Journal of Policy Analysis and Management

| RESEARCH ARTICLE

Can Machine Learning Target Health Care Fraud? Evidence
From Medicare Hospitalizations

Shubhranshu Shekhar' | Jetson Leder-Luis® |

Leman Akoglu®

!Brandeis University, Waltham, Massachusetts, USA | 2Boston University and NBER, Boston, Massachusetts, USA | 3Carnegie Mellon University, Pittsburgh,

Pennsylvania, USA

Corresponding author: Jetson Leder-Luis (jetson@bu.edu)

Received: 18 November 2025 | Accepted: 18 November 2025

Keywords: anomaly detection | explainable AI | fraud and abuse | health care | machine learning | Medicare

The United States spends more than $4 trillion per year on health care, largely conducted by private providers and reimbursed

by insurers. A major concern in this system is overbilling and fraud by hospitals, who face incentives to misreport their claims to

receive higher payments. In this work, we develop novel machine learning tools to identify hospitals that overbill insurers, which

can be used to guide investigations and auditing of suspicious hospitals for both public and private health insurance systems.

Using large-scale claims data from Medicare, the US federal health insurance program for the elderly and disabled, we identify

patterns consistent with fraud among inpatient hospitalizations. Our proposed approach for fraud detection is fully unsupervised,

not relying on any labeled training data, and is explainable to end users, providing interpretations for which diagnosis, procedure,

and billing codes lead to hospitals being labeled suspicious. Using newly collected data from the Department of Justice on hospitals

facing anti-fraud lawsuits, and case studies of suspicious hospitals, we validate our approach and findings. Our method provides a

nearly fivefold lift over random targeting of hospitals. We also perform a postanalysis to understand which hospital characteristics,

not used for detection, are associated with suspiciousness.
JEL Classification: 113, C19, D73, K42, M42

1 | Introduction

Fraud in health care is hard to detect. Insurers face information
asymmetries, where providers know more about the health care
delivered than the insurer responsible for paying for that care.
Health care providers such as doctors and hospitals face incen-
tives to maximize their reimbursements from health insurance
companies, and insurers must largely rely on documentation
from providers themselves. This asymmetric information leads
to circumstances where unscrupulous providers can choose to
commit fraud by manipulating the provided documentation.

These issues are compounded in the U.S. federal health care
programs, where the government is the insurer. The U.S. federal
government spends over a trillion dollars per year on health
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insurance, largely paid to private firms, and fraud detection is
challenging due to the sheer volume of claims being processed. In
2019, Medicare (the largest of these programs) spent $800 billion,
and even small shares of fraud lead to large losses, taking away
funds for valuable care. The U.S. Government Accountability
Office (GAO) estimates Medicare improper payments, a measure
of mistaken or inappropriately documented spending, in 2019 at
$46.2 billion (GAO 2020). This problem has gained the attention
of Medicare administrators faced with the challenge of detecting
and deterring fraud and abuse to ensure the program stays
financially solvent (U.S. Department of Health and Human
Services 2022).

Machine learning poses a potential solution to the problem
of health care fraud detection, but has been hampered by the
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challenges of health care claims data, which are highly complex
and multidimensional. The government observes health care
claims including diagnostic, procedural, and billing information,
amounting to tens of thousands of potential categorical codes
that can be used. Moreover, methods that are based on matching
known patterns of fraud, which could be used for supervised
machine learning, are biased by the fact that enforcement is
nonrandom, and will likely fail against the ever-changing nature
of fraud in health care.

In this work, we develop and validate new machine learning
tools to detect health care overbilling and fraud, which can be
used to guide anti-fraud investigations. First, we construct a data
formalism for understanding health care claims at the diagnostic-
procedural, billing, and spending levels, which allows for the
detection of rare patterns between types of claims that can be
expected to be similar. We then apply recent anomaly detection
tools from the computer science literature to detect anomalous
providers based on their coding patterns and its effects on hospital
spending. These methods rely on the fundamental idea that
providers mostly behave like their peers in the absence of fraud,
and that deviations from this pattern are more suspicious when
they earn the hospital more money. Our approach is unsuper-
vised, that is, does not need any a priori labeled training data,
meaning it is not biased by labeled data from past enforcement,
going beyond known patterns of fraud.

We apply our method using millions of claims from inpatient
hospitalizations, the largest category of Medicare spending,
which costs the U.S. government more than $100 Billion per
year. Our detection method does not flag any particular hos-
pitalization claim as suspicious, but rather detects hospital-
level patterns of care that appear anomalous when consid-
ering patient characteristics, medical history, and patterns of
behavior by other hospitals when treating similar conditions
and patients. This method ranks hospitals in order of their
suspiciousness, and is an “explainable” rather than a black-
box method, in that it can provide explanations for which
types of codes are most anomalous (i.e., potentially misused)
for each hospital in our ranking. By ranking hospitals and
providing explanations for each ranking, our method speaks
to the government’s prioritization problem of choosing hos-
pitals for additional scrutiny (such as auditing) with limited
enforcement capacity.

We validate our approach with newly collected ground-truth
data from the Department of Justice (DOJ). Using a corpus of
thousands of DOJ press releases about fraud, we tag hospitals
ever named by the DOJ, and compare these data with our
ranking. While only 1 in 12 hospitals nationwide has ever been
named in the DOJ press releases, our ranking substantially
improves detection over random sampling: The top 50 hospitals
identified by our method contain 21 hospitals named in the same
DOJ corpus, a nearly 5-fold lift in detection rate. We note that
hospitals highly ranked by our method but not listed by the
DOJ are not necessarily false positives; DOJ enforcement depends
on opportunity and capacity constraints, providing only partial
ground-truth. The DOJ validation resembles positive-unlabeled
data (Bekker and Davis 2020), and the overlap with our method
is therefore a lower-bound for detected fraud.

Our algorithm is an ensemble method, utilizing three novel
unsupervised detection algorithms that uncover aberrant
patterns in care across different levels of claims data, from the
most fine-grained to the most broad. The first component focuses
on the coding behavior within claims, uncovering unusual
ICD-10 procedure and diagnosis coding patterns employed by
hospitals, which is indicative of manipulation of a patient’s codes
to garner higher reimbursements. The second component is peer-
based, focusing on identifying aberrant hospital stay-level billing
code (DRG) patterns, compared to peer hospitals that share
similar patient populations and distributions of types of care. The
third component of the ensemble focuses on hospitals with large
observed expenditures conditioned on patient characteristics and
medical history, using a regression-based method. To assemble
the evidence from these three detection methods together to
rank hospitals based on suspiciousness, we utilize instant-runoff
voting (Franceschini et al. 2022), which combines information
from our different detectors to reach an aggregate ranking. This
method follows an iterative procedure to rank the hospital that
is most suspicious based on the “vote” across different detectors
in each round.

