SDU, and focused on testing exponential
v. present-biased discounting (hyperbolic or quasi-hyperbolic). Using a quite di¤erent elicitation
method (convex time budgets), Andreoni and Sprenger [2012] do not �nd present-bias for money.
Augenblick, Niederle, and Sprenger [2015] also do not �nd substantial present-bias for money, but
do �nd present-bias for e¤ort.
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worthwhile avenue for future research is to model magnitude-dependent discounting

of the type revealed in our experiment and to study its implications in economic

settings.

Our theoretical analysis applies to any type of dated reward (money, food, work,

etc.). Our experiment uses Amazon.com gift certi�cates, which is similar to money

but perhaps less fungible. Much of the literature uses money (see Cohen et al. 2020).

However, there is a dispute over whether money from experiments is consumed when

received. While many models assume that individuals will smooth their consump-

tion across time, models of mental accounting or dual-self models (e.g. Fudenberg

and Levine [2006]) predict that income from experiments may be consumed when

received. Andersen et al. [2008] have data on risk questions and time-money tradeo¤

questions, and jointly estimate the curvature of utility, discount function, and de-

gree of consumption smoothing. They estimate that payments are consumed when

received; see also Booij and van Praag [2009]. However, in recent work, Augenblick,

Niederle, and Sprenger [2015] �nd substantial di¤erences in the degree of preference

reversals for money versus real e¤ort tasks, suggesting choices over money may not

reveal the discount function. However, if individuals do smooth consumption over

time, taking advantage of outside-the-lab borrowing and lending, then participants�

choices should reveal the interest rate they face (Cubitt and Read [2007]). If the

interest rate faced is constant in the range of dollar amounts considered (in our ex-

periment, $50 to $100), then their choices should appear as though they were SDU

discounters. We in fact reject SDU for most participants. Our results therefore reject,

at the very least, exponential discounting of income (as opposed to consumption).

While our delay function approach is de�ned for the analysis of time preference,

it can be adapted easily to other domains as well. For instance, experiments on risk

often o¤er participants lotteries that have one nonzero payo¤. Such lotteries can be

written as (m; p), where p is the probability of the nonzero outcome. By de�ning

�time�as t = 1
p
�1 our procedure becomes immediately applicable to the study of risk

preference, where the general representation takes the form U(m; p) = f(m; p)u(m)

and where f is the decision weight.

The remainder of the paper proceeds as follows. We close the introduction with
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related literature. Section 2 presents the main theoretical results and Section 3

presents specializations. Section 4 presents our experiment and results and Section

5 concludes. All proofs are contained in appendices.

Related literature
We term the commonmethod of eliciting discount functions as the �present value�

approach: participants choose between dated rewards (m; t) and give indi¤erence

points of the form (s; t) � (l; t0); where, for any dates t,t0 either the future reward l
is �xed and the participants�present value s is obtained, or the present reward s is

�xed and the future value l is obtained.4 In recording how present/future value of

a reward changes with t, the data re�ects behavior when both the money and time

dimensions are changed. This is re�ected in how conclusions are drawn about the

discount function. Presuming the SDU model, the discount function D(t) is elicited

by computing

D(t) =
u(s)

u(l)
;

and so eliciting the discount function requires an assumption on u. The early liter-

ature assumed that u is linear. Since this assumption typically yields implausibly

high discount rates, the literature has sought methods of eliciting discount functions

and the curvature of u simultaneously. Andersen et al [2008] replace the linearity

assumption with the expected utility assumption, and they use both risk preferences

and time preferences to jointly estimate several speci�cations of u and D. Andreoni

and Sprenger [2012] replace the linearity assumption with the assumption that pref-

erences over consumption streams are represented by a time-additive SDU modelP
D(t)u(mt) with CRRA u. Participants are asked to choose their allocation of an

endowment over two periods for di¤erent interest rates and endowments, and thus

their intertemporal demand curves are obtained, to which u and D are jointly �t.

The theoretical literatures on multi-attribute utility and conjoint measurement

(Fishburn [1967], Krantz et al [1971]) introduce the �sawtooth method�to behav-

iorally isolate the components of any separable representation, and this is built on

4See Fredrick et al [2002] for a review of the experimental literature, and later experimental
work by Coller and Williams [1999] and Harrison et al [2002].
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the idea of varying only one dimension while �xing others.5 Attema et al [2010]�s

study of discount functions and Wakker and Dene¤e [1996]�s study of probability

weighting implement the sawtooth method experimentally. The delay function ap-

proach di¤ers from the sawtooth method, most importantly, because we established

our approach for non-SDU preferences.6

Other work has examined time preference by varying the delay instead of reward

amount. Laury, McInnes, and Swarthout [2012] also show a procedure for eliciting

discount rates using variation in the probability a payment will be made, rather than

the amount or the delay (as in our proposed approach). Their approach also assumes

SDU, as well as either expected utility theory or a particular probability weighting

function. Similarly, Olea and Strzalecki [2014] provide a method using �annuity com-

pensations�to estimate quasi-hyperbolic discounting without estimating the utility

function u: Their approach assumes a quasi- or semi-hyperbolic discounting model�

members of the SDU class�while our approach can test the underlying SDU assump-

tion. Takeuchi [2011] also uses �equivalent delays�to test for present bias without

needing to estimate the utility function, but does not test for SDU; in an additional

result, he shows how to estimate the discount function independently of the utility

function u under the assumption of SDU. Finally, Olivola and Wang (2016) compare

discount functions elicited via auctions using either delays (similar to our approach)

or money under the assumption of linear utility for money.

5These papers consider a preference over binary attributes (x; y): Fix any y, y0 and x0 and
suppose that x1 is a quantity such that the agent exhibits (x1; y) � (x0; y0). Furthermore, suppose
it is determined that, iteratively for i = 2; ::; n; that (xi; y) � (xi�1; y

0): If the preference has a
multiplicative representation, U(x; y) = v(x) �u(y), then each indi¤erence point satis�es v(xi)

v(xi�1)
= k

for all i = 1; ::; n; for some constant k := u(y0)
u(y) . Since v is unique up to an a¢ ne transformation,

v(x0) and v(x1) can be normalized, and consequently v is pinned down on fx0; ::; xng. The grid
can be made arbitrarily �ner. This procedure is referred to as the �saw-tooth method�(Fishburn
[1967]) and the noted sequence is an example of a �standard sequence�(Krantz et al [1971]).

6The theoretical derivation of the discount function is very di¤erent �we �nd a solution to a
functional equation rather than doing a direct construction with the sawtooth method. We also
avoid incentive incompatibility issues that exist in the experimental application of the sawtooth
method, as discussed in Harrison and Ruström [2009]. In the sawtooth method, a subject�s answer
to one question becomes an input into the next question. Therefore by misstating preferences it
is possible for subjects to a¤ect the sequence of questions they face in a way that improves their
expect outcome.
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2. Theoretical Framework

2.1. General Discounted Utility

Consider a preference relation % over the set of dated rewards X =M� T , where
time is continuous and given by T = R+, with generic elements t; t0. The set

of rewards (e.g. money) is a bounded interval M = [0;m] with generic elements

m;m0; s; l.

We provide a general result for preferences % over X that have very minimal

structure. Say that a preference % is regular if it satis�es the following familiar basic
restrictions:

1- Order: % is complete and transitive.
2-Continuity: For each (m; t), the sets f(m0; t0) : (m0; t0) % (m; t)g and f(m0; t0) :

(m; t) % (m0; t0)g are closed.
3- Impatience:
(i) For all m > 0 and t < t0; (0; t) � (0; t0) and (m; t) � (m; t0).
(ii) For each m;m0 such that m0 > m > 0, there is t such that (m; 0) � (m0; t).

4-Monotonicity: For all t, if m < m0 then (m0; t) � (m; t).

Monotonicity states that more is better at any given time. Impatience (i) states

that the agent does not care when she receives $0 but otherwise strictly prefers earlier

rewards. Impatience (ii) states that with su¢ cient delay, any large reward m0 can

be made worse than an immediate small reward m.

Using standard arguments7, one can show that a preference % is regular if and

only if it admits a General Discounted Utility (GDU) representation:

U(m; t) = D(m; t) � u(m);

where u : M ! R+ is a utility index (a strictly increasing, continuous function
7See Lemma A.1 in the appendix.. By a standard result (see for instance Fishburn and Rubin-

stein [1982]), for any utility index u there exists a unique representation U for a regular preference
%. However, any representation U can be uniquely written in the form of a GDU representation
(D;u) as follows: for any representation U , the utility index u in any GDU functional form is
uniquely de�ned by u(m) = U(m; 0), and D is uniquely de�ned by D(m; t) = U(m;t)

u(m) for all m > 0.
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satisfying u(0) = 0) and D : M � T ! (0; 1) is a magnitude-dependent dis-

count function (a continuous, strictly decreasing function satisfying D(m; 0) = 1

and limt!1D(m; t) = 0 for all m > 0) such that D(m; t)u(m) is strictly increasing

in m. We will often refer to the tuple (D; u) as the GDU representation.

At this level of generality, a given regular preference % will admit uncountably

many GDU representations, and so one would wish to de�ne a unique canonical

representation that can be estimated. Below, we �rst establish a result for the full

GDU class of representations and subsequently specialize the model and identify a

canonical representation for the purpose of experimental application (Section 2.4).

