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ABSTRACT 
 
Background. Chronic disease management requires the ability to link patient records 
across multiple interactions with the health sector. South Africa’s National Health 
Laboratory Service (NHLS) conducts all routine laboratory monitoring for the country’s 
national public sector HIV program. However, the absence of a validated patient 
identifier has limited the potential of the NHLS database for epidemiological research, 
policy evaluation, and longitudinal patient care. We developed and validated a record 
linkage algorithm, creating a unique patient identifier and enabling analysis of the NHLS 
database as a national HIV cohort. To our knowledge, this is the first national HIV cohort 
in any low- or middle-income country. 
 
Methods. We linked data on all CD4 counts, HIV viral loads (VL), and ART workup 
laboratory tests from 2004-2016. Each NHLS laboratory test result is associated with a 
name, sex, date of birth (DOB), gender, and facility. However, due to typographical and 
other errors and patient mobility between facilities, different patient specimens may be 
associated with different sets of identifying information. We developed a graph-based 
probabilistic record linkage algorithm and used it to construct a unique identifier for all 
patients with laboratory results in the national HIV program. We used standard 
probabilistic linkage methods with Jaro-Winkler string comparisons and weights 
informed by response frequency. We also used graph concepts to guide the linkage in 
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determining whether a cluster of patient specimens could plausibly reflect a single 
patient. This approach allows matching thresholds to vary with the density of the 
network and limits over-matching.  
 
To train and validate our approach, we constructed a quasi-gold standard based on 
manual review of 59,000 candidate matches associated with 1000 randomly sampled 
specimens. These data were divided into training and validation sets. Domain weights 
and graph parameters were optimized using the manually matched training data.  
 
To evaluate performance, we calculated the probability that a true match was correctly 
identified by our algorithm (sensitivity, Sen) and the probability that a match identified 
by our algorithm was truly a match (positive predictive value, PPV) in the manually-
matched data. We also assessed validity in the full cohort using proxies for under- and 
over-matching and assessed sensitivity vis-à-vis national identification numbers and 
patient folder numbers, which were available for a sub-set of records. We compared the 
performance of our algorithm for exact matching and a prior identifier that had been 
developed by the NHLS Corporate Data Warehouse.  
 
Results.  As of December 2016, the NHLS database contained 117 million patient 
specimens with a CD4, VL, or other laboratory test used in HIV care. These specimens 
had 63 million unique combinations of patient identifying information. From these data, 
our matching algorithm identified 11.6 million unique HIV patients who had at least one 
CD4 count or VL result. These patients 70.9 million total specimens, with a median of 3 
specimens per patient (IQR 1 to 8). Sensitivity and PPV of the algorithm were estimated 
to be 93.7% and 98.6% in manually-matched data, compared to 64.1% and 100.0% for 
the existing NHLS identifier. We estimated that in 2016 there were 3.35 million patients 
on ART and virologically monitored, similar to the National Department of Health 
estimate of 3.50 million. 
 
Conclusion.  We constructed a South African National HIV Cohort by applying novel 
graph-based probabilistic record linkage techniques to routinely collected laboratory 
data, with high sensitivity and positive predictive value. Information on graph structure 
can guide record linkage in large populations when identifying data are limited.  
 
Keywords. Record linkage, deduplication, entity resolution, graph analysis, network 
analysis, HIV/AIDS, South Africa 
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1. INTRODUCTION 
 
1.1 The public health rationale for record linkage 

 
Management of chronic diseases like HIV requires the ability to link patient records 
across multiple interactions with the health sector. Record linkage presents a challenge 
in large populations where unique patient identifiers (e.g. Social Security Numbers) are 
not systematically recorded and where other identifying information is limited. This 
scenario is common in many developing countries faced with a growing burden of 
chronic disease, yet where health systems were principally designed to provide acute 
and preventive care.1 We develop a scalable, graph-based approach to probabilistic 
record linkage, and apply it to the complete laboratory records of South Africa’s national 
HIV treatment program, the largest in the world. 
 
Interest in record linkage methods among health researchers has increased with the 
proliferation of “big data”, i.e. data generated through routine interactions rather than 
for research purposes, and with better access to the computational resources needed to 
link these data. When no unique identifier (e.g. social security number, national ID 
number, passport number) exists, other identifying data can be used to assign records 
to individuals probabilistically.2,3 Accurate record linkage is a key step in transforming 
“big data”, including clinical and administrative data, into databases usable for 
epidemiologic research, program evaluation, and longitudinal monitoring of patients 
with chronic conditions. 
 
1.2 Record linkage within a single database 
 
This paper focuses on the linkage of records within a single database, also known as 
deduplication, disambiguation, or entity resolution.2 There are several key features of 
our application, which distinguish it from other record linkage problems.  
 
1. The task is to identify all records associated with the same patient. The data 

consist of unlinked patient specimens. Each specimen is associated with some 
identifying information, which may be reported with error. Multiple laboratory 
tests may be conducted on each specimen, and these tests will have identical 
identifying information. 

2. There is no gold standard listing of patients. The deduplication process will 
recover a set of patients in the data, but there is no master list of true patients 
against which to validate. Furthermore, the true underlying number of patients 
giving rise to the data is not precisely known. (There are however external 
estimates against which to compare as a validity check.) 

3. A patient may give rise to any number of specimens with similar but non-
identical identifying information. As a result, a patient specimen could be 
correctly linked to any number of other specimens. That number is unknown, 
although though there is a plausible range.  
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4. A single record cannot belong to multiple patients. This implies that transitivity 
holds. If A links to B and B links to C, then A and C are implicitly linked and 
attributed to the same patient, in contrast to 1:1 linkage across databases. 

5. All valid results should be assigned to patients. After removing invalid specimens, 
i.e. those associated with research studies or quality assurance, all other 
specimens arise from real patients. Because the goal is to match all specimens to 
patients, we do not throw away records that could match to multiple patients, 
unless identifying information in key domains is missing or the result was invalid.  

6. The database is large. Our linkage focuses on 116 million CD4 count, viral load, 
and other plausibly-HIV-related laboratory tests collected in South Africa’s 
public-sector HIV program since 2004, corresponding to 63 million unique sets of 
identifying information.  

 
Probabilistic record linkage dates to the mid-20th century. Newcombe (1959) showed 
that record linkage can be framed as an optimization problem, where the goal is to 
minimize both over-matching and under-matching errors.5 Over-matching occurs when 
results that were not generated for a patient are attributed to that patient, leading 
patients to be falsely combined. Under-matching occurs when results that were 
generated by a patient are not attributed to that patient, leading to the appearance of 
additional “patients” in the dataset. A more liberal matching rule will reduce under-
matching, leading to greater Sensitivity, but will result in more over-matching and lower 
Positive Predictive Value (PPV). (Conversely, a more conservative matching rule will 
increase PPV, but reduce Sensitivity.) Newcombe proposed what has become the 
traditional approach to this problem: compare records on a range of characteristics; 
generate a similarity score for each characteristic and combine into a total similarity 
score; and then choose thresholds denoting whether the link is “considered a match”, 
“not considered a match” or “held for manual review.” Fellegi & Sunter (1969) derived a 
formula for the optimal similarity score, which incorporates empirical information on 
response frequencies within domains and on random (e.g. typographical) error rates.6 
For example, a match on a rare name is less likely to occur by chance than a match on a 
common name and thus receives greater credit in the similarity score.  
 