The results of our analysis also provide evidence that is quali-
tatively consistent with detecting fraud, rather than singling out
legitimate anomalies such as rare or specialty care. We compute
the top ICD diagnosis and procedure codes that contribute to
identifying hospitals as suspicious. These codes tend not to be
rare conditions that are expensive to treat, but rather diagnoses
with high payment rates and high ambiguity, indicating they can
be more easily manipulated. We also provide case studies of two
hospitals to show how our method can be used to dive deeper
into data, and show the exact diagnosis and billing codes that
make those hospitals suspicious. Additionally, we perform an
explanatory analysis of the types of characteristics—not used for
detection—that are correlated with hospital suspiciousness. We
also explore the relationship between hospitals targeted by our
method and by the DOJ, and discuss the relationship to existing
methods used by the DOJ and by the Centers for Medicare and
Medicaid Services for detecting improper hospital behavior.

Our approach has many potential applications for health care
policymakers, auditors, and enforcers. While our explanations
cannot provide legal-standard evidence of fraud by hospitals, they
can be used as starting points that guide deeper investigation
such as audits or claim reviews, prioritizing the most suspicious
hospitals. Our method can also be readily adapted to detect
overbilling in other areas of potentially fraudulent care besides
hospitals, such as outpatient claims. Moreover, while the data set
on which we build our method is from Medicare, we anticipate
our methods will prove valuable to private insurers as well, who
face nearly identical challenges in eliminating fraud from private
health insurance systems.

This paper proceeds as follows: We describe background and
institutions in Section 2 and our data in Section 3. Section 4
provides an overview of our detection methodology, with details
in Sections 5-7. Section 8 reports the ensemble model detection
results, and Section 9 provides a postanalysis that character-
izes hospitals with high estimated suspiciousness. Section 10
compares to existing enforcement, and Section 11 concludes.
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2 | Background

In this section, we discuss the institutional details of Medicare
fraud. While many of the institutional details about Medicare
claims and enforcement are specific to the federal system, the
general nature of health care billing is consistent across both
publicly funded and private-payer systems.

2.1 | Hospital Billing

Medicare implements a Prospective Payment System (PPS) that
uses Diagnosis-Related Groups (DRGs) to determine fixed pay-
ments for hospital services based on patients’ diagnoses and
procedures, encouraging cost-effective care while ensuring ade-
quate reimbursement. Patients are coded with diagnoses and
procedure codes based on the International Classification of
Diseases (ICD) system, and then based on this coding, each
inpatient stay is classified into one DRG. DRGs can be surgical,
if they reflect a major surgery, or medical otherwise. DRGs
can also reflect patients’ comorbidities and complications; for
example, DRG 460 reflects noncervical spinal fusion surgery
without major comorbidities and complications, while DRG 459
reflects the same procedure on patients with comorbidities and
complications. Some DRGs reflect up to three levels of comor-
bidities and complications: no comorbidities and complications;
comorbidities and complications; or major comorbidities and
complications. These are all based on the ICD diagnosis and
procedure codes reported as part of the visit.

Because the patient’s ICD coding dictates their DRG and ulti-
mately the hospital reimbursement amount, hospital coding
decisions directly affect hospital profits. Hospitals do not receive
additional reimbursement for providing higher quality services,
or a higher volume of procedures for a given patient, although
hospital payments are adjusted for high-level factors such as local
wage variation and share of medical students trained. MedPAC
(2023) presents more details about the hospital prospective
payment system.

2.2 | Health Care Fraud

Fraud in inpatient hospitalization takes many forms. One well-
studied form is upcoding, where hospitals miscode patients to
higher severity levels of care in order to receive higher reimburse-
ment (Dafny 2005; Silverman and Skinner 2004; Becker et al.
2005). A second common issue is lack of medical necessity, where
a patient’s health conditions do not qualify them for that care
(Howard 2020). Moreover, there is a variety of conduct that can
also qualify as health care fraud, such as providing compensation
to providers for referring patients, which qualifies as a kickback.
Because hospital DRGs are based on patient diagnoses and proce-
dures, hospitals can garner higher reimbursements by reporting
additional diagnoses or comorbidities; by miscoding diagnoses to
be more severe; or, in some cases, by actually performing medi-
cally unnecessary procedures to justify higher reimbursement.

In this paper, we are largely agnostic to which type of fraud hos-
pitals commit, and instead focus on payment levels. In general,
fraud is of greatest concern when it results in higher levels of

spending. Our method detects hospitals whose anomalous con-
duct results in higher payments, which is valuable for detecting
hospitals where additional auditing is of highest marginal value.

2.3 | Health Care Anti-Fraud Enforcement

The U.S. government undertakes a number of initiatives to detect
and deter fraud, waste, and abuse in federally funded health care
spending. Our method, which relies solely on claims data, is
complementary to existing methodologies. Private insurers face
similar challenges and also work to detect, investigate and enforce
against fraudulent providers, although they lack the full weight of
the federal investigatory system.

Federal law prohibits Medicare fraud and provides avenues by
which fraud can be addressed through criminal and civil enforce-
ment. The federal health care fraud statute provides criminal
penalties for those who commit health care fraud, and this
enforcement is compounded by criminal enforcement under the
anti-kickback statute, as well as the wire fraud and racketeering
statutes. Criminal Medicare fraud is prosecuted by the DOJ. For
a deeper treatment of criminal Medicare fraud, see Eliason et al.
(2025).

Civil enforcement for Medicare fraud operates through the False
Claims Act, which provides an avenue for whistleblowers to come
forward with information about fraud and receive compensation.
Whistleblowers file their own cases in federal civil court, and
the DOJ has an option to support these cases. Leder-Luis (2025)
and Howard (2020) provide more information about the False
Claims Act and show that these whistleblowers provide high
deterrence effects.

In addition to litigation, administrators use a variety of policy
tools to limit health care fraud, waste and abuse. The Office
of the Inspector General of Health and Human Services under-
takes administrative actions against firms that overbill Medicare.
Medicare also has a variety of auditing programs that seek to
detect unnecessary or unjustified spending; see Shi (2022) for a
description of the Recovery Audit Contractors program. Finally,
Medicare uses regulations to target unnecessary spending, such
as prior authorization requirements. Some of these regulations
combat fraud while others combat waste; see Brot et al. (2022)
and Eliason et al. (2025) for a discussion of these regulations.

In addition to the enforcement actions listed above, Medicare and
private insurers undertake some data-driven investigatory work
in order to detect fraud. These efforts have received little attention
in academic work. We survey existing data-driven enforcement
and compare our methods to existing methods in Section 10.

In this paper, we curate a list of hospitals that have been
subject to DOJ actions at both the criminal and civil level,
used for quantitative evaluation of our method. While there are
many ways in which hospitals could have been investigated or
sanctioned, being named in a DOJ press release validates that
the hospital was likely committing behavior that rose to the level
of criminal or civil fraud, which represents a true positive. A
disclaimer, on the other hand, is that the hospitals subjected to
DOJ actions likely constitute only a partial list of all fraudulent
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hospitals, as other unknown fraud may have gone undetected,
which represents a false negative. We use hospitals named in
press releases across all years, not just after our sample period.
This is to reflect the fact that hospitals that are ever caught
committing health care fraud are likely to commit fraud in the
future; more than 50% of hospitals named in press releases are
named more than once.

2.4 | Related Methodological Work

In addition to the economic studies listed above that discuss
health care fraud, several data-centric approaches have been
explored in the context of Medicare fraud. We refer the reader
to R. Bauder et al. (2017), Kumaraswamy et al. (2022), and Joudaki
et al. (2015) for detailed surveys on different methods.