2.2. Delay Functions

The choice data needed for our analysis is the delay function � :M�T ! T , which
is obtained via the indi¤erence:

(m; t) � (m;�(m; t));

for all 0 < m � m and each t. That is, �(m; t) is de�ned as the date such that m at t

is just as good as m at �(m; t).8 ;9 Varying t leads to a variation in the desirability of

(m; t), and this is measured by variation in the delay �(m; �). The simplest example
is a linear delay function, �(m; t) = a(m)t+ b(m).

The delay function can be measured in practice by using the Becker-DeGroot-

Marschak mechanism10 or by adapting the Multiple Price List (MPL) popularized

8Compared to the notation �l(s; �) in the Introduction for any pair of rewards s � l, here we �x
the largest reward l at m, and suppress it in the notation.

9Since � is built from indi¤erences, the preference % will re�ect itself in �. For completeness,
we note (see lemma A.3 in the appendix) that the regularity of % is equivalent to the following
restrictions on �:
(i) �(m; t) is continuous.
(ii) For any t; �(�; t) is strictly decreasing and limm!0 �(m; t) =1.
(iii) For m > 0, �(m; �) is strictly increasing and �(m; t) = t for all t.
The second condition expresses Monotonicity and the third expresses Impatience. Order is ex-

pressed in the fact that � is a function.
10With the BDM mechanism, a participant would state their maximum acceptable delay such

that they would take the larger later payment. A random number would be drawn. If the number
was lower than the maximum acceptable delay, they would get the larger later payment, and if
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by Coller and Williams [1999] and Harrison et al [2002]. An MPL asks questions of

the form �Do you prefer $100 now or $x in 6 months?�where x varies over a grid

x1; :::; xN+1 of dollar amounts. The implied interest rate associated with x increases

monotonically moving down the list, and the point at which the subject switches

from preferring the earlier reward to the later reward determines an interval [xi; xi+1]

within which an indi¤erence point �($100;now) � ($z;6 months)�lies. A �Multiple

Delay List�asks a sequence of questions of the form �Do you prefer $50 in 1 month

or $100 in t months?�where t varies over a range of time periods t1; ::; tN+1 in a way

that the implied interest rate decreases monotonically moving down the list.

We prepare to present a general result that provides the foundations for our exper-

imental procedure. Readers that are more interested in the experimental application

can proceed directly to Section 2.4.

2.3. General Framework

Given a regular preference %, we show how to compute any GDU representation

(D; u) from its delay function �. Say that a function g : R+ ! R+ is a restricted
transformation if it is continuous, strictly increasing, unbounded and satis�es g(0) =

0.

Theorem 2.1. Consider a regular preference % and its delay function �. Then %
admits the GDU representation (D; u) if and only if there is a restricted transforma-

tion g and some scalar u(m) > 0 such that for all m > 0 and t;

D(m; t) = e�[g(�(m;t))�g(�(m;0))];

and for all m � 0;
u(m) = e�g(�(m;0)) � u(m):

The result characterizes the discount functions and corresponding utility indices

that can be attributed to the preference%. The functional forms involve an increasing
higher, they would get the smaller sooner payment.
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transformation g of �. For each g, there is a discount function that can be computed

in terms of the di¤erence g(�(m; t)) � g(�(m; 0)), whereas utility indices can be

computed in terms of g(�(m; 0)). While u is characterized in terms of �, it essentially

only re�ects the information contained in present values: by de�nition, (m; 0) �
(m;�(m; 0)). In contrast, D requires information on how � changes as a function of

t. The result reveals that obtaining a functional form for � is all that is necessary

to obtain all the discount functions attributable to the subject, and it spells out

explicitly how this can be done.11

While Theorem 2.1 characterizes all the possible representations for % in terms

of �, its value for practical applications lies in the fact that it allows one to posit

tractable functional forms for � to estimate, and then to �nd a GDU representation

that can be attributed to it. It is natural to focus on canonical representations that

generalize the exponential and hyperbolic discount functions. We take this route in

Section 2.4. Table 1 lists some possibilities as an illustration.

�-Function Discount Function D Generated by transformation:

�(m; t) = g�1(g(t) + g(�(m; 0))) D(t) = e�rg(t) a (m) = 1; any g

�(m; t) = (1 + ��(m; 0))t+ �(m; 0) D(t) = (1 + �t)�1 a (m) = 1; g(t) = ln(1 + �t)

�(m; t) = [a(m) � t� + �(m; 0)�]
1
� D(m; t) = e�ra(m)�t

�
g(t) = t�

�(m; t) = 1
�
[(1 + �t)a(m)(1 + ��(m; 0))� 1] D(m; t) = (1 + �t)�'(m) g(t) = ln(1 + �t)

Table 1: �-functions and associated D.

The simple idea behind the proof of Theorem 2.1 is as follows. Note that the two

indi¤erence points

(s; 0) � (m;�(s; 0)) and (s; t) � (m;�(s; t))
11Theorem 2.1 not withstanding, the set of compatible discount functions can be computed

through present value data as well: it is readily seen that (D;u) is a GDU representation for a regular
preference % if and only if u is a utility index and the discount function satis�es D(m; t) = u(p(m;t))

u(m) ,
where p(m; t) is the present value of (m; t). However, in practical settings, where data is necessarily
limited, �-data better expresses the discount function than present value data. We demonstrate
this claim in Appendix C.
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reveal that the loss of attractiveness (due to discounting) in (s; t) relative to (s; 0)

must equal the loss in (m;�(s; t)) relative to (m;�(s; 0)). This translates into the

statement that any discount function D attributable to the preference % must satisfy
the equality D(s;t)

D(s;0)
= D(m;�(s;t))

D(m;�(s;0))
. By de�nition, D(s; 0) = 1, and so this inequality

can be rewritten as:

D(s; t) �D(m;�(s; 0)) = D(m;�(s; t)):

But this is a functional equation where D is the unknown function and � is the

known function. The proof veri�es that a discount function D is a solution to this

functional equation if and only if there exists a utility index u for which (D; u) is

a GDU representation for the preference %. The general solution of the functional
equation leads to the statement of the theorem.

2.4. A Tractable Class of Delay Functions

In order to impose some structure on preferences %, we introduce a class of delay
functions:

�(m; t) = (a(m)t
 + b(m)
)
1

 ; (2.1)

for 
 > 0. Setting t = 0 yields that the function b(�) is identi�ed by b(m) = �(m; 0),
and thus must be strictly decreasing and satisfy b(m) = 0. Since �(m; t) = t, the

function a(�) must satisfy a(m) = 1. Regularity necessitates, in addition, that a(�) is
weakly decreasing.12 Indeed, this is an ordinal restriction. Put together, we see that

the curves �(m; �) are upward sloping, non-intersecting, and the curves move down
for higher m. The curvature of the delay function with respect to t is captured by


. The delay function is linear if 
 = 1; concave if 
 > 1, and convex if 
 < 1.13

The class of delay functions (2.1) is attractive due its tractability for empirical

12To see this, suppose m > m0 and a(m) > a(m0). Then, by (2.1), for large t we would obtain
�(m; t) > �(m0; t). But then (m; t) � (m;�(m; t)) � (m;�(m0; t)) � (m0; t). But then we have
m > m0 and (m; t) � (m0; t), contradicting regularity (speci�cally Monotonicity).
13The expression for the second derivative of �(m; t) with respect to t is (1 � 
)(a(m)t
 +

b(m)
)
1�2


 t2(
�1)[1 � (�(m;t)t )
 ], and the term in the square brackets is always negative since

�(m;t)
t > 1.
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work, the tractability of the tests it yields (see below), and the fact that it can

accommodate magnitude-dependence and nonlinearities in the data. As noted, this

class, in conjunction with regularity, requires that a(�) is weakly decreasing. However,
in our experiment we will not impose this property, but rather let the data speak on

whether it holds or not.

Applying Theorem 2.1 with the restricted transformation g(t) = t
 immediately

yields that:

Proposition 2.2. The delay function � has the form (2.1) if and only if the following
general exponential discount function can be attributed to it:

D(m; t) = e�ra(m)�t



; r > 0

where a(�) is weakly decreasing in the size of the reward.

The functional form generalizes exponential discounting in the two key dimen-

sions studied in the literature. The �rst is time distortion (non-linear perception

of time, as in Zauberman et al. [2009]). Indeed, the time distortion 
 6= 1 in the

discount function is a re�ection of the nonlinearity in the delay function. The second

is magnitude-dependence. It is worth noting that since a(�) is weakly decreasing,
D(m; t) in fact exhibits the magnitude e¤ect, thereby exhibiting greater patience to-

wards larger rewards (Frederick et al [2002], Noor and Takeoka [1]). Indeed, if we

maintain regularity and (2.1), checking whether a(�) is in fact weakly decreasing in
the data constitutes a novel test of the magnitude e¤ect.

The free parameter r needs richer data to be pinned down, but for our purposes

in the sequel it will su¢ ce to restrict attention to the representation obtained by

setting r = 1. An attractive feature of this canonical representation is that all its

parameters are �xed by �:

Next, we identify the conditions under which there exists an SDU representation.