Record linkage becomes more difficult in large datasets. First, it may be impossible to 
compare all observations with all other observations. Strategies such as blocking 
(restricting comparisons to observations that match on some characteristics) are 
needed to reduce the number of comparisons to be scored, resulting in a trade-off 
between computational efficiency and the possibility that some true links are not 
considered. Second, once potential matches are scored, the traditional approach of 
using manual review to resolve uncertain matches may be impossible due to the large 
number of candidate matches to evaluate. Third, the probability of over-matching 
increases with the size of the underlying population, and hence the costs of foregoing 
manual review increase. The larger the size of the population, the greater the chances 
that a random (e.g. typographical) error will falsely link specimens from two different 
people, A—B. When such a false dyad emerges, its chances of acquiring an additional 
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false match are approximately twice what they would have been in the absence of the 
initial linkage error. Without additional identifying information, over-matching in big 
data sets can lead false links to amplify into very large clusters, ultimately leading to the 
false linkage of individuals with completely different sets of identifying information 
through several degrees of separation. 
 
1.3 Using graphs to guide record linkage  
 
We propose a graph-based solution to address the scalability problem.2,7–12 We define 
nodes as unique sets of patient identifying information as recorded in the NHLS 
database. We define weighted edges as the scored comparisons between these nodes, 
with scores calculated using a modified version of the Fellegi-Sunter approach.6 The 
complete laboratory database can be interpreted as a very large graph (i.e., network) 
defined by these nodes and edges. Individual patients are represented by connected 
components (or clusters) of the graph. Previous approaches have used clustering 
algorithms in the process of entity resolution,11,13 or have used graph concepts to screen 
for possible linkage errors for manual review7,8. However, most existing off-the-shelf 
record linkage packages do not use graph-concepts to guide the linkage. 
 
We use information on the graph-structure of individual clusters to help determine 
whether the cluster represents a single patient. Our approach is based on a simple 
heuristic: a cluster cannot represent a single patient if the two most dissimilar nodes in 
the cluster do not reflect a single patient. In effect, our approach replaces the threshold 
rule used to determine the existence of edges in the traditional Fellegi-Sunter approach 
with a threshold rule on the weighted diameter of the cluster, i.e. the shortest weighted 
path between the farthest points. Unweighted diameter was shown to outperform 
other graph metrics (number of bridges, density of graph) in identifying false clusters in 
Australian administrative health records.7 Weighted diameter incorporates even more 
information on the strength of the ties and better captures the likelihood that the 
cluster represents a single patient.  
 
This graph-based approach to record linkage exploits information contained in the graph 
structure not typically used in traditional linkage approaches. First, it brings in useful 
information on the size and shape of the cluster. The data generating process for errors 
in identifying information is complex, but follows some known rules, which can be 
incorporated into the scoring function and yields predictable shapes and sizes. For 
example, long chains of observations in which A links only to B, B links only to C, and C 
links only to D, etc., are unlikely. On the other hand, it is not uncommon to have 
“missing edges” in a cluster; e.g. B may contain information (an English and Zulu name) 
that provides a “key” correctly linking A and C even though the name dissimilarity 
between A and C implied no direct link.  
 
Second, the graph-based approach incorporates useful information about the 
“neighborhood” of the cluster, i.e. other records that may be similar but come from 
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distinct patients. Clusters in sparser areas of the graph are less likely to falsely combine 
with data from other patients and therefore we can allow for lower scored edges and 
greater linkage sensitivity. By contrast, higher standards are needed in denser areas of 
the graph to prevent false linkage, e.g. of names such as James, Jones, Jan, Jason. 
 
By incorporating these sources of additional information, the graph-based approach has 
several practical benefits for linkage of large datasets: 
  
(a) The graph-based approach reduces the need for manual review of borderline cases.  
(b) The graph-based approach limits the impact of overmatching in large datasets, 

flagging and breaking up implausible clusters before they become very large.  
(c) Weighted diameter provides an intuitive justification for why clusters should be 

considered patients and why others should not, based on the similarity of the most 
dissimilar records.  

(d) The threshold for the weighted diameter can be adjusted as an algorithm input 
parameter. In doing so, the analyst can identify unstable clusters that are sensitive 
to the threshold choice (typically those in denser regions of the graph) and stable 
clusters that are less sensitive to the threshold choice (typically those in sparser 
regions). At the data analysis stage, the subset of stable clusters can be used to 
assess the robustness of estimates in patients where linkage errors are minimized. 
Unstable clusters can also be reviewed manually to verify choice of threshold. 

 
We developed this graph-based probabilistic record linkage algorithm in the context of a 
collaboration with South Africa’s National Health Laboratory Service (NHLS) to support 
NHLS in monitoring and evaluating the country’s national HIV program. We therefore 
illustrate the performance of the approach with this real-world application. NHLS 
conducts all laboratory monitoring for South Africa’s national HIV program. By creating a 
validated unique identifier in the NHLS database, we construct what is – to our 
knowledge – the first national HIV cohort in any low- or middle-income country.  
 
The paper proceeds as follows. Section 2 describes the NHLS database and describes the 
development of a manually matched training and validation set. Section 3 presents the 
record linkage algorithm, with sub-sections on pre-processing, search, scoring, graph-
based entity resolution, and computational performance. Section 4 presents validation 
results and some summary statistics on the resulting dataset. Section 5 concludes. 
 
 
2. DATA 

 
2.1. South Africa’s National Health Laboratory Service Database 
 
South Africa has the world’s largest HIV burden at 7.1 million people infected, 
representing a fifth of the HIV-infected population worldwide.14 The country also has 
the world’s largest HIV treatment program with about 4.4 million people on 
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antiretroviral therapy (ART) in 2018 It has been estimated that 91% of patients on HIV 
treatment are receiving ART in the public sector.15 With ART, people living with HIV 
(PLHV) can have long, healthy, and productive lives.16–18 ART also reduces the chances of 
onward transmission of the virus.19,20  As a result of South Africa’s large investment in 
HIV treatment, population life expectancy has increased by over a decade in some 
regions.21 However many PLHV are not yet on therapy, and the country has introduced 
new policies to significantly expand treatment coverage22 with the goal of reducing 
transmission23 and ending the epidemic. 
 