In early work, Rosenberg et al. (2000) study upcoding within
the claims data. They estimate the probability that a claim has
incorrect DRG code, which they further use to identify claims
to investigate and audit. Brunt (2011) studies upcoding in the
physician office visits data, where he estimates the likelihood of
a disease code selected for an office visit to understand upcoding
practices. Fang and Gong (2017) find evidence of provider over-
billing using inappropriately high number of hours worked to
identify outliers.

Recently, Chandola et al. (2013) and Suresh et al. (2014) introduce
methods for provider profile comparison to spot possible misuses
or fraud. These works focus on introducing methods and features
to represent hospital profiles for comparison; however, they do
not present any conclusive results. On the other hand, Bauder
and Khoshgoftaar (2018), Bauder and Khoshgoftaar (2018), Her-
land et al. (2018), and R. A. Bauder and Khoshgoftaar (2017)
utilize publicly available excluded providers to learn models for
detection of fraudulent providers. However, these approaches rely
on the availability of human labeled information on fraudulent
information, which is often incomplete and hard to obtain for
massive Medicare data.

In contrast to earlier methods, unsupervised and explainable
methods for the problem, which are more practical in the real
world, have received limited attention. Luo and Gallagher (2010)
analyze DRG distributions of hospitals providing services for
hip replacements and heart attacks to find upcoding, with the
underlying assumption that most hospitals will have similar
distributions. Recently, Ekin et al. (2019) learn joint distribution
of medical procedures and providers using outpatient data. The
joint distribution is used to identify provider anomalies based on
procedure code and usage frequency by the provider.

Most existing research uses only a fraction of the massive
Medicare data, relies on labeled data on known fraud, and often
does not incorporate an explanation of results that could be useful
to guide deeper investigation. Our method builds upon these
studies to provide a precise and explainable detection method that
does not rely upon the existence of labeled data.

3 | Data Description

This study combines data from a variety of sources to detect
anomalous hospital spending behavior in Medicare and com-

TABLE 1 | Description of inpatient data sample from year 2017.
Spending
Medicare inpatient expenditure $80 billion
Beneficiaries
Number of beneficiaries 4.6 million
Number of inpatient claims 7.3 million
Hospitals
Number of hospitals 2207
TABLE 2 | Scaleof data from years 2012 to 2016 used to build medical

history of patients who are 70 years or older who appear in the inpatient
claims from year 2017. The number in each cell is in millions.

2012 2013 2014 2015 2016

Physician visits 15.7 16.9 18.1 20.0 23.4
Outpatient visits 14.3 15.7 17.1 19.0 22.1
Inpatient visits 1.0 11 1.4 1.9 5.2

pare it to ground-truth labeling of hospitals that have faced
anti-fraud enforcement.

Our hospital anomaly detection method uses a large-scale dataset
of Medicare claims. Data were accessed through a data use
agreement with the Centers for Medicare and Medicaid Services,
facilitated by the Research Data Assistant Center (ResDAC)
and the National Bureau of Economic Research (NBER). These
hundreds of millions of observations contain extensive data
about each hospitalization and patient in the Medicare system,
providing an ideal corpus with which to study hospital behavior.

We consider all patients hospitalized in 2017. We filter to inpatient
acute care hospitals, whose hospital names are available from
CMS Medicare Inpatient hospitals public use files, and drop
hospitals that treated fewer than 11 patients to comply with data
suppression rules. This leaves a sample of 2207 hospitals, and we
use all patients who visited these hospitals in 2017. We use data
from 2012 to 2016 to construct the patients’ medical history. For
these years, we use 100% samples of Fee-For-Service institutional
Medicare data, including inpatient and outpatient claims, and
beneficiary information including demographic information and
chronic condition indicators. To further understand a benefi-
ciary’s Medicare history, we use 20% of samples of carrier files,
which describe physician office visits.

Table 1 describes the sample of inpatient hospitalization claims
from 2017 that we analyze. We observe 7.3 million claims from 4.6
million beneficiaries representing 2207 different hospitals. We see
$80 billion in inpatient spending related to our data set, out of $710
billion total reported Medicare spending (Annual Report 2022).

Table 2 describes our sample used to construct patient medical
history from 2012 to 2016. We observe tens of millions physician
office visits outpatient visits per year, as well as millions of inpa-
tient visits per year. Appendix A in the Supporting Information
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provides additional details about the cleaning and use of the
Medicare data.

To understand hospital characteristics, we use the Medicare
Provider-of-Service files, which contain details on providers such
as certification number, name, the type of Medicare services
that it provides, and type of ownership (private or public). We
can identify patients across files using their unique beneficiary
identifiers, and we identify hospitals by their CMS Certification
Number (CCN). Further, we separately identify Academic Med-
ical Centers based on their membership to Council of Teaching
Hospitals (AAMC 2022).

The federal DOJ publishes press releases when fraud is identified
in civil or criminal lawsuits, in order to inform the press and the
public as well as deter future fraudulent behavior. To evaluate our
automated detection of suspicious hospitals, we utilize these press
releases related to Medicare from the DOJ. To that end, we scraped
from the DOJ website thousands of press releases that contain the
word “Medicare.” Each press release corresponds to a case that
the DOJ was involved with, often at the time of settlement. Using
partial name matching, we tag the hospitals that appear in this
corpus. This also accounts for hospital chains, when the chain
name appears in both the hospital name and the press release.

As the DOJ lacks both the capacity and the information to
prosecute all Medicare fraud, the press releases provide only a
partial list of hospitals that have engaged in fraudulent behavior.
We can consider this a form of positive-unlabeled data: while we
can identify firms that have been named in a press release as
having likely committed fraud, firms that are not named are not
necessarily above suspicion. In general, we consider the DOJ data
as a partial ground truth, as a sensible though possibly incomplete
way to measure whether the firms identified by our metric are
validated as the firms that have at some point committed fraud,
and therefore deserve additional scrutiny. Appendix B in the
Supporting Information provides additional details about the
collection and cleaning of the DOJ corpus.

4 | Method Overview

Medicare claims data contain many levels of detailed information
about hospital claims, including procedure and diagnosis codes,
claim-level billing codes, and patient characteristics, which pro-
vide opportunities for modeling the fraud detection problem in
various ways. For example, a hospital can be represented by the
frequency of ICD (diagnosis and procedure) codes used in its
claims, the DRG (billing) codes associated with its claims, or by
the characteristics of the patient populations that it serves. Each
data modality presents us with a specific perspective of the data,
which when combined allow us to learn comprehensive hospital
behavior which reveal information that cannot be completely
uncovered based on only one aspect of the data.

In this work, our goal is to estimate a suspiciousness ranking for
hospitals. We use an unsupervised multi-view anomaly detection
approach, suitable for the underlying multimodal data. Each
view (or base detector) presents itself as a different model of
the anomalies, operating on a different data representation. As
such, each can be seen as providing evidence that corresponds

to a particular reason for detection. The explanation provided
by each detector provides a unique perspective into suspicious
behavior. Collectively, the evidence from these base detectors can
be assembled systematically into an ensemble detection method.