Refer to a magnitude�independent discount function D(t) as a separable discount

function.
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Proposition 2.3. Consider a regular preference % and with a delay function � that
has the nonlinear form (2.1). A separable discount function D(t) can be attributed

if and only if there exists k � 0 such that, for all m,

a(m) = 1 + kb(m)
: (2.2)

If k = 0, then the only attributable separable discount function is exponential dis-

counting with time distortion,

D(t) = e�rt



; r > 0:

If k > 0, then the only attributable separable discount function is hyperbolic dis-

counting with time distortion,

D(t) = (1 + kt
)�r , r > 0:

Thus, the test for the existence of an SDU representation is simply that the

slopes a(m) must be a linear function of b(m)
 in (2.1). The slope k � 0 of this

function determines the shape of the separable discount function, which can either

be exponential or hyperbolic, but with the possibility of time distortion when 
 6= 1.
A noteworthy observation is that (magnitude-independent) hyperbolic discount-

ing is behaviorally a special case of the magnitude-dependent general exponential

discount function on the domain of dated rewards. Therefore the analysis reveals

that magnitude-dependent discounting could be an alternative explanation for pref-

erence reversals attributed to hyperbolic discounting. The two forms of discounting

are substantially di¤erent in spirit. Hyperbolic discounting is suggestive of a self-

control problem, whereas the magnitude e¤ect is suggestive of bounded cognition:

the former suggests a passion for the present Laibson ([1997]) whereas the latter sug-

gests that participants pay greater attention to larger rewards (Noor and Takeoka

[1]).
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3. Empirical Application

3.1. Experiment Design

For an empirical application of the method, we recruited 100 participants aged 18-65

from an online sampling service (Qualtrics) designed to produce an approximately

representative sample of the U.S. based on age, gender, and income.14 Prior to

collecting this data, we ran a pilot using participants recruited from an online labor

market (Amazon MTurk); results are quite similar.15

Participants were paid a �at participation fee and received incentives to respond

truthfully, as 10% of participants were randomly selected to be paid for one of their

choices. This level of incentives is in line with previous work, e.g. Andersen et al.

[2008] pay 10% of their sample. Payments were made via Amazon.com gift certi�cate

and emailed to the participants.

Participants faced a series of multiple delay list decisions. On each list, they were

asked to choose between (m; t)�smaller amount m at time t�and a series of options

(100; t+�), with � 2 f1; 2; 3; 5; 7; 9; 13; 17; 22; 28; 35; 43; 68g : Participants saw lists
for 5 smaller-sooner amounts m 2 f$50; $60; $70; $80; $90g available at 6 di¤erent
time horizons for the smaller-sooner amount t 2 f0; 1; 3; 5; 12; 24g weeks, for a total
of 30 lists. As required by the theory, the larger-later amount was constant on all

lists (here, $100). Thus, on one particular list, participants choose between $50 at

time 0 versus $100 at time 1, then between $50 at time 0 versus $100 at time 2, etc.

(See Online Empirical Appendix for screenshots).

Our objective is to �nd each participant�s delay function �i(m; t) such that

(m; t) � (m;�i(m; t)): For each participant i on each multiple delay list, the de-

14The sampling service screens out inattentive participants who fail basic attention checks, such
as answering questions too quickly or answering illogically or inconsistently. 11 such participants
were screened out. Additionally, 20 subjects began the experiment but did not complete it. These
participants do not count toward our 100 completed participants.
15The Mturk pilot was unincentivized. The procedure was similar, but di¤ered in the set of

smaller, sooner magnitudes considered: m 2 f$25; $50; $75; $90g :The pilot analysis sample (drop-
ping non-monotonic choices and subjects who ever have a list on which they always take the
larger-later option) was 44 of 118 participants; (many subjects always chose $100 over $25). In pi-
lot analysis sample, we �nd more evidence of decreasing impatience. We get similar results testing
model restrictions.
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lay at which the participant switches from choosing the larger-later reward to the

smaller-sooner reward places a bound on their indi¤erence point. That is, if a par-

ticipant switches from preferring the later payment to the sooner payment when the

delay is 6 v. 7 weeks, the indi¤erence point could be anywhere between 6 and 7 weeks.

We run a set of interval regressions (a generalization of tobit models) to explicitly ac-

count for these bounds on the indi¤erence point. However, these regressions produce

results that are nearly identical to those obtained by assuming that the indi¤erence

point is the midpoint on the interval . As a result, we place the indi¤erence point

at the midpoint of the interval: if the participant chooses larger-later at t+�j and

smaller-sooner at t + �j+1 then �i(m; t) = 1
2
(�j +�j+1) : If a participant always

chooses the earlier option on a list, �i(m; t) = 1
2
(1 + 0) = 1

2
: So, for example, a

participant who chose the larger-later option in �$50 in 1 week v. $100 in 2 weeks�,

but the smaller-sooner option in �$50 in 1 week v. $100 in 3 weeks�, has revealed

they are willing to wait 2 weeks but not 3 weeks for $100. Hence, �i(50; 1) = 2:5:

We exclude from our sample the 26/100 subjects who ever make a non-monotonic

choice (they do not have a unique switching point on some list). These non-monotonic

choices are clearly not able to be rationalized by SDU functions. This rate of non-

monotonic choice is not out of line with previous work. For instance, 11% of par-

ticipants in Meier and Sprenger (2010) make such a non-monotonic choice. Their

subjects saw 2 multiple price lists (i.e. measured two indi¤erence points). In con-

trast, our subjects saw a total of 30 multiple delay lists, so had more opportunity to

make non-monotonic choices.

We next identify a relatively patient subsample: the 34 out of the 74 remaining

participants who have at least one multiple delay list on which they always choose the

larger-later option. Of these patient participants, 26% always make the more patient

choice on every question asked, and 59% always make the more patient choice on

the majority of multiple delay lists.16 We cannot reject SDU for a participant who

16The maximum available delay o¤ered was constrained for the purposes of payment reliability
and feasibility. The latest available payment in this experiment was 92 weeks later, or almost 2
years. The preferences of patient participants could be better captured with lists that use higher
smaller-sooner amounts (e.g. m = 99). However, we wanted to limit the total number of decisions
made to avoid taxing participants�attention and cognitive ability. Incentive-compatible dynamic
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always chooses the larger-later option, as they are too patient for us to estimate

characteristics of their delay function. If a participant always chooses the later

reward, we only observe a lower bound on their discount function. Consequently,

patient exponential and patient hyperbolic subjects are indistinguishable. This issue

is not unique to our method. Our method�like other multiple price list methods�

is not very discerning for patient participants. In studies that impose the SDU

assumption, bounds place the discount factor of maximally patient participants near

1 (no discounting). Our focus, though, is on the characteristics of the delay function.

Our �nal Analysis Sample is comprised of the 40 out of 74 remaining participants

who never have a multiple delay list on which they always choose the larger-later

option. In robustness checks, we broaden this sample to include those participants

who always choose the larger-later option on less than 10 m; t pairs and impute a

value of the delay function for those choices; the fraction of participants consistent

with an SDU representation is quite similar. As a result, we focus the application of

our method to this sample because it guarantees we observe the delay function very

well for it.

3.2. The Data

Our Analysis Sample has broad demographic coverage and is similar to the U.S.

population. It is 57% male, with a median age of 48, and 50% are married. By

comparison, the 18-65 U.S. population has a median age of 43 and a marriage rate

of about 50% (2011-2013 American Community Survey). Our sample has a range of

income levels: 33% have household incomes below $35,000 and 30% have household

incomes above $75,000. By comparison, about 35% of U.S. households have incomes

below $35,000 and about 33% have incomes about 75,000. The full sample also has

very similar characteristics.

For each participant i, magnitude m of the smaller-sooner payment, and time

horizon t to the earlier payment, we calculate �ti;m;t = �i(m; t) � t, which is the

maximum additional delay the participant is willing to accept while still choosing

designs would be complicated to explain and implement. Pre-testing indicated that our chosen
range of magnitudes and delays captured the preferences of the largest fraction of participants.
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the larger-later payment. The larger �ti;m;t is, the more patient the choice. Figure

1 plots the average �ti;m;t across participants, broken out separately by magnitude

of and time to the smaller-sooner payment. In the upper left panel, the average

maximum additional delay participants are willing to take to choose $100 over $50 is

10.7 weeks when the smaller-sooner reward was available today, and 13.1 weeks when

the smaller-sooner payment was available at 24 weeks. In the lower right panel, we

�nd that on average, participants are only willing to wait 3-4 additional weeks for

$100 over $90, regardless of when the $90 became available.

Constant impatience (i.e. exponential discounting) implies that the maximum

additional delay �ti;m;t should not vary by the horizon t to the smaller-sooner re-

ward. In contrast, decreasing impatience (e.g. hyperbolic discounting) implies that

�ti;m;t should increase with t: Visually, Figure 1 shows only very limited evidence of

decreasing impatience at the aggregate level�only the $50 v. $100 choice displays a

noticeable increasing pattern.17 However, individual heterogeneity is important, and

is not visible in the Figure.