HIV disease progression and treatment success are monitored primarily through regular 
laboratory tests: CD4 counts to assess immune function and viral loads (VL) to assess the 
concentration of the virus in the blood. NHLS is the sole provider of diagnostic and 
monitoring pathology services for those accessing HIV care in the public sector and has 
done so since program inception in 2004 (with the exception of one province – KwaZulu-
Natal – which joined the NHLS in 2010.) Although guidelines have changed periodically 
since 2004, a CD4 count has always been conducted following HIV diagnosis and either 
CD4 counts or VLs have been conducted at least annually to monitor treatment efficacy. 
As of December 2016, the NHLS Corporate Data Warehouse (CDW) contained records of 
32.5 million CD4 counts and 20.1 million VL since 2004 conducted on 46 million patient 
specimens. In addition to CD4 counts and VLs, NHLS provides clinics with laboratory 
support for other laboratory tests used in HIV monitoring and treatment decisions – 
Alanine Aminotransferase (ALT), Hemoglobin, Cryptococcal Antigen, Creatinine 
Clearance, and HIV PCR/Elisa results – and our data included 102 million of these tests 
on 71 million specimens. (These tests are also used for patients without HIV.) In total, 
the NHLS database included over 117 million patient specimens with over 154 million 
tests conducted that could possibly be related to HIV care between 2004 and 2016.  
 
The CDW contains three sources of data: patient demographics, laboratory test results, 
and facility characteristics. The laboratory results data in the NHLS database are 
comprehensive and accurate. Specimens are collected at public sector clinics and 
hospitals, and are analyzed either at that facility or at one of several NHLS reference 
laboratories. Data on patient demographics, facility, and laboratory results are captured 
into an electronic laboratory information system (LIS). Each specimen is assigned a 
unique “Episode Number” (Episode_No), which is the link between the patient 
demographics, i.e. name, gender, and date of birth, location of the referring facility, and 
the results of any test requested. Results are delivered to facilities for patient care via: 
paper hard copy, SMS printing, an online query system, and/or telephonically. Data in 
LIS are then checked and are transferred to the NHLS CDW database in near-real time. 
Because the data are obtained directly from the LIS, they are less vulnerable to gaps in 
clinical record keeping at the facilities. As a result, the NHLS database provides a more 
complete representation of laboratory testing than South Africa’s electronic health 
monitoring database (TIER.Net), as many facilities only report laboratory test results to 
TIER.Net if they have been copied manually into patient charts and later extracted from 
the patient charts into TIER.Net.24  
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2.2. Need for a Validated Unique Identifier in the NHLS Database 
 
A key limiting factor in the NHLS Database is the variety and accuracy of the identifying 
information collected. The demographic information fields available on the laboratory 
requisition form include national ID number, patient folder number, surname, first 
name, sex, date of birth (or age), physical address and patient telephone number.  This 
information is collected from the patient and then captured on the LIS at the NHLS 
registration site. Many of the demographic fields can be incomplete and collection and 
transcription errors are common. 
 
Therefore, the major limitation of the NHLS data is the lack of a validated unique patient 
identifier to enable linkage across all laboratory test results associated with a single 
patient. The NHLS data are curated at the level of the test result. From 2004-2016, 
national ID numbers were collected for only 2% of specimens. And despite the high 
quality of the data, there remains substantial variation in the patient identifying 
information associated with patient specimens. For example, our extract of 117 million 
specimens contained 62.8 million unique sets of identifying information. Yet the 
population of South Africa is only 56.6 million.4 
 
Variability in names arises from several sources. Predictable sources of variability 
include: typographical errors (Alex vs. Alwx), hearing errors (Alex vs. Alice), nicknames 
(Alex vs. Alexander), translations (Mpho vs. Gift), first/last name inversions, use of 
multiple first and middle names, and abbreviations (VD vs. van der). Other variation 
arises from extraneous information, e.g. titles, prefixes, redundant initials, non-
alphabetical characters, which can be addressed in pre-processing the data. Still other 
variations are less predictable: e.g. English vs. local language names (Beatrice v 
Nonhlanhla), name changes at marriage, and other name changes. Finally, sometimes a 
name is simply unknown (e.g. No Name, Mother of), or may not exist, in the case of 
some neonates (e.g., Baby, Twin). 
 
Variation in dates of birth can arise from typographical and hearing errors, from month-
day inversions, from false reports or misremembering, or through provision of an age 
rather than an exact date of birth. Gender may be listed incorrectly due to typographical 
error, due to the large proportion of androgynous names in this setting and may also 
change if some patients transition to other genders. Finally, for all of these domains, 
patients may deliberately obfuscate their identifying information. For example, patients 
may provide false information to avoid discovery in an environment of HIV stigma, to 
access care if they are not citizens, or to “shop” for care at other facilities.  
 
We set out to create a validated unique patient identifier in the database of all HIV-
related test results, using existing demographic information recorded for each 
specimen: first name, last name, date of birth, gender, province, and facility. The 
development of a valid unique patient identifier would have several important 
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implications. First, a unique patient identifier would enable de-duplication, in order to 
achieve accurate reporting of aggregate trends, such as the number of patients in pre-
ART care and the number of patients on ART and monitored for VL. Second, it would 
enable monitoring of longitudinal concepts such as CD4 recovery, virological failure, and 
retention in care, enabling identification of low-performing “hot-spots” and high-
performing model facilities. Third, a unique patient identifier would enable the 
construction of a National HIV Cohort, which can be used for longitudinal 
epidemiological analysis and evaluation of policies and programs. Finally, if sufficiently 
high accuracy were attained, a unique patient identifier could be integrated into 
electronic medical records systems, offering providers at any networked facility access 
to a patient’s complete history of laboratory test results and improving chronic disease 
management in mobile patient populations.  
 
We note that NHLS’s CDW previously developed a linkage algorithm, however its validity 
is unknown. Early analysis of the CDW unique identifier suggested evidence of over-
matching as there were some implausibly large clusters. There was also evidence of 
under-matching as the algorithm identified 18.5M unique HIV patients, an implausibly 
large number of patients given that just over 7M South Africans are currently HIV-
infected and about 2.5M have died since 2004.25,26 We evaluate the performance of the 
graph-based linkage algorithm we developed alongside the CDW unique identifier as 
well as a simple “exact match” on name, gender, and date of birth.  
 
2.3. Developing a manually matched quasi-gold standard 
 
Original manual-matching exercise 
Record linkage can be substantially improved with the existence of training data to 
optimize the algorithm. Additionally, record linkage exercises ideally validate the results 
against a gold standard. In the case of the NHLS database, no gold standard dataset 
exists that captures the potential flow of patients across different sites within South 
Africa’s public-sector health system.  
 
To train and evaluate the algorithm, we constructed a manually-coded quasi-gold 
standard dataset. We randomly selected 1000 patient specimens from the full database 
of 30.4M specimens with an CD4/VL result available in Fall 2014. For each of these 1000 
“index” specimens, we started with a very liberal (high sensitivity) early version of our 
matching algorithm and generated candidate matches from the full 30.4M specimen 
database. We identified an average of 59 candidate matches per index specimen (range 
0, 838). Four trained research assistants (RAs) manually evaluated these 59,000 
candidate matches for match quality on a 4-pt scale: 1 = almost certainly not a match, 2 
= plausible match, 3 = probable match, 4 = almost certain match. After an initial training 
period to harmonize evaluations, each candidate match was graded twice by separate 
RAs. After all matches were graded, we held a refresher training session. Then a third RA 
reviewed all candidate matches for which there was disagreement between the first 
two RAs and determined a final match quality. RAs had access to additional – though 
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highly incomplete – information on patient addresses, test dates, and national ID 
numbers, which could sometimes be used to improve the manual match. Finally, to limit 
over-matching, we conducted a targeted re-review of all “patients” that moved 
between provinces multiple times, were reported as both male and female, or had 
common names. We considered all 3s and 4s as “matches” and all 1s and 2s as “not 
matches”. The result of this exercise was a manually matched quasi-gold standard 
dataset consisting of all laboratory results linked to the same patient as a random 
sample of 1000 laboratory results.  
 