Ensemble methods utilize multiple base detectors, where under
certain accuracy and diversity conditions, they are to obtain
better performance than the constituent base detector alone and
produce more robust results (Aggarwal and Sathe 2017). Diversity
is an important property of ensemble methods, which ensures
that the base detectors make independent errors that cancel
out when aggregated. Therefore, various approaches have been
proposed toward promoting ensemble diversity (Kuncheva and
Whitaker 2003; Nam 2021). In essence, our approach utilizes
the diversity of the underlying data representations to induce
diversity in the ensemble.

Figure 1 shows the different Medicare data modalities we consider
and provide a high level description of the corresponding base
outlier detection (OD) model that utilizes it. The first OD
model, Figure 1a, performs outlier detection among hospitals as
represented by the frequency of ICD codes used in their claims
(denoted D1). Anomalous coding may be associated with only a
few ICD codes (i.e., features) at a time, rather than all. Therefore,
this model is a feature subspace detector, finding outliers locally
in subsets of features. The second OD model, Figure 1b, performs
contextual detection, identifying hospitals that behave differently
from their peers. Behavior is captured by the frequency distribu-
tion of the DRG codes assigned to each hospital’s claims (denoted
D2). Here, we recognize the heterogeneity among hospitals and
compare a hospital’s behavior locally, that is, in the context of its
peers with similar characteristics. Finally, the third OD model,
Figure 1c, is set up as a global regression onto cost per beneficiary
(target variable) from data (denoted D3 on the figure) reflecting a
beneficiary’s medical history and the hospitals that they visited.

In addition to detection, our proposed models can provide expla-
nations for their flagged anomalies. This is especially important in
the absence of any ground-truth labels in practice, which allows
investigators to determine why a hospital is ranked as an outlier,
and facilitating decisions such as whether to conduct additional
investigation or to audit. By capitalizing on different data rep-
resentations, our method leads to different explanations with
each OD model, enabling a multiview reasoning. Specifically, in
Figure 1, the selected subspace in the first OD model (a) quantifies
feature (i.e., ICD code) importance, and can explain each flagged
anomalous hospital based on the specific ICD codes that they use
differently in their claims. The second OD model (b) provides
contrastive explanations, through comparing DRG frequencies of
a hospital to those of their peers. As the DRG code of a claim
dictates cost, differences in the DRG coding distribution can be
directly translated to excess cost of treatment. Importantly, the
explanation can pinpoint which DRGs are most contributing to
large excess cost of a hospital, facilitating auditing. The regression
coefficient associated with a hospital in our last OD model (c) is
a direct indicator of excess spending at the hospital.

To arrive at a final anomalous ranking based on different
modalities, we combine the rankings from individual detectors
to capture the agreement among them. We use instant-runoff
voting (Franceschini et al. 2022) to combine information from our
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FIGURE 1 | Multi-view anomaly detection on different Medicare data modalities—D1, D2, and D3. (a) Local (in ICD codes) detector in the very
high-dimensional ICD code frequency representation of hospitals. It explains anomalies based on feature importance, that is, with respect to specific

ICD codes. (b) Local and contextual (peer-based) detector based on comparing DRG frequency distributions. It provides a contrastive explanation in

terms of excess cost of treatment when compared to peers. (c) Global detector based on fixed effects regression model. The coefficient of a hospital is an

indicator of excess cost of care at the hospital.

different detectors. Our ensemble approach allows us to gather
evidence from multiple models, but can also be “unrolled” to
provide explanations to each flagged anomaly by each detector
in the ensemble.

There are some important caveats about our method. First, our
analysis is entirely based on admitted patients. To the extent
that hospitals vary in their admissions patterns, and that over-
admission is a different form of health care fraud, we will not
be able to detect these forms of fraud. Second, our method relies
on comparisons between hospitals, and therefore is better at
detecting uncommon frauds. If all hospitals regularly engage in
a low-level fraud, our method will not detect it; however, we are
encouraged by the fact that such diffuse frauds would be more
likely to be detected by other methods, (such as whistleblowing),
due to the number of institutions and individuals they would
involve. Lastly, we study the annual records across hospitals
collectively, without comparing trends over time; although our
approach may be extended by considering historical time win-
dows of a hospital as its “self-peer” which is out of scope of our
current work.

The following three sections are organized to present the details
of our three detection models, in terms of data set up, detection
methodology and explanation. Then, we present the results of our
aggregate ranking in Section 8.

5 | Detection Through ICD Coding Subspace
Analysis

ICD codes are used by health care providers to characterize a
patient’s medical condition and treatment. The United States uses
ICD Version 10 codes, which were developed by the World Health
Organization and can be used to designate the universe of medical
issues and procedures. ICD codes encode hospital assessment
of a patient based on their reason of visit to the hospital and
their medical conditions, and primarily reflect the diagnoses
and applied procedures for treatment. For Medicare billing, the
assigned ICDcodes are then used as input to a “grouper” software

used by hospital billers that assigns a diagnostic code (DRG)
based on the hospital’s findings as indicated by the assigned
ICD codes. As discussed above, in the Medicare PPS, the DRG
code determines the reimbursement level. Consequently, ICD
coding presents opportunities for miscoding, as hospitals may
try to achieve a more expensive DRG code to obtain higher
reimbursement. Therefore, the objective of our ICD coding based
analysis is to understand hospital coding practices that could
reveal the coding patterns applied by hospitals engaging in
fraudulent behavior.

5.1 | Data Setup

5.1.1 | Hospital Representation.

We use inpatient claims from the year 2017, gathering ICD codes
from each claim. We represent hospitals through their reported
ICD codes, including diagnostic and procedure codes.

Importantly, since hospitals have a choice of ICD codes, we
must also account for ICD code substitutability, where a slightly
similar ICD code could be used instead to yield higher reimburse-
ments. To capture code substitutability, we estimate the semantic
similarity of the description of each code within each chapter
of the ICD code hierarchy. Here, the description of each ICD
code is constructed by concatenating its text description to the
description of its ancestor codes within the ICD hierarchy. Then,
pairwise Jaccard distance is computed between the descriptions
of the codes and the hospital representation is updated using the
ICD code similarity.

For example, the description of ICD code J45.20 under chapter X
is constructed by concatenating the descriptions of J00-J99 chap-
ter, J40-J47 block, J45, and then the ICD code J45.20, resulting
in the description given as “Diseases of the respiratory system—
Chronic lower respiratory diseases—Asthma—Mild intermittent
asthma uncomplicated.” This code will be similar to other codes
that contain the word “asthma” or “respiratory system.” This rep-
resentation also ensures that codes nearby in the ICD hierarchy
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have somewhat similar text descriptions and are therefore near
each other in Jaccard distance.

Formally, let X'°P € RN#>M# be the matrix representation of Ny
hospitals in terms of My -dimensional ICD codes in which the
entries depict the total code usage count by the hospital, and J €
RMr*Mu be the ICDsubstitutability matrix consisting of pairwise
Jaccard similarities. Then, the provider representation X!“Psm €
RNuxMu_ after incorporating the code substitutability is given as
XChsm = XTCD % J, which re-distributes each code’s frequency
to substitutable ICD codes that are not directly reported in the
claims data.

We note that X/Psim is very high dimensional (> 40,000 features).
However, anomalous coding of a claim is likely covert and
associate with only a few ICD codes. Therefore, we employ a
feature subspace based detector for finding outliers locally among
subsets of ICD codes. Figure 1a shows this setup.