We �st conduct a strong test: do all participants display constant impatience,

even if their level of impatience di¤ers? To do so, run the regression �ti;m;t =

�im + �it; where �ti;m;t is the maximum additional delay for each participant i,

amount m, and horizon t, �im is participant-speci�c �xed e¤ects for the smaller-

sooner amount, and �it is participant-speci�c �xed e¤ects for the horizon to the

smaller-sooner payment. While �ti;m;t can vary across participants and amounts in

an arbitrary way (captured in �im), the test for constant impatience requires that

�ti;m;t not depend on the horizon t to the smaller-sooner reward. Thus, to test the

hypothesis that all participants have constant impatience, we test the restriction that

all �it = 0: We reject this restriction (and thus constant impatience) via a likelihood

ratio test at p < 0:001.18

17This is consistent with a stream of literature that has not found aggregate decreasing impatience
for monetary rewards, including McClure et al. [2004], who use the same payment method as we do,
and Andreoni and Sprenger [2012], who take care to remove many confounds in their estimation of
preferences. Other work, such as Olea and Strzalecki [2014], has found evidence of both decreasing
impatience and increasing impatience for monetary rewards.
18We can also test separately, for each participant, whether �it = 0 for that particular i; but

doing so has much less power. For 25% of the participants in the Analysis Sample, we reject that
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Figure 1: Average maximum additional delay accepted for larger-later reward. Sam-
ple: Analysis Sample.
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3.3. Results

Having calculated the values of the delay function �i(m; t) from participants�switch-

ing points; we then seek to characterize its structure. From the observed values of

�i(m; t) for each m; t pair, we estimate four delay functions via non-linear least

squares, separately for each individual. These delay functions vary in whether they

impose SDU and the absence of time distortion (i.e. linear delay function), and are

as follows:

� SDU-Linear: �i(m; t) = �im + (1 + ki�im) t , where �im can vary across par-

ticipants and magnitudes. The degree of hyperbolicity ki can vary across par-

ticipants, and following Proposition 2.2, we constrain ki � 0:

� SDU-NonLinear: �i(m; t) = [�
iim + (1 + ki�

i
im) t


i ]
1

i : Relative to SDU-Linear,

this adds a time distortion parameter 
i that can vary across participants.

� NonSDU-Linear: �i(m; t) = �im + �imt; where �im and �im can vary across

participants and magnitudes.

� NonSDU-NonLinear: �i(m; t) = [�
iim + �imt

i ]
1=
i :Relative to NonSDU-Linear,

this adds a time distortion parameter 
i that can vary across participants.

The SDU-Linear model is of particular interest, since most economic applications

of discounting assume SDU and do not allow for time distortion. When we estimate

the SDU-Linear model, we �nd the distribution of ki seen in Figure 2: the mean ki is

0.028, and the median ki is virtually zero (2.13�10�16), suggesting that the majority
of our sample discounts exponentially. In fact, for 75% of our sample, we cannot

reject the restriction that ki = 0 at the p < 0:05 level. (We �nd similarly small

median ki in the SDU-NonLinear model as well, as shown in Table 2 )

However, what appears to be evidence of exponential discounting is instead an

artifact of imposing the SDU model. We reject the SDU restrictions, indicating

participants cannot be exponential discounters. Because each model is more general

�it = 0 at p < 0:05:
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than the previous ones, we can use a likelihood ratio test to assess the restrictions

implied SDU and linearity (no time distortion). The SDU model is simply the

NonSDU-NonLinear model with the constraints that 
im = 1 and �im = 1 + ki�im:

The parameter estimates in the Non-Linear Non-SDU then tell us how choices deviate

from the SDU model.

Table 2 shows that we strongly reject the restrictions implied by the SDU model

using our likelihood ratio tests.19 For 68% of the sample we can reject at p < 0:05

the restrictions implied by the SDU-Linear model in favor of the NonSDU-NonLinear

model; we reject the SDU-NonLinear in favor of the NonSDU-NonLinear model for

70% of the sample.20

Time distortion is not the crucial source of our deviation from the SDU-Linear

model, as we only reject the NonSDU-Linear model in favor of NonSDU-NonLinear

for 38% of the sample. In additional to the results in the table, we have also compared

the SDU-Linear model directly to the NonSDU-Linear model. Doing so simply �xes


i = 1 and tests the restriction that �im = 1+ki�im: For 58% of the sample, we can

reject at p < 0:05 the restriction implied by the SDU model in favor of the Linear

Non-SDU model.

We then use a commonly used model selection criterion, the Akaike Information

Criterion (AIC), to determine the �best-�t�model, without privileging any model

as the null hypothesis. Of course, a model with more parameters will of course be

able to capture more variation in the data. However, the AIC trades o¤ a penalty for

additional parameters against the improved �t to select among models. (Note that

19The likelihood ratio test is valid under the maximum likelihood interpretation on non-linear
least squares (assuming normally distributed errors). Alternatively, we can conduct an F-test of the
parameter restrictions implied by SDU-Linear, which does not require the assumption of normally
distributed errors. The results of the F-test are similar to that of the likelihood ratio test: we reject
SDU-Linear in favor of NonSDU-NonLinear for 68% of the participants.
20While it is slightly surprising that we reject the more general SDU model for a larger fraction of

the population, this can occur because the null model being tested against the unrestricted model
di¤ers. For the participant for which we reject the SDU-NonLinear model but not the SDU-Linear
model at p<0.05, we have veri�ed that while the SDU-NonLinear �ts slightly better than the SDU-
Linear model, the test rejects SDU-NonLinear at p=0.032 and SDU-Linear at p=0.054 because the
degrees of freedom for the SDU-NonLinear likelihood ratio test are 4 instead of 5.
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the AIC is not a test statistic, merely a way of penalizing additional parameters.

See e.g. Hey and Orme [1994]). Table 2 shows that one of the non-SDU models

are preferred for 82% of participants. The most frequently selected model is the

NonSDU-NonLinear model, chosen for 53% of participants. In addition to the results

in the table, we directly compared the SDU-Linear model to the NonSDU-Linear

model (thus removing any role for non-linear time perceptions). In this case, the

AIC prefers the NonSDU-Linear model 73% of the time over the SDU-Linear model.

For each model, the row in Table 2 displays the mean and median estimated

parameters for the all participants. Because each participant is described by a vector

of parameters (e.g. �im for m = 50; 60; :::; 90) we display a subset of the parameters�

those for the lowest and highest m:

The estimated parameters di¤er when restrictions are placed on the model. Con-

sider what the various �m=50 parameters imply for the median participant making a

decision between $50 today and $100 sometime in the future. In the NonSDU-Linear

model, that participant would be willing to wait 6.76 weeks, but in the SDU-Linear

model willingness to wait would be 7.55 weeks.21 The lower �m=90 parameter indi-

cates that the median participant is willing to wait is only 2.5-3.2 weeks for $100 over

$90 today. An mean �m=50 value of 1.36 means that for each additional week the

smaller-sooner payment is delayed (t = 1; 2; :::) , on average participants would be

willing to wait an additional 0.36 weeks (=1.36-1) after the time of the smaller-sooner

payment. (Recall, the delay function is measured in absolute time, not time relative

to the smaller-sooner payment.) While the median subject has an � near 1, close

to constant impatience, there is substantial variation around the median. Finally, 


captures the non-linearity in the delay function; it is more clearly described in the

�gure.

21Note that while Figure 1 shows the mean additional delay accepted for $50 v. $100 when t = 0
is about 10 weeks, the median additional delay is approximately 8 weeks, near to what is implied
by the �m=50 estimates.
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Table 2: Model Selection and Delay Function Parameters

% of Sample For Which Model is

Model Chosen by AIC: Rejected by LR Test: Parameters: Mean, [Median], (Std. Dev.)

�m=50 �m=90 �m=50 �m=90 ki 
i

SDU-Linear 13% 68% 10.41 3.43 2.84E-02

[7.55] [2.46] [2.13E-16]

(9.84) (3.53) (0.08229)

SDU-NonLinear 5% 70% 10.72 3.90 4.95E-02 1.03

[7.42] [3.19] [5.41E-12] [1.01]

(10.22) (3.65) (0.11284) (0.06)

NonSDU-Linear 30% 38% 10.40 3.58 1.10 1.01

[6.76] [3.13] [1.04] [1.00]

(9.59) (3.22) (0.38) (0.19)

NonSDU-NonLinear 53% NA 9.80 3.54 1.36 1.05 1.35

[7.39] [3.19] [1.05] [1.01] [1.14]

(8.66) (3.39) (1.42) (0.25) (1.19)

Sample: Analysis Sample. Mean parameters displayed, with medians in brackets and standard deviations in parentheses below. For the

NonSDU-NonLinear model, the means and standard deviations exclude one extreme outlier subject. Likelihood ratio tests conducted relative

to NonSDU-NonLinear model.
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To illustrate the di¤erent delay functions, we examine one particular partici-

pant in Figure 3, as the population average parameters mask substantial individual

heterogeneity. The �gure displays the participant�s estimated delay functions for

two di¤erent smaller-sooner amounts m for the SDU-Linear, NonSDU-Linear and

NonSDU-NonLinear models (we omit the SDU-NonLinear model for readability).

Each panel also includes a 45� line, which is the delay function that would be pro-

duced by SDU exponential discounting. First, note that on the right panel (m = 90);

the lines virtually overlap and are close to the 45� line, showing the models don�t make

very di¤erent predictions for the choice between $90 and $100. However, the models

substantially di¤er in the left panel, which describes the choice between $50 and

$100. Note that the NonSDU-Linear model and SDU-Linear model lines cross�we

�nd the SDU-Linear model predicts more patience when time to the smaller-sooner

payment t � 0; but less patience when t is above 10. The NonSDU-NonLinear model
predicts a similar willingness-to-wait to the other models when the smaller-sooner

payment is available at short time horizons (t near zero). Yet it quickly diverges when

the smaller-sooner payment is available at a longer delay. At about 1 month to the

smaller-sooner payment (t = 4), the NonSDU-NonLinear delay function shows much

more patience than the SDU-Linear model: a willingness-to-wait of about 36 weeks,

12 weeks more than the approximately 25 weeks predicted by the other models.