We refer to the manually-coded data as a “quasi-” gold standard because they reflect 
our best human assessment. The RAs often had to make judgments amidst uncertainty 
as to whether particular candidates were matches or not. RA intuition was “tuned” 
through training and team discussions of difficult cases. To assess whether the RAs were 
identifying approximately the right number of matches, we conducted a back-of-the-
envelope calculation: We used the distribution of numbers of specimens per patient 
identified by the RAs as “matches” to estimate the number of true patients that gave 
rise to the total number of specimens in the NHLS database with CD4/VL tests. Our 
estimate of 10.2M people with at least one CD4/VL test (in the realm of plausibility) 
suggested that the RAs were linking a reasonable number of results to patients and 
were neither too strict nor too lax in determining matches. 
 
Training and validation sets 
The same dataset cannot be used both to guide choices about the algorithm and then to 
evaluate the performance of the algorithm, since resulting estimates will be biased. We 
therefore randomly divided the gold standard dataset of 1000 specimens – and 59,000 
manually-scored comparisons – into two sub-sets which can be considered independent 
samples: 489 specimens (and their scored candidate matches) were used as training 
data; and 495 specimens (and their scored candidate matches) were reserved as a 
validation set, to be set aside and used only to evaluate the performance of the final, 
optimized algorithm. (Eleven of the index specimens in the training set and 5 of the 
index specimens in the validation set were found to be invalid records after sampling.) 
The training and validation sets are summarized in Table 1.  
 
Reducing noise in the manually-matched data 
There were a number of close cases in which the RAs reported that they simply had to 
make their best guess. Additionally, despite an extensive training period and at least 
two evaluations of each comparison, there were differences across RAs in the 
distributions of scores and there may have also been within-RA variation in coding as a 
result of temporal differences in alertness or attention to specific patterns in the data. 
These factors may have led to random errors	in the manually-coded data that were not 
present in the underlying ground truth data. 
 
When a gold standard is measured with error, this leads to sub-optimal training leading 
to a reduction in performance. It also leads to a reduction in perceived performance in 
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relation to the validation set because the random component is by definition 
unpredictable. As we refined our algorithm and compared this improved algorithm to 
the training data, we found that many of the discrepancies between the manually- and 
algorithm-coded results were most likely caused by manual errors in the RA-coded data. 
Additionally, the improved algorithm identified some new candidate edges that had not 
been scored in the original manual review because the refined algorithm had improved 
sensitivity relative to the version initially used to identify candidate matches.  
 
We therefore undertook a process to update the training and validation sets, following 
published methods for test validation when the gold standard is measured with error.27 
We implemented the improved algorithm, setting the tuning parameters to achieve high 
sensitivity. This allowed us to identify new candidate matches that were not identified 
by the original algorithm for further review. Two RAs then re-assessed the following: all 
(validation) or a random subset (training) of candidate matches in which both the coders 
and the algorithm agreed it was a match; all candidate matches in which there was 
disagreement; all candidate matches not scored by the original coders; and a random 
subset of candidate matches in which the algorithm and original coders agreed there 
was no match. Because this last category constituted the vast majority of the manually-
matched dataset, the task for the RAs was substantially reduced in relation to the 
original review. The RAs were blinded as to the original computer and coder 
assessments. A member of the research team, also blinded, then re-evaluated all cases 
of discordance between the two RAs and between the RAs and the original coders, and 
conducted additional spot checks. The updated manually-coded data were used for all 
subsequent training of the algorithm. (We note that the re-review of the training and 
validation data were conducted as separate exercises by separate RA teams, which may 
have led to some differences between the revised training and validation sets.) 
 
Table 1. Description of manually coded “quasi-gold standard” dataset 
 
 Index 

specimens, n 
Manually-coded  
“true matches”, 
original; revised 

Manually-coded 
“true non-matches”, 

original; revised 

Training set 489 3678; 3899 20,453; 20,232 

Validation set 495 3840; 4284 19,858; 19,432 

Note: True matches and true non-matches were determined based on manual review. The revised 
manually coded data include some candidate matches not identified in the original review, so the total 
numbers of candidate matches differ. Methods for developing the original and revised manually-coded 
data are described in the text. We note that different RA’s coded the training and validation sets which 
were carried out as separate exercises. A larger number of matches were identified for the validation set 
relative to the training set, which likely reflects that the second RA team was slightly more liberal in 
determining what counted as a match. 
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2.4. Evaluating Sensitivity and Positive Predictive value in quasi-gold standard data 
 
In training and validating the algorithm with respect to the manually-matched quasi-
gold standard, we focused on two parameters commonly used in evaluating record 
linkage2:  
1. Sensitivity, i.e., the proportion of manually-coded true matches that were 

correctly identified by the algorithm, and  
2. Positive Predictive Value (PPV), i.e., the proportion of matches identified by the 

algorithm that were manually-coded as true matches.  
Sensitivity and PPV are also known as recall and precision, respectively, in the computer 
science literature. These parameters are defined at the candidate match level (not at 
the patient level). They are calculated as follows: randomly choose a patient specimen; 
then identify all other specimens associated with the same patient according to the 
algorithm vs. according to the quasi-gold standard. Because the number of non-matches 
is so large, Specificity and Negative Predictive Value will nearly always be close to 100% 
and therefore are not useful for training or validation. 
 
All training was conducted with the best available manually-matched data. Initial 
training was conducted using the original version. Later training was conducted using 
the revised manually-matched data, which was believed to be closer to ground truth. 
 
In our validation exercise, we report Sensitivity and PPV both with respect to the original 
manually-coded test data as well as compared to the revised manually-coded test data. 
Both versions are reported for transparency. The revised manually-coded data were 
heavily scrutinized through additional rounds of review and are believed to be closer to 
truth. Ignoring these improvements, our Sensitivity and PPV estimates with respect to 
the original data are likely to be biased downwards. On the other hand, using the 
algorithm to guide the manual matching has potential to lead to biased evaluation of 
algorithm performance vis-à-vis those data. In order to minimize potential for bias in the 
second round of manual review, we blinded the reviewers as to how the algorithm 
coded a particular candidate match. Additionally, to obtain accurate estimates of 
Sensitivity and PPV from the revised validation set, it is necessary to assess and adjust 
for the possibility that there were cases of false agreement between the computer and 
manual coders, not only cases of false disagreement. We report revised estimates of 
Sensitivity and PPV using published formulas, which account for this possibility.27  
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3. A GRAPH-BASED RECORD LINKAGE ALGORITHM 
 
3.1 Overview of the approach 
 
Record linkage has become an increasingly common activity for governments and 
private sector organizations as the extent of administrative and other big data has 
increased and as computing power to conduct record linkage has improved. When there 
is no unique identifier, probabilistic or “fuzzy” matching techniques can be employed to 
develop an identifier. The central task in fuzzy record linkage is to create a unique 
identifier that simultaneously minimizes both over-matching (falsely combining records 
that should remain separate) and under-matching (falsely separating records that 
should combined). Our chosen approach was based on a review of existing best 
practices in the literature and consultation with several authorities on record linkage.  
 