5.2 | Detection Model

We employ a suite of subspace outlier detectors on the high-
dimensional hospital representation X/Psim to find hospitals
deviating from the majority coding practices within certain ICD
subspaces. As we are interested in ICD subspaces that are relevant
for a variety of aberrant hospital practices, we utilize an ensemble
of subspace detection methods that are effective on high dimen-
sional data. In the same spirit as with our overall approach, the
ensemble allows us to examine multiple diverse subspaces as each
subspace detection method implements a different methodology
for exploring candidate subspaces. In particular, our subspace
ensemble uses five different state-of-the-art methods that we
describe briefly below.

5.2.1 | Subspace Outlier Detection.

While we represent a hospital in the high dimensional ICD
space, the abnormal or aberrant behavior may be reflected only
in a small, locally relevant subset of codes—that is, only certain
codes will be fraudulently or suspiciously substituted. Each OD
algorithm in the ensemble explores local subspaces differently
to provide evidence from diverse subsets. To that end, our OD
model consists of the following subspace detectors: SOD (Kriegel
et al. 2009), IF (Liu et al. 2008), RRCF (Guha et al. 2016),
LODA (Pevny 2016), and RSHASH (Sathe and Aggarwal 2016).
Details of each method are included in Appendix C in the
Supporting Information.

We apply the above methods to X/“Psim, the ICD representation
of hospitals, and identify the hospitals that behave abnormally in
various subspaces as explored by the algorithms.

5.2.2 | Anomaly Scoring.

Each subspace algorithm assigns an anomaly score to each
hospital. The scores have different scale and semantics (path
length, likelihood, etc.), and thus are not directly comparable
across the methods. Therefore, we aggregate the ranking of

hospitals based on individual scoring of each subspace method.
We use the instant-runoff voting technique (details in Section 8)
for rank aggregation from different subspace algorithms, and
provide the final ranking of hospitals by anomalousness across
all subspaces.

5.3 | Model Explanation

We explain the ranking of a subspace detector using Shapley
Additive Explanation values (SHAP values), introduced in Lund-
berg and Lee (2017) and Lundberg et al. (2020). SHAP values
estimate feature importance by approximating the effect of
removing each feature from the model as the average of dif-
ferences between the predictions of a model trained with and
without the respective feature. We regress the anomaly scores
from a subspace detector onto the ICD representation of hospitals,
and then estimate the SHAP values under the regression model.
The feature contributions for each observation find the most
important codes that affect the anomaly score significantly. This
helps us find ICD codes that are contributors to a hospital being
ranked as an outlier.

Further, we provide dollar amount characterization of important
features (ICD codes). In practice, combinations of ICD codes
are used to determine DRG claim codes, which correspond to
payment. For our purposes, each ICD code is mapped to the
most frequent DRG code assigned for the given ICD code within
the inpatient claims. Since DRG codes are determinants of the
payment for care, through this most-frequent DRG mapping, we
associate dollar amount of reimbursement to ICD codes. This
lends itself to understanding the dollar impact of an important
ICD code for an anomalous hospital as explained by SHAP feature
importance values.

5.4 | Evaluation

To evaluate the effectiveness of our ranking, we use the partial
list of known fraudulent hospital based on the DOJ press
releases described in Section 2.3, and we compare our suspi-
cious hospitals to known fraudulent hospitals. We quantitatively
evaluate the targeting of fraudulent hospitals using two ranking
quality metrics, namely a Precision-Recall (PR) curve and a Lift
curve.

The PR curve depicts the positive predictive value (precision)
on the y-axis versus the true positive rate (recall) on the x-axis.
Those responsible for detecting and enforcing fraud in Medicare
have a limited budget, and therefore have to select limited targets
for deeper investigation; therefore, a high precision at the top of
the ranked list is most useful. Similarly, the lift curve measures
the targeting effectiveness on y-axis when compared to a random
baseline as we move along varying fractions of the ranking on the
X-axis.

Figure 2 reports the performance of our subspace OD model in
terms of the PR and Lift curves, using the DOJ ground truth. The
ICD subspace model ranking alone is at least 2x better at targeting
fraudulent hospitals compared to our two baselines, respectively
based on total claim payment and base payment amounts.
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We report (a) Precision-Recall curve and (b) Lift curve for hospital ranking produced by our ICD-10 subspace outlier detector ensemble

against two simple baselines that rank the hospitals based on (1) average total claim amount and (2) average base payment amount. Dashed horizontal

line ”"Base” depicts the random ranking.

Our method substantially outperforms random auditing or even
detection based strictly on payment amounts.

6 | Expenditure-Based Detection With Peer
Analysis

Our second model is based on peer-based excess spending
detection and examines the coding decisions of hospitals as com-
pared to similar “peer” hospitals that treat similar populations.
In short, we identify hospitals who are exposed to the same
patient population but manage to assign more expensive DRG
billing codes.

The objective of the peer-based analysis is uncovering the local
patterns of spending behavior among a related group of hospitals
called peers, and identifying hospitals deviating from the group’s
expected behavior. We utilize the inpatient claims to create a pro-
file for each hospitals under two complementing data modalities,
based on: (1) type of services provided by the hospital, and (2)
the patients’ chronic condition profiles served by a hospital. We
then find groups of related hospitals based on the similarity of
this representation.

To identify a locally aberrant behavior, each hospital is rep-
resented in terms of its DRG frequency distribution, which
determines spending. Then, the DRG representation of a given
hospital is compared to the summary DRG distribution of their
peers. Figure Ic visualizes this setup. The hospitals are then
ranked in order of their deviation from group behavior in terms
of DRG-based spending.

6.1 | Data Setup

6.1.1 | Hospital Representation.

We construct hospital profiles to capture the nature of ser-
vices provided (using major diagnostic categories or MDCs),
the characteristics of patient population served (using patient’s
chronic conditions), and encoding practices that drive spending

for treatment (using DRGs). The details of the representation are
provided in Appendix D in the Supporting Information.

6.2 | Detection Model

6.2.1 | Peer Identification.
We create peer groups of hospitals that share similarities in the
type of services provided or the patient population served.

Let v; denote the representation for hospital j; either based on the
type of services profile using MDC codes or based on the patient
population profile using chronic conditions of patients. We note
that the hospital representations are frequency distributions,
as they depict normalized counts. Therefore, to measure the
similarity between two hospitals j and k, we use the Hellinger
distance for probability distributions, which is an upper bound
on the total variation distance (Bar-Yossef et al. 2004), given
as

dy = \iﬁ /] = Vorll M

where v is a vector of percentage of visits by MDC, computed
as number of visits divided by sum of visits. We examine the
distribution of pairwise similarity values to decide on a threshold
7 to include only the most similar hospitals in a hospital’s
peer group.

For each hospital j, the hospitals with similarity to j above
constitute j‘s peers, denoted P;. Notice that the peers are specified
for each hospital separately, rather than using any clustering
algorithm. This allows us to create compact peer groups of
varying sizes.

We note that fixing the peer group size would be a subpar
alternative, since j‘s group may then include distant hospitals as
peers, skewing the representative summary statistics of the group
that j is compared to.
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6.2.2 | Anomaly Scoring.