Finally, a quick glance at Table 2 suggests that the results satisfy the conditions

that �im and �im decrease in m, as required by regularity. We more rigorously

verify this for the most general NonSDU-NonLinear model by estimating a linear

relationship between �im and m and between �im and m. Pooling all participants to

address noise,22 we �nd the expected statistically signi�cant negative trend on both

cases: �im = �0:009m, �im = �0:159m, rejecting a zero coe¢ cient with p < 0:10 in
both cases. While our participant-speci�c estimates are subject to more noise, 68%

of the participant-speci�c trends are negative, and only 1 out of 80 trends is positive

and statistically signi�cant.

22We drop the one outlier participant with extreme parameters values (e.g. 
 = 27; �50 =
4.97e+09.) Including this participant still gives aggregate negative trends, signi�cant for � but not
for �:
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3.4. Robustness

The common SDU discount functions (exponential, hyperbolic, generalized hyper-

bolic) produce a linear delay function and are thus appropriately tested for in our

analysis above. However, some SDU discount functions treat t = 0 specially and

produce a nonlinear delay function that is not of the form considered in Proposition

2.3. For instance, the quasi-hyperbolic � � � model produces a linear delay function
when no option is available at t = 0; but has a nonlinearity at t = 0: Similarly, the

Benhabib, Bisin, and Schotter [2010] �xed-cost of delay model, in which payments

delayed from t = 0 to t > 0 incur a �xed-cost, has a nonlinearity at t = 0; nonethe-

less, it produces a linear delay function when t > 0: Additionally, immediate t = 0

payments may be treated di¤erently due to confounds, such as trust, uncertainty, or

transactions costs.

To account for special treatment of t = 0, we repeat the above analysis excluding

all choices in which the smaller-sooner option is available at t = 0: We compare the

SDU-Linear model (which would be produced by the quasi-hyperbolic model and

�xed-cost of delay model) to the NonSDU models. The results are very similar:23

with a likelihood ratio test, the SDU-Linear model is rejected in favor of the NonSDU-

Linear model for 64% of participants and rejected in favor of the NonSDU-NonLinear

model for 69% of participants. Moreover, the AIC best-�t criterion only chooses the

SDU-Linear model for 22% of participants.

We also explore robustness to sample selection. We examine an expanded sample

that drops only participants who always choose the larger-later option for more than

10 of the m; t pairs or who ever make a non-monotonic choice.24 For the resulting 51

participants, the AIC model selection criteria prefers the SDU-Linear model for only

24% of the sample, and we still reject the SDU-Linear model for 63% of the sample

23Dropping the t = 0 choices, we have di¢ cult �tting the model for 4 participants, who we then
exclude from this analysis.
24In this expanded sample, we need to impute the indi¤erence point for lists on which the par-

ticipant always chose the larger-later option. We impute their choices as though they choose the
sooner option when the later option was available at an additional delay of 93 weeks, a 25 week
increment over the last option they actually faced. We explored alternative imputation strategies,
which gave similar results.
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in favor of the Non-Linear Non-SDU model via a likelihood ratio test.

Finally, we explore the e¤ect of our assumption that we have point-identi�ed that

the indi¤erence point. We estimate two sets of parameters for the NonSDU-Linear

model:25

� �i(m; t) = �im + �imt using our midpoint method, as before

� �i(m; t) = ~�im + ~�imt using interval regression that accounts for the unknown
location of the indi¤erence point between the upper and lower bounds provided

by the participants�switching point.

The interval regression takes as inputs the upper and lower bounds on the delay

function that is obtained from each multiple delay list: �Upperi (m; t) and �Loweri (m; t):

The interval regression assumes that �i(m; t) = �im + �imt +";where the error term

" is i.i.d. normal with variance �2: The likelihood for a given observation is then

given by Pr(�Loweri (m; t) < �i (m; t) < �
Upper
i (m; t)):

For each parameter, we correlate the midpoint and interval estimates across par-

ticipants: e.g. we correlate �i10 with ~�i10: We have 10 such pairs of parameters (�

and � for 5 di¤erent magnitudes), giving 10 correlation coe¢ cients between midpoint

and interval regression parameters. The parameter estimates are virtually identical

using the midpoint and interval regression methods, and all 10 correlation coe¢ cients

are above 0.99. We thus conclude that our method of assuming the indi¤erence point

is point identi�ed is reliable.

4. Concluding Remarks

While separability is an assumption made for the sake of parsimony in economic

models, we evaluate whether there is an empirical price for assuming it. In both our

main experiment and pilot experiment, we �nd that many participants are not well-

characterized by separable discounted utility. More than simply rejecting SDU, we

25We choose the NonSDU-Linear model because it is general and it can be estimated via Stata�s
interval regression command intreg. Intreg is unable to estimate models via non-linear least squares
or impose the restrictions implied by the SDU-Linear model.
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show that the form of our estimated delay functions is consistent with a magnitude-

dependent discount function that discounts smaller rewards at higher rates. The

general framework we examine invites further exploration. Our results suggest that

exploring non-SDU preferences will be fruitful, and that empirical applications might

bene�t from searching for explanations for observed behavior that do not rely on

SDU.
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A. Online Appendix: Regularity and GDU

We establish some basic results on regularity which are used later, though not always

explicitly.

Lemma A.1. For any continuous increasing u : M ! R, a regular preference %
admits a representation U :M�T ! R such that U(�; t) is continuous and strictly
increasing, U(m; �) is continuous and strictly decreasing ifm > 0 and constant ifm =

0, and U(m; 0) = u(m). Conversely, any preference that admits such a representation

is regular. By de�ning D(m; t) = U(m;t)
u(m)

for any m > 0 , any such representation can

be written as a GDU representation (D; u).

Proof. The �rst claim is established in [1982, Thm 1]. The remaining are trivial.

Lemma A.2. If % is regular then
(a) For every m; t and d there exists m0 � m such that (m0; t) � (m; t + d).

Moreover, for every m; t and m0 � m there exists d such that (m0; t) � (m; t+ d).

(b) For any s � l and � such that (s; 0) � (l; �), and for every t0 � � there exists

t such that (s; t) � (l; t0): Moreover, when s > 0 then for any t � 0 there is a unique
T � t such that (s; t) � (l; T ).
(c) For each (m; t) there exists a unique �present value� (m; t) satisfying

( (m; t); 0) � (m; t):

Moreover,  (0; �) = 0,  (m; �) is strictly decreasing for any m > 0, limt!1  (m; t) =

0 for all m, and  (m; �) is continuous.
(d) If (s; 0) � (l; �) and (s; t) � (l; T + �), then T + � � t:

Proof. Part (a) follows from Impatience, Monotonicity and Continuity; we omit

the proof. The t in part (b) exists by Impatience, Monotonicity and Continuity: By

Monotonicity, (s; t0) - (l; t0). By Impatience and the fact that (s; 0) � (l; �) and

t0 � � , it follows that (s; 0) % (l; t0). Thus, by Continuity, (s; 0) % (l; t0) % (s; t0)

implies that there is t such that (s; t) � (l; t0); as desired. For the second claim in (b),
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the existence of T is established in a similar way. Impatience guarantees uniqueness

when s > 0.

Turning to part (c): part (a) establishes the existence of present values, and

Impatience implies that  (m; �) is strictly decreasing for any m > 0. To see that

limt!1  (m; t) = 0 for all m, suppose not. Then there exists m and s > 0 such that

(s; 0) � ( (m; t); 0) � (m; t) for all t. But this contradicts Impatience. Finally, to see
that  (m; �) must be continuous, take any strictly increasing homeomorphism and

consider the representation U delivered in Lemma A.1. Since u( (m; t)) = U(m; t)

and in particular,  (m; t) = u�1(U(m; t)), continuity of u�1 implies that of  (m; �):
For part (d), note that if T + � < t then (s; T + �) � (l; T + �) by Impatience,

which then violates Monotonicity.

The next lemma characterizes regularity in terms of properties of �. Say that

� : M� T ! T is generated by % if for any 0 < m � m and each t, (m; t) �
(m;�(m; t)).

Lemma A.3. � is generated by a regular preference % if and only if:
(i) �(m; t) is continuous.

(ii) For any t; �(�; t) is strictly decreasing and limm!0�(m; t) =1.
(iii) For m > 0, �(m; �) is strictly increasing and �(m; t) = t for all t.

Proof. Prove the �if�part. Let ��10 (t) be de�ned by �(�
�1
0 (t); 0) = t. De�ne a

function U(m; t) = ��10 (�(m; t)), where the inverse exists and is continuous by the

monotonicity and continuity properties in (i)-(ii). Intuitively, U(m; t) is the present

value of (m; t); that is, if there was a regular preference generating � then (x; 0) �
(m; t) � (m;�(m; t)) and (x; 0) � (m;�(x; 0)) would hold. Thus �(x; 0) = �(m; t),
and in turn, U(m; t) = x = ��10 (�(m; t)).