Our approach was guided by several principles that we committed to at the outset: 
 
1. We should attempt to capture different sources of systematic errors common in 

South Africa, including: specific types of data entry errors, use of nicknames and 
multiple names, and uncertainty about dates of birth; 

2. We should use ONLY demographic information and should avoid using clinical 
information (e.g. CD4 values) to match, as including such information would bias 
our results towards the patterns in health outcomes that we seek to measure. 

3. We should use fuzzy matching methods applicable to a setting with 11 national 
languages. This ruled out “Soundex” type methods, which exploit similarities in 
how words or syllables sound and are thus language specific. 

4. We should exploit the fact that some names and dates of birth are more 
common than others and may be more similar to other names than others. 

5. Our methods should be scalable to the NHLS’s very large datasets. Record 
linkage is more difficult the larger the number of records, since there is much 
greater potential for over-matching. Additionally, larger datasets require more 
computing resources and a blocking strategy which limits comparisons.  

6. Any resulting algorithm must be validated and the extent of over-matching and 
under-matching error reported in an unbiased way.  
 

Our goal was not perfection, but the “best” unique identifier that we could come up 
with and clear, unbiased reporting on the quality of the identifier. 
 
Our record linkage method consisted of four steps (Figure 1): pre-processing, search for 
edges, scoring edges, and graph-guided entity resolution. The methods were 
implemented using Boston University’s Shared Computing Cluster (SCC), which hosts 
secure data and meets standards for dbGaP compliance, includes many statistical 
programmes, and consists of a network of high speed, multiprocessor computers. We 
received key technical support from Senior Data Scientist, Katia Oleinik, who supports 
researchers using the SCC. 
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Figure 1. Graph-based probabilistic linkage schematic. Steps undertaken in linkage exercise. 
 
3.2. Preprocessing 
 
Pre-processing is a standard first step in record linkage. We began with the complete 
listing of Episode_No’s associated with CD4, VL, and other plausibly HIV-related tests in 
the NHLS CDW, and the available demographic information on these episodes. (Some 
Episode_No’s were associated with multiple tests if multiple tests were conducted on 
the same specimen. Eliminating these duplicate Episode_No’s reduced the number of 
rows from 154.8 million to 115.8 million).   
 
In pre-processing the data, we had two goals. First, we sought to identify and exclude 
invalid laboratory results, e.g. those that were associated with a research study or 
routine quality control and thus did not reflect patients in the public-sector health 
system as well as specimens that had nonsensical identifying information due to a data 
entry or processing error and thus could not be linked. Second, for valid laboratory 
results, we sought to standardize the data fields, removing non-alphabetical characters, 
removing common prefixes (Mr, Ms), standardizing common last names, dropping 
redundant initials, and replacing as missing if the name did not exist, e.g. “No Name”, 
“Unknown”, etc. Table 2 lists the pre-processing steps that we conducted. 

1.	Pre-process	data	
•  Cleaning	
•  Standardiza.on	
•  Reduc.on	to	exact	matches	
on	first/last/DOB/sex/facility	

2.	Search	for	edges	
•  Exact	match	on	inversions,	
mul.ple	names,	nicknames	

•  Fuzzy	matching	within	blocks	
to	reduce	comparisons	

3.	Score	edges	
•  Jaro-Winkler	string	
comparisons	for	names	

•  Fellegi-Sunter	similarity	scores	
•  Op.mized	weights	

4.	Link	and	resolve	en<<es	
•  Thresholds	for	matches	
•  Transi.vity	
•  Graph-based	techniques	
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OUTPUT	
•  Unique	Pa.ent	Iden.fier	(BU_uniq_ID)	
•  Cluster	characteris.cs	for	sensi.vity	analysis	

INPUT	
•  Lab	episodes,	with	iden.fying	demographics		

Nicknames	
database	
developed	

Blocking	approach	
developed	

Scores	op.mized	
using	training	set	

Graph-based	
decision	rules	
op.mized	using	
training	set	

Development	and	training	

Manual	matching	to	create	
quasi-	“gold	standard”	

•  Random	sample	1000	lab	episodes	
•  59,000	candidate	matches	
•  Manual	review	2x	

Training	set	
(n=489)	

Test	set	
(n=495)	

Valida<on	of	Unique	Pa<ent	Iden<fier	
•  Sensi.vity,	Posi.ve	Predic.ve	Value	vis-à-vis	
original	and	updated	quasi-gold	standard	

•  Sensi.vity	with	respect	to	Folder_No	and	
Na.onal	ID,	collected	in	17%	and	2%	of	cases	

•  Internal	validity	checks	
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Table 2. Preprocessing steps 
 

 
1. Drop episode_no if length(episode_no) ¹ 10 
2. Identify first or last names with at least two consecutive numeric characters, a good 

screen for invalid records 
3. Replace “.” “,” “/” “\” “:” “;” “-” with “ ” in first and last names 
4. Remove all other numeric and special characters from first and last names 
5. Remove common prefixes MR, MS, MRS, DR, etc., from first and last names 
6. Standardize common last names: e.g. VD: “VAN DER” 
7. Omit single and double initials at end of last name if same as first name initials 
8. Omit redundant initials at the start of first names if same as first initials 
9. Replace names as missing if “UNKNOWN”, “NO NAME”, “ANONYMOUS”, “MALE”, 

“FEMALE”, “TWIN”, etc. 
10. Drop as invalid if last name is missing or if either name contains the word “CODE”, 

“STUDY”, “SURVEY”, “PROGRAMME”, “PROJECT”, “PATIENT”, “EMERG”, “HAEM”, 
“TEST”, “SECURITY”, “URINE”, “BLOOD”, etc. 

11. Drop as invalid if names follow specific codes that are not plausible, e.g. “ABGB”, 
“TCDBS”, “MMMRH”, identified through manual review 

12. Drop as invalid if missing first or last AND contains numeric in the other 
13. Flag records where test_month = dob_month and test_day = dob_day as likely date 

of birth imputations 
14. Reduce to exact matches on First/Last/DOB/Sex/Facility/Province 
15. Further reduce to exact matches on First/Last/DOB for GPU-based search algorithm 

 
 
After pre-processing and eliminating invalid results, we assessed the distributions of 
different first and last names, years of birth, genders, facilities, and provinces in the 
data, information that would be used in the scoring step below. Months and days of 
birth were assumed to be uniformly distributed within years, however we captured 
information on the distribution of year of birth to account for the non-uniform 
distribution of HIV patients. Each patient specimen was associated with a vector of 
probabilities based on the distribution in the full dataset, i.e. Pr(first = “John”), Pr(last = 
“Smith”), Pr(YOB = 1975), Pr(Gender = “M”), Pr(Facility = “ABCD”), Pr(Province = “EFG”). 
 