In the Medicare PPS, the reimbursement amount for treatment
is directly based on the assigned DRG code to a claim. Therefore,
for anomaly scoring, we utilize the hospital representations over
DRG codes from the inpatient claims, which consist of the
normalized counts of the DRG codes used by a provider. In
short, this detection mechanism assumes that hospitals who treat
similar patient populations, or provide care for similar categories
of illnesses and injuries, should have similar DRG distributions.

For each hospital, we create a peer group summary in terms of
distribution over DRG codes among all peers, weighted by their
similarity to the hospital under consideration. Let v}*° be the
DRG distribution for hospital j with #; claims, and q?RG be the
summary DRG distribution based on hospital j's peers, defined as
follows:

1
qj?RG = kz;’ ne X (1—dy) x vk where P;
=

{klQ-dg)>t}andZ= ) mx(1-dy) (2)

kep;

Next we tie the DRG usage frequencies to average dollar amount
spending by Medicare, as the former dictates the latter. Cost(c)
denotes the average base price of DRG code ¢ computed from
the inpatient claims data from the year 2017. Then, the excess
spending for treatment per claim on average for provider j is given
as follows:

ExcessSpending; = 2 Cost(c) x (v?ffde)(@ - qﬁffdex@) 3)
cEDRGs
where vPR¢ s the frequency corresponding to DRG code ¢ in

J, index(c)
the DRG representation v for provider j, and qﬁlffdex(c) denotes

that for DRG code c in the peer group summary representation
q7". In short, this amount computes how much more a hospital
spends because they use a different set of DRG codes than their
peers, based on the average price of those DRGs.

The calculated ExcessSpending amount is the anomaly score
based on which the hospital are ranked, as it depicts the average
spending discrepancy for a hospital when compared to peers of
the given hospital. Since we create two different peer groupings—
one based on services provided, and another based on patients
served—we obtain two rankings, later combined through instant-
runoff voting (Section 8).

6.3 | Model Explanation

The peer based OD model’s anomaly score is the estimated
excess spending, which is directly interpretable as the extra
dollar amount a hospital charges on each claim on average as
compared to what would be expected from other similar hospitals.
Further explanation can be provided for a top-ranked hospital
by contrasting their frequency distribution over DRG codes
against their peers. This allows auditors to have a contrastive
understanding of DRG codes used by similar hospitals, and to
pinpoint to specific DRGs with large frequency discrepancies.
Direct usage comparison of individual DRGs could point to

specific codes that contribute most to the overall spending at a
hospital, and guide a deeper investigation of the claims associated
with those specific DRG codes.

6.4 | Evaluation

We have included the evaluation details in Appendix E in the
Supporting Information. Additionally, through case studies in
Appendix H in the Supporting Information, we report qualitative
results and provide peer-based explanations and insights into
top flagged providers after aggregating evidences from different
OD models.

7 | Expenditure-Based Detection With Massive
Fixed-Effect Regression

As a third and final detector, we consider a hospital-level analysis
of expenditure to understand which hospitals are associated with
high spending on a beneficiary’s hospitalization. The incentive of
providers who commit fraud is to receive higher reimbursement,
and so unexplained high expenditure is potentially suspicious.
Our design detects high expenditures that are unexplained by
a patient’s medical history, which could reflect unnecessary
or excessive billing. While any individual patient may receive
entirely necessary high levels of care—for example, in response
to a severe accident—when a hospital’s patient population consis-
tently shows expensive, unexplained high expenditure, this may
be indicative of fraud or waste.

Our design considers expenditure as a function of a patient’s
medical history. We collect each beneficiary’s medical history,
using claims from physicians office visits, hospital outpatient
visits, and hospital inpatient visits over a five-year period before
the target year. The outcome variable of the regression is the base
claim amount per beneficiary per hospital visited in the current
year. Below we provide our model specification, and in Appendix
F in the Supporting Information, we give detailed description of
data, algorithm and anomaly scoring.

7.1 | Regression Model Specification for
Expenditure

Given (i) patient representation X € RN*M for N patients, each
with a M-dimensional representation of historical medical profile
based on the last 5 years (2012-2016), and (ii) the total base
payment Y in year 2017; the specification for expected treatment
expenditure prediction is as follows:

Yi=ﬁo+Xiﬁ+ZOCjHj!i+€i, (4)
J

where Y; is the total base payment expense for a patient i in
2017; X; is the patient representation for i, § depict regression
coefficients associated with patient medical profiles and loca-
tions, H;; is associated with an inpatient Medicarehospital j
which contains total count of visits to j if patient i visited the
hospital and 0 otherwise, and «;‘s depict the hospital fixed effect
regression coefficients.
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8 | Aggregate Provider Ranking

Each outlier detection model presented above is a component
of our ensemble method that considers different aspects of
the data and creates a ranked list of providers. This ensemble
method is designed to handle multi-view Medicare data, where
different features of the data can be used to evaluate different
aspects of suspiciousness. The goal of the ensemble is a single
suspiciousness ranking for all providers.

To arrive at the final ranking for auditing, we merge multiple rank
lists into a single ranking using instant-runoff voting (IRV). Our
goal is to present the aggregate ranking that is most representative
of the component models. IRV combines results across rankings
in a way that best reflects the information contained across
multiple models (Franceschini et al. 2022).

The rank aggregation proceeds in an iterative manner, where
each round utilizes the IRV procedure to find a “winner” (in
our case, most suspicious hospital). In each round, votes are
counted for each component ranking’s first choice, and a hospital
with a majority of votes is then ranked at top in our aggregate
ranking. The rank lists across models are updated to drop the
selected hospital in this round, and the IRV procedure is repeated
with updated rank lists in the subsequent rounds to arrive at an
aggregate ranking.

In our implementation, we aggregate eight different rankings
across our three OD models; five from different subspace OD
algorithms on the ICD data, two from the peer-based model
utilizing the two separate similarity measures (patient popu-
lations and categories of care), and one from the regression
model. Next, we show the effectiveness of our final aggregate
ranking for identifying fraudulent hospitals in the Medicare
system through quantitative evaluations. In addition, we consider
the time required to run these models in Appendix G in the
Supporting Information.

In Appendix H in the Supporting Information, we provide qual-
itative evaluations through case-studies on suspicious providers
from our method, highlighting some of the salient aspects for the
fraud detection task. We show how our method highlights parts
of data from that contributed most to the ranking of a hospital as
suspicious, which can assist in the process of auditing or deeper
investigation. Appendix I in the Supporting Information goes
further, highlighting the exact ICD codes that greatest contribute
to our top-ranked provider suspiciousness. An examination of the
codes indicates that providers are not being flagged for treating
rare diagnoses, but rather for using diagnosis and procedure
codes that reflect ambiguity and are relatively highly paid. The
intentional use of ambiguous diagnosis codes may reflect an
attempt to reclassify patients into more obscure diagnoses to
achieve a higher-paid DRG code.

8.1 | Quantitative Evaluation

Figure 3 shows the evaluation of our aggregate ranking of
hospitals using a PR curve and a Lift curve. The aggregate ranking
is compared to intuitive baselines that rank hospitals based on
their average reimbursements, or random auditing. Our aggregate

ranking is able to target fraudulent hospitals on average twice
as better when compared to the baseline ranking—note the
area-under-curve, or average precision (AP) values on legend
Figure 3a.