We �rst verify that U represents a regular preference. By (ii), for �xed t, since

�(m; t) strictly decreases in m and ��10 is also strictly decreasing, it follows that

��10 (�(m; t)) is strictly increasing in m. Therefore U(m; t) is strictly increasing

in m. Similarly, U(m; t) is strictly decreasing in t if m > 0. By continuity of

U and by (ii), U(0; t) = limm!0 U(m; t) = limm!0�
�1
0 (�(m; t)) = 0 for any t.
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The other Impatience property follows from the fact that by (ii) and (iii), 0 �
limt!1 U(m; t) = limt!1�

�1
0 (�(m; t)) � limt!1�

�1
0 (�(m; t)) = limt!1�

�1
0 (t) =

0, that is, limt!1 U(m; t) = 0. As already noted, U is continuous.

Finally, we check that � is generated by the preference % represented by U ,

that is, U(m; t) = U(m;�(m; t)). Note that by de�nition and by (iii), U(m; t) =

��10 (�(m; t)) = �
�1
0 (t). Thus, U(m;�(m; t)) = �

�1
0 (�(m; t)) = U(m; t), as desired.

B. Appendix: Proof of Theorem 2.1

B.1. Proof

We formally prove the result by takingM = R+ and noting that the same argument
establishes Proposition 2.1 as a corollary whenM = [0;m].

For a given preference % and any rewards 0 < s � l, de�ne the function �s;l(�)
by the indi¤erence:

(s; t) � (l;�s;l(t)): (B.1)

For s = 0 < l, let �s;l(t) :=1.
We �rst clarify the exhaustive implications of regularity on �.

Lemma B.1. � is generated by a regular % if and only if:
(i) �(s; l; t) is continuous,

(ii) �(s; �; t) is strictly increasing and �(�; l; t) is strictly decreasing in s, and

moreover lims!0�(s; l; t) =1 when l > 0,

(iii) �(s; l; �) is strictly increasing if s; l > 0, and �(m;m; t) = t for all t,

(iv) �m1;m2(�m0;m1(t)) = �m0;m2(t) for all t and m0 � m1 � m2:

Proof. Prove the �if�part. De�ne ��1(l;0)(r) by �(�
�1
(l;0)(r); l; 0) = r. Let U(m; t) :=

��1m;0(t), where the inverse exists by the monotonicity and continuity properties in

(i)-(ii). Intuitively, U(m; t) is the present value of (m; t); that is, it is a small reward

s = U(m; t) that satis�es,

�(s;m; 0) = t:
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We �rst verify that U represents a regular preference.

To see that U is continuous, suppose mn ! m, tn ! t and to ease notation

write sn := U(mn; tn), that is, �(sn;mn; 0) = tn. We show that sn converges. Since

mn ! m, there is someM and N such that mn �M for all n � N (wlog let N = 1).

De�ne Tn := �(mn;M; tn). By (i), Tn converges. Observe that �(sn;M; 0) = Tn

by (iv). Since �(�;M; 0) is strictly monotone and continuous, it follows that ��1M;0(�)
is continuous. Therefore, since Tn converges to T := �(m;M; t), it must be that

sn = �
�1
M;0(Tn) converges to s := �

�1
M;0(T ) = �

�1
M;0(�(m;M; t)), and in particular,

�(s;M; 0) = �(m;M; t):

It remains to show that�(s;m; 0) = t. By the displayed equality and (iv), �(m;M;�(s;m; 0)) =

�(s;M; 0) = �(m;M; t) and so by (iii), �(s;m; 0) = t, as desired. Thus U is contin-

uous.

Now show the remaining regularity properties. By (ii), for �xed t, the equation

�(s;m; 0) = t implies that as m increases, s must also increase. Therefore U(m; t)

is strictly increasing in m. Similarly, U(m; t) is strictly decreasing in t if m > 0.

To show the second Impatience property, take any m;m0 such that m0 > m > 0.

By (ii), there is a small enough s0 > 0 s.t. �(s0;m0; 0) > 0 = �(m;m; 0). De�ne

t := �(s0;m0; 0). Then by (ii), U(m0; t) < U(m; 0), as desired. Finally we show the

�rst Impatience property, that is, U(0; t) = 0. By (ii) and (iii), since �(m;m; t) = t,

it must be that for s that satis�es �(s;m; 0) = t it must be that s � m. That

is, 0 � U(m; t) � m. Then by continuity of U , U(0; t) = limm!0 U(m; t) = 0, as

desired.

To conclude, we check that � is generated by the preference % represented by

U . By de�nition, for any s � l, s = U(l;�(s; l; 0)). Take any t and suppose

s00 = U(l;�(s; l; t)), that is,

�(s00; l; 0) = �(s; l; t):

Since (iii) implies�(s; l; t) � �(s; l; 0), it follows that s00 = U(l;�(s; l; t)) � U(l;�(s; l; 0)) =
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s: That is, s00 � s � l. By (iv), �(s; l;�(s00; s; 0)) = �(s00; l; 0) and so, by the dis-

played equality, �(s; l;�(s00; s; 0)) = �(s; l; t). By (iii), �(s00; s; 0) = t, and this

implies that U(s; t) = s00 = U(l;�(s; l; t)), and thus � is generated by U , as desired.

Lemma B.2. If D solves the functional equation (FE) below, then for any 0 <

m1 � m2 � m3,

D(m2;�m1;m2(0)) �D(m3;�m2;m3(0)) = D(m3;�m1;m3(0))

Proof. Suppose m1 � m2 � m3 then the functional equation implies

D(m2;�m1;m2(0)) �D(m3;�m2;m3(0)) = D(m3;�m2;m3(�m1;m2(0)):

But transitivity of % implies �m2;m3(�m1;m2(0)) = �m1;m3(0). The assertion follows.

Lemma B.3. The following statements hold:
(a) Consider any regular preference % and its �-function. Then D can be at-

tributed to % if and only if D solves the functional equation:

D(s; t) �D(l;�s;l(0)) = D(l;�s;l(t)); (FE)

for all 0 < s � l and t.

(b) Suppose% is a regular preference with the function �, and thatD is a solution
to (FE). Then (D; u) represents % if and only if u is given by

u(m) =

(
D(m;�m;m(0)) � u(m) if m � m

[D(m;�m;m(0))]
�1 � u(m) otherwise

; for all m;

where m > 0 and u(m) > 0 are arbitrary.

Proof. We prove (a), and part (b) follows as a corollary of the proof.
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First show that any attributable D must satisfy the functional equation. By

regularity, % admits a representation U . Any representation can be written as a GDU
model with someD and u. By de�nition of the �-function (1.1), it must be that for all

s; l > 0 and t, both u(s) = D(l;�s;l(0))u(l) and D(s; t)u(s) = D(l;�s;l(t))u(l) hold.

Rearranging yields the functional equation. Observe that we have also determined

that a solution must always exist if � comes from a regular preference %.
For the converse, suppose D is a solution. Take any m > 0 and assign it any

utility u(m) > 0. De�ne

u(m) =

(
D(m;�m;m(0))u(m) if m � m

D(m;�m;m(0))
�1u(m) otherwise

; for all m:

By continuity of D, the utility u is continuous as well (monotonicity will be deter-

mined shortly). Next we show that, given transitivity of %, the utility u is consistent
with D in the sense that it satis�es

u(s) = D(l;�s;l(0))u(l) (B.2)

for all s; l s.t. s � l: To see this, consider the following cases:

Case 1- s; l � m.

Then u(s) = D(m;�s;m(0))u(m) and u(l) = D(m;�l;m(0))u(m), which implies

u(s) =
D(m;�s;m(0))

D(m;�l;m(0))
u(l):

By the Lemma, D(l;�s;l(0)) �D(m;�l;M(0)) = D(m;�s;M(0)), that is,
D(m;�s;m(0))

D(m;�l;m(0))
=

D(l;�s;l(0)). It follows that (B.2) holds.

Case 2- s � m � l

Then u(s) = D(m;�s;m(0))u(m) and u(l) =
u(m)

D(l;�m;l(0))
, which implies

u(s) = D(m;�s;m(0))D(l;�m;1(0))u(l):

By the Lemma, D(m;�s;m(0)) �D(l;�m;l(0)) = D(l;�s;l(0)), and (B.2) follows.
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Case 3- m � s � l:

Then u(s) = u(m)
D(s;�m;s(0))

and u(l) = u(m)
D(l;�m;l(0))

, which implies

u(s) =
D(l;�m;l(0))

D(s;�m;s(0))
u(l):

By the Lemma, D(s;�m;s(0)) �D(l;�s;l(0)) = D(l;�m;l(0)), and (B.2) follows.

Thus u is consistent with D in the sense of (B.2). Observe that the equality also

assures us that u must be strictly increasing: D is strictly increasing in its second

argument and by Monotonicity and Impatience �s;l(0) must be strictly increasing in

s. To show that there is a GDU representation with D, de�ne U(m; t) := u(p(m; t)),

where p(m; t) is the present value of (m; t). Since p(m; t) is a representation for %
and u is strictly increasing, it follows that U(m; t) represents %. But then U(m; t) =
u(p(m; t)) = D(m; t)u(m), as desired.

The next lemma determines how to check if D solves (FE) on the basis of infor-

mation on �m;m, �m;m and the present value of (m; t) for allm > m and t < �m;m(0).