To reduce the size of the dataset used in the linkage, we then collapsed the dataset to 
unique combinations of available identifying information – i.e., exact matches on first 
name / last name / date of birth / gender / facility / province. We created a crosswalk 
(linking file) from the specimen record identifier (Episode_No) to the exact matched 
identifier (EM_ID_plus). This reduced the size of the dataset from 115.8 million 
Episode_No’s to 62.8 million EM_ID_plus identifiers. These EM_ID_plus identifiers 
formed the nodes in the graph-based entity resolution step. To determine which nodes 
belong to the same patient, we searched for and scored edges between the nodes and 
then analyzed the resulting clusters. 
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3.3. Search 
 
Our linkage was implemented on all unique sets of identifying information (n = 62.8 
million). A complete n X n comparison of the dataset would require scoring 3.9 
quadrillion comparisons, beyond our computing power. We therefore used several 
targeted and overlapping search strategies to reduce the number of comparisons. Our 
approach yielded about 433 million comparisons, reducing the number of required 
comparisons by a factor of 9 million. 
 
Our primary search strategy was to assess all comparisons of the 63M cleaned, exact-
matched, pre-processed records within an 11-year moving window on year of birth 
(Table 3). If the difference between two years of birth was 11 years or less, then we 
used the Jaro-Winkler algorithm to measure the similarity of first name pairs (first_JW) 
and last name pairs (last_JW). Jaro-Winkler similarity scores are on a 0 to 1 scale, with 1 
representing an exact match. We compared all records within this year of birth window 
without further blocking (i.e. without requiring exact matches on other characteristics). 
In contrast to the common practice of blocking on initials, this approach allows for 
detection of similar names even when the initial letters differed (e.g. Carl ~ Karl). 
Records were retained if first_JW*0.6 + last_JW*0.4 exceeded 0.9. (The greater weight 
given to first name in this screening step was the result of initial investigations of the 
training data, which suggested that first name had more discriminating power than last 
name.) To execute this search strategy quickly, we developed a programme in C that 
could be run on parallel processors simultaneously (500 graphic processing units, or 
GPUs). 
 
Though broad, the moving window search strategy could miss cases in which the 
difference in years of birth was greater than 11 years or where the name similarity was 
low. As a second search strategy, we supplemented the moving window with several 
targeted blocking approaches described in Table 3. For each of the following – first 
name, last name, DOB, and the combination of sex and facility – we allowed for fuzzy 
matching on that variable if there was an exact match on all other variables.  
 
Third, we conducted deterministic searches for matches based on first/last name 
inversions, matches on multiple first or last names, and matches on a database of 
nicknames and common alternate names that we developed using statistically guided 
search with manual review. To develop the nicknames database, we identified all pairs 
of exact-matched ID’s in which the first name differed but the last name and date of 
birth were the same. We then counted the number of times a particular pair of first 
names occurred. A single occurrence could easily happen by chance, however multiple 
occurrences of the same pair of first names with different last names and dates of birth 
would suggest that the pair reflects a common nickname or misspelling. Restricting to 
first name pairs that appeared at least five times in the database, we constructed a list 
of 15,000 potential nicknames. Research staff at HE2RO fluent in the major South African 
languages then identified valid pairs from the list.   
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The result of these search strategies was a list of edges (pairs of nodes) that were of 
sufficient interest to be scored. The distribution of edges is displayed in Table 3.  
 
Table 3. Search strategy featuring multiple passes 
Search Method Number of Edges 

(less duplicates) 

  

1. Moving window  

Fuzzy match first and last if DOB within 11 years; retain if name similarity 
above threshold; run on GPUs 

310,469,082 

2. Overlapping blocks  
 

2.1 Fuzzy match first if exact on all other variables 10,586,682 

2.2 Fuzzy match last if exact on all other variables 6,840,290 

2.3 Exact, except for DOB 62,579,774 

2.4 Exact, except for sex/facility 32,413,676 

2.5 Exact, except for first missing 95,306 

2.6 Exact, except for DOB missing 3,349,716 

3. Deterministic comparisons  

3.1 Name Inversions; exact DOB 471,299 

3.2 Multiple first name; exact last/DOB 2,100,920 

3.3 Multiple last name; exact first/DOB 55,924 

3.4 Nicknames; exact last/DOB 3,959,943 

  

TOTAL EDGES, LESS DUPLICATES 432,922,612 

 
 
3.4. Scoring 
 
We followed an adapted Fellegi-Sunter6 approach to score potential matches. Pairs of 
records were evaluated for similarity across each of six domains independently: first 
name, last name, date of birth, gender, province, and facility. Scores were assigned 
based on whether there was a match in each domain, and then the scores across the 
domains were aggregated using a weighted sum to determine a total similarity score. 
Comparing records i and j, the Fellegi-Sunter formula assigns scores for each domain k 
as follows: 
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𝑠𝑐𝑜𝑟𝑒&'( =
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												𝑖𝑓	𝑚𝑎𝑡𝑐ℎ						
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1 − 𝑢&'(
				𝑖𝑓	𝑛𝑜𝑡	𝑎	𝑚𝑎𝑡𝑐ℎ

 

 
The “m-probability”, 𝑚(, is the probability of observing a match on domain k if the two 
results in fact belong to the same patient. The “u-probability”, 𝑢&'( , is the probability of 
observing a match if the two results in fact do not belong to the same patient, i.e. the 
false positive rate. The “m-probability” is a function of the data generating process for 
differences in identifying information being recorded for the same patient in a particular 
domain, including, e.g., typographical errors, as well as rates of transfer in the case of 
discordant facilities. The “m-probabilities” were estimated in the manually-matched 
training data and were assumed to be constant across the whole database (hence not 
indexed by i,j). (Similar estimates of the m-probabilities were obtained in the full 
database after implementing the algorithm.) The “u-probability” is a function of the 
frequency of the response values for record i and record j in domain k. The probability 
that another patient has exactly the same value for domain k can be estimated by the 
probability mass for that value in the database, e.g. Pr(gender=F), Pr(first=John). The 
less common a response value, the smaller the u-probability and the more credit given 
in the event of a match. When i and j differ, they have different u-probabilities. To avoid 
mistaking typographical errors for rare names, we defined 𝑢&'( = max	(𝑢&(, 𝑢'(). The 
values of the domain-specific scores, 𝑠𝑐𝑜𝑟𝑒&'( , can be positive (if a match) or negative (if 
not a match). Missing data will yield a score of zero for that domain. 
 