While only 1 in 12 hospitals is named in the DOJ press releases,
the top 50 hospitals identified by our aggregate ranking contain
21 hospitals named in the DOJ corpus. That is a 4.9-fold lift
in detection rate considering the evaluation at top 50 hospitals,
with an average of 2-fold lift over random/by-chance targeting
across varying data fractions as seen in Figure 3b. Importantly, our
ground-truth consists only of hospitals named in the DOJcorpus,
while there may be others with yet unidentified fraudulent
practices—and therefore, our list can be used to find other
hospitals not yet identified as fraudulent.

For robustness, we repeat our method on (i) claims originating
from emergency room (ER), and (ii) claims excluding Medicare
Advantage patients. Appendix L in the Supporting Information
presents the method and results for ER data. This is a different
set of patients and claims, who are less likely to have selected
the hospital themselves, and therefore this addresses potential
selection bias, wherein sicker patients choose more sophisticated
hospitals. Despite the sample limitation, we still achieve a
substantial improvement over random targeting, 1.4x lift among
the top 50 hospitals. Appendix N in the Supporting Information
presents the method and results after excluding patients with
any Medicare Advantage (HMO) coverage. These patients are
covered by third parties and therefore we may not observe their
full medical history. Among this sample, our method achieves 3x
lift over random targeting among the top 50 hospitals.

8.1.1 | Statistical Significance of Ranked Results

We use the \/E test proposed by Chikina et al. (2017) to evaluate
the statistical significance of the ranked results. The test is based
on a rigorous Markov chain framework, namely comparing our
ranked result with a random ranking from a well-defined, valid
claims data Markov chain. A state in our Markov chain represents
possible claims data resulting from a beneficiary seeking potential
treatment at a nearby hospital. We provide the details of the
test and validity constraints in Appendix M in the Supporting
Information. Note that due to the scale of our data, running the
validity checks while constructing the Markov chain is nontrivial,
details in Appendix M in the Supporting Information. We run the
test on the Markov chain (with k = 2% steps) obtained from our
experiment data. Our ranked results are statistically significant at
the 5% level, p < 0.05.

9 | Characterizing Outlier Providers

In this section, we examine the covariates of hospitals to under-
stand the factors that characterize an outlier hospital as detected
by our model. The covariates used in the analysis depict various
hospital characteristics such as hospital rating, number of unique
patients served, ownership type, location, and length of stay for an
inpatient visit. These features are derived from publicly available
information for all Medicare hospitals and importantly are not
included in the data used for detection.
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Understanding the factors that drive outlier hospital behavior
is crucial for improving the health care sector. Extensive policy
reforms seek to shape the structure of the health care market,
increasing regulations on providers deemed to be harmful or
inefficient. By characterizing the nature of hospitals deemed
suspicious by our metrics, we hope to contribute to the ongoing
literature that evaluates how various interventions—for example,
those targeting for-profit care—can affect fraudulent behavior.

Figure 4 compares the distributions over states where a hospital is
located. Outlier hospitals are more likely to be from states Florida,
New York, Illinois, and Massachusetts, and less likely to be from
Texas and Georgia. This is also corroborated by the DOJ cases,
where about 15% of the named hospitals are based in Florida.

Figure 5 compares the distributions across average length of stay
and number of unique patients served. Ranked outlier hospitals
keep inpatients longer as compared to other hospitals. This could
be to justify the usage of costlier DRGs, or driven by ranked

outlier hospitals receiving sicker patients; however, our metrics
control for patient health characteristics. Additionally, top ranked
fraudulent hospitals serve more unique patients on average. Since
a large fraction of our top ranked hospitals are also named by the
DOJ, it may indicate that a greater number of unique patients may
provide more opportunity for perturbations in diagnosis coding
resulting in higher reimbursements, or it could reflect the fact that
our outliers are largely urban hospitals. We also include results
for categorical covariates, for example, hospital rating, ownership
type, location type in Appendix J in the Supporting Information.

10 | Comparison to Existing Enforcement

Our method stands in contrast to existing work by the DOJ to
identify health care fraud. In this section, we undertake three
exercises. First, we examine the use of data by the DOJ to
detect health care fraud, using publicly available sources on their
methods. Second, we consider which types of hospitals have been
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subject to DOJ enforcement, compared to the hospitals targeted
by our method, and draw contrast between these populations.
Finally, we compare our method to the PEPPER Program, a set
of basic statistics used by the Medicare program to flag potential
improper payments in inpatient hospitalizations (Centers for
Medicare and Medicaid Services 2023), and examine the relation-
ship between those variables and the types of ICD codes flagged
by our analysis.

10.1 | Existing DOJ Data-Driven Enforcement

Our method shows the ability of machine learning to detect
health care fraud, raising questions about the existing usage of
data analysis by the DOJ.

The DOJ conducts very limited and basic usage of data analysis to
drive anti-fraud investigations. In a 2023 interview with FedTech,
the DOJ describes their data analysis techniques for health care
fraud detection using a basic approach as follows:

”The DOJ uses two types of models. In the first
approach, it finds suspected fraudulent providers by
examining the characteristics of medical professionals
and others who were prosecuted for healthcare fraud in
the past. Through analytics, they find current providers
who share those characteristics. ..

It then seeks out national outliers and ranks providers
with a scoring system. For example, the DOJ investi-
gates physicians who order more cancer genetic tests
than 99.9 percent of doctors in the country.

The second modeling approach is to analyze billing
and other healthcare data to find trends in fraud. For
example, in 2019, the DOJ saw a spike in Medicare

spending on durable medical equipment.”

From this interview, we can glean that the DOJ is using basic
analytics, such as sorting providers by total billing and looking for
outliers, or looking at time trends. This approach has a number
of limitations. First, providers are not compared to their peers,
and therefore this approach is likely to be of limited value in
hospitalizations, which are much more complicated than single
billing codes. Moreover, this is only able to detect overt frauds
(e.g., being the top biller in the country for a genetic test),
rather than more subtle frauds, like manipulation of underlying
diagnoses and procedure codes. Notably, this also relies on the
government to manually distinguish which codes to analyze (e.g.,
genetic tests), while our method allows for the machine learning
algorithm to highlight areas of concern without manual input.

The use of data by the DOJ is relatively new. We examined
the DOJ website for its description of its health care fraud
enforcement activities, and then traced this page back using
the Wayback Machine (Internet Archive). In 2017, 2018, 2019,
and mid-2020, the government does not mention “data” or
“analytics.” Data analytics are first mentioned in September 2020
(DOJ 2020).

Next, we examine the text of the DOJ press releases we use in this
paper to find hospitals that were enforced against and consider
the extent of data usage. Of the 449 DOJ press releases that
mention the hospitals in our data, (done through matching the
names of hospitals into press releases, that is, the sample to which
we are comparing), only 15 (3%) mention the keyword “data,” and
0 mention “machine learning.”

In contrast, the DOJ largely relies on whistleblowers to initiate
civil False Claims Act lawsuits to target hospitals. Leder-Luis
(2025) discusses these cases. Whistleblowers are generally hospi-
tal employees or other insiders, and therefore data are not used for
detection, although data are sometimes used after a case is filed
to help support the claims or estimate damages. Of the same 449
press releases, 247 of them (55%) contain “whistleblower.”