Write pmt for the present value of (m; t), that is, (pmt; 0) � (m; t).

Lemma B.4. Fix any m > 0. Then D solves (FE) for all 0 < s � l and t if and

only if:

i) D solves (FE) for all s; l s.t. 0 < s � l for s = m or l = m, and all t; and

ii) D(m; t) = D(m;�m;m(0))

D(pmt;�m;pmt (0))
for all m > m and t < �m;m(0).

Proof. The �if�part is straightforward �note that part (ii) follows from lemma B.2.
Turn to the �only if�part. Suppose the hypothesis holds. Take any 0 < s � l and t.

Consider the following cases. We make frequent use of the fact that ifm1 � m2 � m3

then transitivity implies �m2;m3(�m1;m2(t)) = �m1;m3(t) for any t.

Case 1- s; l � m.

By hypothesis,D(s; t)�D(m;�s;m(0)) = D(m;�s;m(t)) andD(l; t)�D(m;�l;m(0)) =
D(m;�l;m(t)). Moreover, by transitivity, �l;m(�s;l(t)) = �s;m(t). Observe that:

D(l;�s;l(t))

= D(l;��1l;m(�s;m(t))) by transitivity
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=
D(m;�l;m[�

�1
l;m(�s;m(t))])

D(m;�l;m(0))
by hypothesis

=
D(m;�s;m(t))

D(m;�l;m(0))

=
D(s;t)D(m;�s;m(0))

D(m;�l;m(0))
by hypothesis

= D(s; t)[
D(m;�s;m(0))

D(m;�l;m(0))
]. We are done if we show that D(m;�s;m(0))

D(m;�l;m(0))
= D(l;�s;l(0)).

But this follows

since

D(l;�s;l(0))D(m;�l;m(0))

= D(m;�l;m(�s;l(0))) by hypothesis

= D(m;�s;m(0)) by transitivity. This completes the argument.

Case 2- s � m � l:

By hypothesisD(s; t)�D(m;�s;m(0)) = D(m;�s;m(t)) andD(m; t)�D(l;�m;l(0)) =
D(l;�m;l(t)) and by transitivity, �m;l(�s;m(t)) = �s;l(t). Observe that

D(l;�s;l(t))

= D(l;�m;l(�s;m(t))) by transitivity

= D(m;�s;m(t)) �D(l;�m;l(0)) by hypothesis
= [D(s; t) �D(m;�s;m(0))] �D(l;�m;l(0)) by hypothesis
= D(s; t)�[D(m;�s;m(0))�D(l;�m;l(0))]. We are done ifD(m;�s;m(0))�D(l;�m;l(0)) =

D(l;�s;l(0)). But this follows since

D(m;�s;m(0)) �D(l;�m;l(0))
= D(m;�m;l(�s;m(0))) by hypothesis

= D(m;�s;l(0)) by transitivity. This completes the argument.

Case 3(i)- m < s � l and t � �m;s(0).
By hypothesisD(m; t)�D(s;�m;s(0)) = D(s;�m;s(t)) andD(m; t)�D(l;�m;l(0)) =

D(l;�m;l(t)) and by transitivity, �s;l(�m;s(t)) = �m;l(t). The restriction t � �m;s(0)
implies that ��1m;s(t) exists. Observe that:

D(l;�s;l(t))

= D(l;�m;l(�
�1
m;s(t))) by transitivity

= D(m;��1m;s(t)) �D(l;�m;l(0))
=

D(s;�m;s(�
�1
m;s(t)))

D(s;�m;s(0))
�D(l;�m;l(0))
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= D(s; t) � D(l;�m;l(0))
D(s;�m;s(0))

. We are done if we show that D(l;�m;l(0))

D(s;�m;s(0))
= D(l;�s;l(0)): ob-

serve that by hypothesis and transitivity,D(s;�m;s(0))D(l;�s;l(0)) = D(l;�s;l(�m;s(0))) =

D(l;�m;l(0)), as desired.

Case 3(ii)- m < s � l and t < �m;s(0).

By hypothesis, D(m; t) = D(m;�m;m(0))

D(pmt;�m;pmt (0))
where pmt satis�es (pmt; 0) � (m; t).

Since t < �m;s(0), it must be that pmt � m.

D(s; t) �D(l;�s;l(0))
=

D(s;�m;s(0))

D(p;�m;p(0))
� D(l;�ml(0))
D(s;�m;s(0))

by hypothesis, where p is the present value of (s; t) (s

is the present value of (l;�s;l(0)) by de�nition)

= D(l;�ml(0))
D(p;�mp(0))

= D(l;�s;l(t)) by hypothesis since by transitivity p must be the present value of

(l;�s;l(t)) as well.

This completes the proof.

Fix any m > 0. For any m > 0 and t � 0, de�ne �(m; t) by:

(m; t) � (m;�(m; t)) if m � m

(m; t) � (m;�(m; t)) otherwise.

Lemma B.5. D is attributable i¤ there is a continuous, strictly increasing and

unbounded function g satisfying g(0) = 0 such that

D(m; t) =

8><>:
e�[g(�(m;t))�g(�(m;0))] if m � m

e�[g(�
�1
m (t))�g(�(m;0))] if m � m and t � �m;m(0)

e�[g(m;0)�g(�(p(m;t);0)] if m > m and t < �m;m(0)

:

Proof. By lemma B.3, D is attributable if and only if it solves (FE). Suppose

D solves (FE). Then by lemma B.3, (D; u) represents % for some u. Wlog, let

u(m) = 1. By regularity, �(m; 0) is continuous and strictly decreasing in m for

m < m and strictly increasing for m > m. Since u is strictly increasing, there is a
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continuous strictly increasing function g satisfying g(0) = 0 such that26

u(m) =

(
e�g(�(m;0)) if m � m

eg(�(m;0)) if m � m
:

We will see shortly that g must be unbounded.27 Given that (D; u) represents %
and u(m) = 1, the de�nition of � implies u(m) = D(m;�(m; 0)) for m � m, and

u(m) = D(m;�(m; 0))�1 for m > m: Therefore,

D(m;�(m; 0)) = e�g(�(m;0)) for m � m

D(m;�(m; 0)) = e�g(�(m;0)) for m � m
.

We use this observation below. Another observation is that by regularity �(m; 0)

ranges from 0 to 1 as m varies over [0;m], and so we have

D(m; t) = e�g(t):

Moreover, sinceD is a discount function it must satisfy the property limt!1D(m; t) =

0, which implies that g must be unbounded.

To �nd the general solution of (FE), we �rst show that D has the desired form

for 0 < m � m. By the previous lemma, D solves the functional equation for s; l s.t.

[0 < s � l = m] and all t, and in particular, it solves

D(m; t) �D(m;�(m; 0)) = D(m;�(m; t))

for any 0 < m � m and all t. Since we have determined that D(m; t) = e�g(t), this

functional equation therefore implies

D(m; t) = e�[g(�(m;t))�g(�(m;0))] for all m � m and t;

26By regularity �(m; 0) = 0 and so u(m) = e�g(�(m;0)) = e�g(�(m;0)) = 1, consistent with our
assumption that u(m) = 1.
27This does not imply that u is unbounded: though u(m) = eg(�(m;0)) for m � m for unbounded

g, regularity does not require �(�; 0) to be unbounded.
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as desired.

Next consider m � m. By the previous lemma, D must satisfy

D(m; t) �D(m;�(m; 0)) = D(m;�(m; t)):

Then, given the earlier observations, D(m;�(m; t)) = D(m; t) � D(m;�(m; 0)) =
e�[g(t)+g(�(m;0))]. Therefore,

D(m; t) = e�[g(�
�1
m (t))+g(�(m;0))] for all m > m and t � �m;m(0).

Finally, to consider the case [m > m and t < �m;m(0)], we note that by the previous

lemma D(m; t) = D(m;�m;m(0))

D(pmt;�m;pmt (0))
and therefore by our earlier observations,

D(m; t) = e�[g(�(m;0))�g(�(p(m;t);0))] for m > m and t < �m;m(0):

Thus, we have shown that if D is attributable to the preference then it must have

the desired form.

To complete the proof, we need to check that the discount function solves (FE).

This is straightforward to establish in light of the previous lemma. For instance, for

the case where l = m, we see that

D(m; t) �D(m;�(m; 0)) = D(m;�(m; t))

() e�[g(�(m;t))�g(�(m;0))] � e�[g(�(m;�(m;0)))�g(�(m;0))] = e�[g(�(m;�(m;t)))�g(�(m;0))]

() e�[g(�(m;t))�g(�(m;0))+g(�(m;�(m;0)))�g(�(m;0))] = e�[g(�(m;�(m;t)))�g(�(m;0))]

() g(�(m; t))�g(�(m; 0))+g(�(m;�(m; 0))) = g(�(m;�(m; t))). But�(m;x) :=

�m;m(x) = x, and thus the last equation is an identity.

C. Appendix: The E¢ ciency of Delay Functions

Fix the set of periods and prizes and order them so that 0 = t1 < t2 < ::: < tJ

and 0 < m1 < ::: < mI . Write the corresponding �nite space of dated rewards as

XIJ := fm1; ::;mIg � f0; t2; ::; tJg. Suppose that the present value data is given by
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pij such that

(pij; 0) � (mi; tj) for all mi and all tj > 0.