For gender, facility, and province, we scored pairs of records using the binary 
match/non-match designation built into the formula above. For first and last names, 
typographical and hearing errors can lead to slight differences, which are not clearly a 
match or non-match. Following Herzog et al (2007)3, we adapted the Fellegi-Sunter 
formula to account for fuzzy string matches using the Jaro-Winkler scoring algorithm for 
string comparisons.28,29 The Jaro-Winkler similarity metric is based on the share of 
characters in each string that also occur in a similar location in the other string. 
Additional weight is given to strings that match on initial letters. The similarity score is 
scaled from 0 to 1. The Jaro-Winkler similarity score has been shown to perform as well 
or better than other string comparison metrics.3,30 For nicknames, first/last inversions, 
and matches on multiple middle names, we replaced the Jaro-Winkler score with 0.95, 
to account for the small decrement from an exact match. For first and last names, 
𝑠𝑐𝑜𝑟𝑒&'(  was defined as: 
 

𝑠𝑐𝑜𝑟𝑒&'( = max K𝑠𝑐𝑜𝑟𝑒&',ABA01234( , 𝑠𝑐𝑜𝑟𝑒&',01234( − 	4

∗ N1 − 𝐽𝑊&'QN𝑠𝑐𝑜𝑟𝑒&',01234( − 𝑠𝑐𝑜𝑟𝑒&',ABA01234( QR 
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where 𝑠𝑐𝑜𝑟𝑒&',01234( , 𝑠𝑐𝑜𝑟𝑒&',ABA01234(  are the scores if a match and if not a match, 
respectively, and 𝛾 is the Jaro-Winkler similarity score. The formula assigns the non-
match score if 𝐽𝑊&' ≤ 0.75 and linearly interpolates between the non-match and match 
scores of the Jaro-Winkler similarity is between 0.75 < 𝐽𝑊&' ≤ 1.  
 
The 𝑠𝑐𝑜𝑟𝑒&'(  for date of birth was based on the Fellegi-Sunter formula, but also 
incorporated additional information about the data generating process giving rise to 
variation in recorded dates of birth. In particular, when patients provided an age rather 
than an exact date of birth, then the year of birth in the CDW database was imputed by 
subtracting the age from the current year, and the month and day of birth in the CDW 
database were imputed using the month and day of the laboratory test. Therefore, 
when the month and day of the laboratory test were identical to the month and day of 
birth, we assumed that the month and day were in fact missing (𝑠𝑐𝑜𝑟𝑒&'( = 0), and the 
year of birth was assumed to be imprecisely reported, giving partial credit to matches 
with close but not identical years of birth.  
 
The Fellegi-Sunter formula scores matches based on the amount of information they 
contain. Therefore, an exact match on date of birth or first/last name would be worth 
substantially more than an exact match on province or gender, which are more likely to 
occur by chance. Appendix Figure 1 shows the distribution of scores for the different 
elements among “true” matches in the training set. In general, matches on dates of 
birth and names contributed the most to similarity scores. 
 
After computing a 𝑠𝑐𝑜𝑟𝑒&'(  for each of the six components of the comparison vector, a 
total similarity score was calculated as a weighted sum: 
 

𝑡𝑜𝑡𝑎𝑙	𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝑠𝑐𝑜𝑟𝑒, 𝑆&' =\𝑤(
(

∗ 𝑠𝑐𝑜𝑟𝑒&'(  

 
In choosing values of the weights, 𝑤( , the goal is to maximize the discriminating power 
of the total similarity score 𝑆&'  to distinguish true matches from true non-matches. 
Figure 2 shows the distributions of total similarity scores among true matches and true 
non-matches in the manually-matched training data. The optimal weights 𝑤(  are those 
that separate these distributions as much as possible, giving high scores to true matches 
and low scores to true non-matches. We used the manually-matched training data to 
optimize 𝑤(  as follows: 
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Figure 2. Distribution of scores in training data 
Figure shows the distribution of bootstrap-aggregated “total similarity scores” for true matches 
and true non-matches. The bootstrap-aggregation procedure is described in the text below. 
 
To optimize the weights, we defined an objective function and then optimized it using 
R’s optim package. Consider the total similarity score 𝑆 = 𝑆(𝑤) which is a function of 
the weights to be optimized. One way to assess the discriminating power of 𝑆 is to 
propose a threshold decision rule 1[𝑆 > 𝜏] (i.e., 1 if 𝑆 > 𝜏, 0 if 𝑆 ≤ 𝜏), which considers a 
comparison to be a match if the value of the similarity score is above some threshold 𝜏 
(which could be denoted as a vertical line on Figure 2). For each candidate scoring 
function 𝑆 and some value of 𝜏, PPV and Sensitivity can be evaluated. Because the 
graph-guided entity resolution step allows the matching threshold to vary based on the 
density of the network, we were interested in discriminating power across the whole 
range of possible values of 𝜏, not just at a single optimum. We computed 𝑃𝑃𝑉(𝜏|𝑆) and 
𝑆𝑒𝑛(𝜏|𝑆) for the set of indicator functions 1[𝑆 > 𝜏] across the range of thresholds 𝜏 
supported by the training data. Figure 3 shows how 𝑃𝑃𝑉(𝜏|𝑆) varies with 𝑆𝑒𝑛(𝜏|𝑆), 
with different values of 𝜏 tracing out the curve. At higher values of 𝜏, the indicator 
function 1[𝑆 > 𝜏] would have high PPV but low Sensitivity, as most true matches have 
scores less than 𝜏. At lower values of 𝜏, Sensitivity increases but PPV falls. Thus, as 𝜏 
moves left to right in Figure 2, the line in Figure 3 moves from bottom-right to top-left. 
We defined our objective function as the area under the Sensitivity-PPV curve. Because 
Sensitivity is defined with respect to the true matches, this AUCSen-PPV metric can be 
interpreted as the average PPV across percentiles of the true matches.  
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Figure 3. PPV vs. Sensitivity trade-off. The figure shows the relationship between sensitivity and 
specificity based on a single-threshold decision rule. Weights in the total similarity score were 
chosen via bootstrap aggregation to maximize area under the curve. 
 
We created an R function that took as an input a hypothesized set of weights 𝑤( , and 
then computed the total similarity score 𝑆 using those weights, and calculated the value 
of the objective function AUCSen-PPV in the training data. We chose the weights that 
maximized AUCSen-PPV in the training data using R’s optim package. In order to avoid 
over-fitting the weights to the training data, we applied bootstrap aggregation or 
“bagging”31,32 to this optimization procedure. The above procedure was repeated for 
five hundred bootstrapped samples from the training data, generating 500 sets of 
optimal weights. We inspected univariate and bivariate distributions of the optimal 
weights across the 500 bootstrapped samples to assess stability. We found no evidence 
of multiple optima. We then calculated the simple average across the 500 sets of 
weights, resulting in a final set of weights, which we applied to the vector of domain 
scores to create a total bootstrap-aggregated similarity score, 𝑆efg , shown in Figure 2, 
which predicts pairwise matches without overfitting the training data. The final weights 
were:  
 
𝑆efg = 	1.0547 ∗ scorelmnop + 1.0969 ∗ scoretuop + 1.1856 ∗ scorewxyzxn + 1.2794

∗ scorez|} 	+ 0.8955 ∗ score~n|� + 0.7152 ∗ scorelu�mtmp�	 
 
 
The bootstrap-aggregated similarity scores are on an arbitrary scale, ranging from about 
-10 to 80. To facilitate interpretability, we transformed 𝑆efg  into “true match” 

.6
.7

.8
.9

1
Po

si
tiv

e 
Pr

ed
ic

tiv
e 

Va
lu

e

.6 .7 .8 .9 1
Sensitivity



Working Paper. Version: October 10, 2018 

 22 

probabilities by running a logistic regression model of the manually-matched training 
data (1=match, 0=not a match) on 𝑆efg  and using the coefficients to obtain predicted 
probabilities. Figure 4 shows the fit of this model and illustrates the range of values of 
𝑆efg  for which the match is uncertain.   
 