Two other avenues exist for detection of fraud, with less
public details available. Medicare claims processors work with
contractors called Unified Program Integrity Coordinators
(UPICs) (Noridian Healthcare Solutions 2022) to audit and detect
aberrant payments. In addition, Medicare uses a private—public
partnership model through the Healthcare Fraud Prevention
Partnership to share data between the federal government and
private insurers to detect health care fraud with patterns similar
across a variety of types of care and different health insurance
programs. When fraud is identified through these data-driven
efforts, investigators can refer those cases to the DOJ for civil or
criminal prosecution.

10.2 | Comparison of DOJ Targets vs. Our Top
Hospitals

Next, we compare the characteristics of hospitals that are subject
to DOJ enforcement versus those that our algorithm flags as
suspicious. Section 9 discusses the hospitals flagged by our
method. We repeat these analyses, instead characterizing the
hospitals targeted by the DOJ instead of our method.

Figure 6 shows the distribution of states where DOJ targets
hospitals. This is in contrast to Figure 4, which shows the states
targeted by our method. Notably, DOJ offices are regional and
have wide autonomy over the types of cases they pursue, leading
to heterogeneity in enforcement patterns across regions (Eliason
et al. 2025).

As expected, we see wide heterogeneity in DOJ enforcement, with
some states (notably Florida and Pennsylvania) showing heavy
DOJ targeting relative to their share of the hospital population.
Florida, Pennsylvania, and New York combined cover more
than one third of DOJ hospital fraud litigation nationwide. This
is in contrast to the states targeted by our method, shown
in Figure 4. While Florida and New York are high on the
list of hospitals we flag, they contribute lower shares of total
enforcement, and other states like Massachusetts, Illinois, and
North Carolina also contribute a much greater share of outliers
than they have experienced DOJ enforcement. One potential
reason is that DOJ offices are responsible for much more than
hospital health care fraud enforcement, and so states with high
other burdens of types of care to monitor may have limited DOJ
enforcement bandwidth—Massachusetts, for instance, conducts
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extensive pharmaceutical fraud enforcement due to companies
headquartered there.

Next, we consider the characteristics of hospitals targeted by
the DOJ. Figure 7 presents these results, which are parallel
to the characteristics of hospitals we find, shown in Online
Appendix Figure 13.

Regarding ratings, as shown in Figure 7a, we see that the DOJ
tends to target hospitals with low ranking, and largely does not
enforce against hospitals with high rankings. In contrast, the
ratings of our outlier distribution is much closer to the ratings
distribution of all hospitals. Our method is slightly more likely to
tag highly rated hospitals as outliers.

In terms of ownership, as shown in Figure 7b, the DOJ is
more likely to name a for-profit hospital in a press release, but
also slightly more likely to name a government-owned hospital
(than their share of the hospital population). Nonprofits are less
likely to be named. Our outlier detection method is even more
likely to highlight for-profits, but somewhat less likely to tag
government hospitals.

Finally, comparing urbanicity in Figure 7c, the DOJ is more
likely to target urban hospitals, and somewhat less likely to
target non-urban hospitals, though it is possible. Our metric
almost exclusively picks up urban hospitals, showing even more
concentration of potentially suspicious behavior in cities than the
DOJ enforcement suggests.

Taken together, these results indicate that our methods are not
just replicating DOJ enforcement, but rather capturing distinct
dimensions and hospitals engaged in suspicious behavior.

10.3 | Comparison to PEPPER Variables

The Centers for Medicare and Medicaid uses a program called
PEPPER, the Program for Evaluating Payment Patterns Electronic
Report, to flag hospitals for potential improper payments, an
indicator of potential fraud (Centers for Medicare and Medicaid
Services 2023). We considered the metrics from the most recent
available PEPPER analytics report, from FY2023 Q2. To compare
the PEPPER variables of interest to our method, we developed a
simple list of ICD codes that are most predictive of appearing at
the top of our list. To do so, we regressed our final ranking on the
frequency of ICD codes used.

In terms of statistical methodology, there are a number of impor-
tant ways in which PEPPER differs from our own analysis. First,
PEPPER nearly exclusively focuses on DRGs, and in particular
the ratio of some DRGs, for example, those with complications
and comorbidities relative to those without. In contrast, our
analysis drills down to the ICD code fundamentals that underpin
DRG categorization. Second, PEPPER uses very simple statistics,
such as percentages within certain categories or a hospital’s rank
among all national hospitals. This does not compare hospitals
to their appropriate peers, and therefore is less valuable as it
does not distinguish between hospitals that treat a sicker patient
population versus those that just upcode.

Appendix K in the Supporting Information compares the PEP-
PER variables to the ICD codes that our method highlights
as suspicious. Our list differs from the PEPPER target vari-
ables, though reassuringly, Sepsis/Septicemia is both the #1
predictor for our analysis as well as one of the predictors in
PEPPER. Other similarities include a focus on cardiovascular,
gastroenterological, and musculoskeletal conditions.
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11 | Conclusion

The unsupervised ensemble method introduced in this work
provides a new data-driven approach to identifying health care
fraud using massive claims data. Our approach uses different data
modalities—including patient medical history, provider coding
patterns, and provider spending—to detect anomalous behavior
consistent with fraud and abuse. Besides detection, the method-
ology offers interpretability, model-specific explanations pinpoint
specific ICD and DRG codes associated with excess spending at a
provider. Finally, our method allows us to characterize the types
of providers most likely to be ranked as suspicious, which may be
useful for guiding anti-fraud policy more broadly.

Our method substantially outperforms baseline algorithms. We
combine evidence from multiple unsupervised outlier detection
algorithms that use different types of global and local analysis to
create a final ranking of suspiciousness, based on Medicare data.
While only 1in 12 hospitals isnamed in our DOJ ground truth data
as fraudulent, 21 of our top ranked 50 hospitals are in the same
corpus, achieving a nearly 5-fold improvement in detection rate.

Medicare spends over a hundred billion dollars per year on hospi-
talizations, and the federal government has limited enforcement
capacity. We believe our findings are per se interesting, because
they help pinpoint fraud by private firms against the government
in a way that could be used to improve public spending.

Our method has natural extensions beyond Medicare and beyond
hospitalizations. We believe that the same method will prove
useful in detecting fraud against private insurers, who face many
of the same issues. Private insurers spend hundreds of billions of
dollars per year on reimbursing care, and even small shares of
fraud can be very expensive. Our detection algorithm can be used
to guide auditing by identifying which providers are committing
the most egregious behavior. Our method also has a natural
extension to Medicaid, the federal-state partnered low-income
subsidy program, which spends an additional $400 Billion per
year on health care. With health care spending at 19.7% of U.S.
GDP Centers for Medicare and Medicaid Services (2022), tools for
detecting health care fraud can find wide-ranging use.
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Endnotes

!patient refers to a person receiving health care; beneficiary refers to a per-
son covered by health insurance. Here, they are used interchangeably, as
all of our data come from patients who are Medicare beneficiaries.

2Twenty percent samples are the largest available for physician office vis-
its.
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