Assume that the analyst is interested in SDU representations. Say that the (magnitude-

independent) discount function D is attributable to the present value data if there

exists a utility index u such that u(pij) = D(tj)u(mi) for all (mi; tj) 2 XIJ . Let the

set of attributable D be denoted by DpI . This is indexed by I since we will be varying
I below.

Given XIJ , let p�(= pI1) denote the present value of (mI ; t1), the largest reward

at the earliest future period. Suppose that �-data is obtained by determining � j
such that

(p�; � j) � (mI ; tj) for all tj > 0:

That is, we determine � j such that �(p�; � j) = tj. Say that the discount function D

is attributable to the �-data if D(t)D(�(p�; t1)) = D(�(p�; t)) for all these periods

� 1; ::; �J .28 Denote the set of attributable D by D�.
The present value and �-data are related by a common time horizon tJ and also

the indi¤erence point (pI1; 0) � (mI ; t1) which de�nes both pI1 and �(pI1; 0). The

proposition below reveals that the J � 1 data points for � are more discerning than
the I � (J � 1) data points for present values, regardless of the number I of rewards.
The proof of the proposition is based on the following insight: limited present

value data will at best put bounds on the participant�s true delay function � and

this is the only extent to which it restricts the range of possible D�s. The remainder

of the data, no matter how rich, will only help determine what u goes with any such

D (observe that in Theorem 2.1 the utility index is determined by �(�; 0), which
essentially comes from money-time trade-o¤ data). Limited direct data on � will

speak more than data that just puts bounds on �.

The �true�D is in both D� and DpI . The proposition therefore tells us that there
is greater e¢ ciency achieved by using �, in that we can get closer to the true D

28This is equivalent to requiring that there are utilities 0 < u(p�) < u(mI) such that D(t)u(p�) =
D(�(p�; t))u(mI) for these t�s. Observe that u(p�) = D(�(p�; t1))u(mI) must hold and so the
utilities can be substituted out, yielding the original de�nition.
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with fewer data points. Stated di¤erently, the proposition reveals that the degree

of potential misidenti�cation is greater with present value data than it is with �-

data. In this sense, limited �-data provides a better picture of the agent�s entire

preference than does present value data, which is the claim we set out to establish.

This proposition thus provides further validation for our claim that � serves as a

behavioral de�nition of discount functions.

Proposition C.1. Suppose that % admits some SDU representation. Then for all

I,

D� � DpI :

Proof. It follows from the de�nition of admissibility that D(t) = e�g(t) is admissible

for the data f�(pI1; t) : t = � 2; ::; �Jg if and only if g solves the functional equation

g(�(pI1; t)) = g(t) + g(�(pI1; 0); for all t = � 2; ::; �J :

The set of admissible D(t) = e�g(t) is nonempty (the �true�one is in the set). Take

any admissible D, and corresponding g.

Below we extend the data f�(pI1; t) : t = � 2; ::; �Jg to some function � on a

subset of X = R2+ in a way that is consistent with the present value data, and then
proceed to prove the theorem. Speci�cally, we inductively de�ne � on fpijg � R+.
It will be convenient to de�ne, for each 1 � � � I, the set S� � fpijg of all observed
present values of rewards m�; ::;mI , that is, S� := fpij: � � i � I and j = 0; ::; Jg.
Note that by regularity, mi = pi0.

First consider � = I. De�ne �(mI ; t) = t for all t. For all j, de�ne �(pIj; 0) = tj

and moreover, �(pIj; t) = g�1(g(t) + g(�(pIj; 0)):

Next suppose that, for 1 < � � I,

(a) � is de�ned for m 2 S� and all t,
(b) �(�; 0) is strictly increasing on S�,
(c) for all pij 2 S�,

�(pij; 0) = �(mi; tj);
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(d) for all mi 2 S�;

g(tj) = g(�(mi; tj))� g(�(mi; 0))

Observe that this is satis�ed for the case � = I that we just de�ned. We now extend

� to S��1 and all t such that these conditions are satis�ed.

If m��1(= p��1;0) equals some m 2 S� then de�ne �(m��1; t) = �(m; t) for

all t. If m��1 < S� then de�ne �(m��1; 0) by taking any arbitrary number in

(maxm2S� �(m; 0);1) and let �(m��1; t) = g�1(g(t) + g(�(m��1; 0)) for all t. If

neither of these cases hold, then there exist m�;m� 2 S� such that m� is the smallest

element in S� that is greater than m� and m� is the largest element smaller than it.

De�ne �(m��1; 0) by taking any number in the interval (�(m�; 0);�(m�; 0)) (regular-

ity and the construction ensures that the interval is nonempty) and let �(m��1; t) =

g�1(g(t) + g(�(m��1; 0)) for all t. Next for all j, de�ne �(p��1;j; 0) = �(m��1; tj)

and moreover, �(p��1;j; t) = g�1(g(t)+ g(�(p��1;j; 0)): Then � is de�ned on S��1 and

all t, and moreover, the analogues of (a)-(d) hold by construction. Continue this

construction till we obtain � on fpijg � R+. This satis�es the analogues of (a)-(d)
for � = 1.

To prove the theorem, take the admissible discount function D(t) = e�g(t). By

property (b), we can extend �(�; 0) continuous and monotonically to all of R+ and
de�ne the utility index,

u(m) = e�g(�(m;0)):

Given properties (c) and (d), determine that, for all i; j,

u(pij) = e�g(�(pij ;0))

= e�g(�(mi;tj)) = e�[g(�(mi;tj))�g(�(mi;0))] � e�g(�(mi;0))

= e�g(tj)u(mi) = D(tj)u(mi):

Thus, we have shown that anyD that is attributable to � data is also attributable

to the present value data.

47



D. Appendix: Proof of Proposition 2.3

Given (2.1), Theorem 2.1 yields that a separable discount function D(t) = �g(t) can

be attributed if and only if g satis�es �g(t) = e�[g(�(s;t))�g(�(s;0))] for all s, that is,

g((a(s)t
 + b(s)
)
1

 ) = g(t) + g(b(s));

for all s. First suppose a g that satis�es this equation exists. We show that a(s) and

b(s) must be linearly related. Take any s0. Letting t = �(s0; 0) = b(s0) we see that

g((a(s)b(s0)
 + b(s)
)
1

 ) = g(b(s0)) + g(b(s)) = g((a(s0)b(s)
 + b(s0)
)

1

 );

and since g is strictly increasing, a(s)b(s0)
+b(s)
 = a(s0)b(s)
+b(s0)
, which implies

a(s)� 1
b(s)


=
a(s0)� 1
b(s0)


:

Thus if an g exists, then the ratio a(s)�1
b(s)


must be a constant k for all s, and so

the equation a(s) = 1 + kb(s)
 must hold, as desired. To see that k � 0, note when
a(s)�1
b(s)


= k for all s, then we have a functional equation g(((1 + kb(s)
)t
 + b(s)
)
1

 ) =

g(t) + g(b(s)). Denoting x = t and y = b(s) we can write this as:

g((x
 + y
 + kx
y
)
1

 ) = g(x) + g(y):

Suppose by way of contradiction that k < 0. Write g((x
 + y
(1� jkjx
))
1

 ) =

g(x) + g(y) and take x such that (1 � jkjx
) < 0. Then as y increases the LHS

decreases and the RHS increases (since g is strictly increasing), a contradiction.

Thus k � 0 must hold.
Conversely, suppose a(s) = 1 + kb(s)
 holds with k � 0. Consider the above

displayed functional equation. Consider various cases:

(i) k = 0.

A solution is g(x) = cx
, c > 0. Then D(t) = �t is attributable for any � 2 (0; 1).
(ii) k > 0.
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Then it is easily veri�ed that g(x) = ln(1 + kx
) is a solution, and so for any

r > 0, an attributable discount function is D(t) = e�r ln(1+kt

) = (1 + kt
)�r.
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Supplemental Appendix For Online 
Publicaiton 
For “Delay Functions as the Foundation of Time Preference: Testing for Separable 

Discounted Utility”  

Keith Marzilli Ericson and Jawwad Noor  

1. Protocol 

Experiments were conducted online using Qualtrics software. Subjects were recruited from Qualtrics 

Panels to be representative of the U.S. general population.  The sampling service screens out inattentive 

participants who fail basic attention checks, such as answering questions too quickly or answering 

illogically or inconsistently. 11 such participants were screened out. Participants were paid a flat 

participation fee based on their relationship with the Qualtrics Panels. Choices were incentivized: 10% of 

participants were randomly selected to be paid for one of their choices.  No deception was used.  Mean 

duration in the experiment was 12.5 minutes, median duration was 11 minutes. 

2. Screen Shots 

 

(This page used by Qualtrics Panels to screen for eligibility) 



Empirical Appendix Page 2 
 

 

 



Empirical Appendix Page 3 
 

 

 



Empirical Appendix Page 4 
 

 

 



Empirical Appendix Page 5 
 

 

 

 



Empirical Appendix Page 6 
 

 

 



Empirical Appendix Page 7 
 

 

 



Empirical Appendix Page 8 
 

 

 



Empirical Appendix Page 9 
 

 

 



Empirical Appendix Page 10 
 

 

 



Empirical Appendix Page 11 
 

 

 



Empirical Appendix Page 12 
 

 

 



Empirical Appendix Page 13 
 

 


	ExperimentsFoundations-2022-01-11
	Empirical Appendix