𝑝efg = Pr(𝑚𝑎𝑡𝑐ℎ|𝑆efg) 	=
𝑒𝑥𝑝(−11.13	 + 	0.366 ∗ 𝑆efg)

1	 + 	𝑒𝑥𝑝(−11.13	 + 	0.366 ∗ 𝑆efg)
	

 
Finally, in the graph-based entity resolution step that follows, edge weights are specified 
as a distance (rather than similarity) metric, with higher values reflecting more dissimilar 
records and greater distance in the network. We therefore define edge weights as:  
 

𝑣efg = 	−𝑙𝑜𝑔(𝑝efg) 
 
 

 
Figure 4. Estimating match probabilities. 
Figure illustrates parameters for a logit transformation of the similarity scores into predicted 
probabilities based on the training data.  
 
 
3.5. Graph-based entity resolution 
 
Our initial plan was to choose the single best threshold value for 𝑝efg  across the whole 
dataset that would minimize over- and under-matching errors. However, after 
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implementing this strategy, we found that choosing a single threshold led to substantial 
over-matching, substantial under-matching, or both. Because of the large size of the 
dataset, thresholds that were low enough to achieve desired sensitivity also linked 
together records that should not have been linked. As a result, our initial efforts led to 
very large clusters of observations (e.g., >1M records linked together as one patient). 
The previous record linkage effort by CDW also encountered this issue. 
 
To solve this problem, we used graph concepts to guide the identification of unique 
patients. The scored comparisons can be thought of as weighted edges in a network, 
where the nodes represent unique sets of identifying information. Using R’s igraph 
package, we formed the full graph (network) defined by these nodes, edges, and 
assigned edge weights (𝑣efg) to the edges. Our goal was to identify clusters that 
represented unique patients. We developed our approach based on the following logic:  
 
1. A cluster of nodes cannot reflect just one single patient if the two most dissimilar 

nodes in the cluster do not belong to the same patient 
2. A cluster of nodes likely reflects a single patient if the two most dissimilar nodes 

in the cluster belong to the same patient 
3. The shortest-weighted-path distance between the two furthest nodes in the 

cluster is the weighted diameter, which is the sum of the edge-specific weights.  
4. Distance reflects dissimilarity, and weighted diameter thus captures the 

dissimilarity of the most dissimilar nodes in the cluster. 
 
By this logic, the weighted diameter can be interpreted as a measure of plausibility for 
whether the cluster represents a single patient. Because we defined the edge weights as 
𝑣efg = 	− log𝑝efg , the sum of the edge weights along the shortest weighted path 
between the furthest nodes is equal to the log-product of probabilities along this path. 
The weighted diameter of cluster	𝑐 is:  
 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑. 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 𝑑3 = \ 𝑣efg	
�124

= \ −log𝑝efg
�124

= − log�𝑝efg
�124

= − log𝑝3 
 
where 𝑝3 = exp	(−𝑑3) is defined as ∏ 𝑝efg�124  and reflects the similarity between the 
two farthest nodes. In the special case in which the weights for each of the edges along 
the diameter path are independent, then 𝑝3 is interpretable as the probability that the 
two most dissimilar nodes belong to the same patient. Independence would arise if the 
database errors leading to edges along the diameter path were orthogonal. For 
example, suppose A and B differ because of a typographic data entry error in the last 
name of A; and B and C differ because C reported age in lieu of date of birth. It is likely 
these errors are independent. (We note, however, that it is easy to construct cases of 
positive or negative dependence.) For a two-node cluster, the weighted diameter is 
simply the single edge score. 
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An attractive feature of weighted diameter is that it is a relevant metric regardless of 
the size of a cluster. A two-node cluster with a single edge can be subjected to the same 
decision rule as a 10-node cluster with a diameter that traverses four nodes. In both 
cases, weighted diameter captures how likely it is the two most dissimilar nodes in the 
cluster belong to the same patient. And in both cases, we set a minimum similarity 
threshold value of 𝑝3 ≥ 𝜃, which corresponds to a maximum distance threshold value of 
𝑑3 ≤ − log𝜃 for the weighted diameter of each cluster. Clusters with a weighted 
diameter less than the − log𝜃 threshold were deemed plausible patients and moved to 
the final dataset. If clusters had a weighted diameter greater than that threshold, then 
the lowest scoring edges were deleted and the cluster was reassessed. For clusters with 
>10 edges, we deleted the lowest-scoring 10% of edges; for clusters with <10 edges, we 
deleted the single lowest-scoring edge. This process was repeated iteratively until all 
clusters had a weighted diameter less than − log 𝜃 and had been moved to the final 
dataset. (See Figure 5 for an illustration of how a large cluster was broken up.) The final 
dataset consisted of a graph of the complete database in which all clusters were 
deemed plausible patients. We labeled the cluster identifiers as the BU_uniq_ID (Boston 
University unique identifier) and exported a file assigning all nodes to BU_uniq_ID’s. 
 
Mapping large graphs is computationally intensive. To speed up the approach, we 
partitioned the graph of the full dataset into discrete sets of clusters and ran the graph-
based entity resolution code separately on these partitions. Additionally, at the outset, 
we restricted clusters to no more than 100 nodes, dropping low-scoring edges until all 
clusters met this criterion. (We considered it implausible a patient would have more 
than 100 sets of identifying information.)  
 

 
Figure 5. Graph example (to be updated with real example) 
Figure shows how graph-based entity resolution breaks up a large cluster that resulted from the 
initial stage of probabilistic matching. Names are changed to preserve privacy. 
 

Boston University Slideshow Title Goes Here 

Graph methods to identify bad clusters 

≠ 

e.g., diameter > 2 
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To choose the optimal threshold for the weighted diameter, we conducted a grid-search 
over a range of possible values for the threshold. We assessed thresholds of 𝜃 =
0.25, 0.3,… 0.95. For each threshold, we implemented the graph-based entity 
resolution step for the full database, creating a different version of the BU_uniq_ID. We 
then assessed performance of these BU_uniq_ID’s with respect to the training data in 
terms of Sensitivity and PPV.  
 
Figure 6 shows the results of this grid search, plotting the Sensitivity and PPV of the 
algorithm when using different thresholds. The higher the value of 𝜃, the more clusters 
are broken up and the lower the Sensitivity, but higher the PPV. The less the clusters are 
broken up, the higher the Sensitivity, but the lower the PPV. The question of what the 
threshold should be depends on how the user values Sensitivity vs. PPV. Higher 
thresholds will lead to lower Sensitivity and higher PPV, and vice-versa. In the extreme, 
a threshold of 1 will be equivalent to exact matching. One common approach is to 
maximize the F-measure, which is the harmonic mean of Sensitivity and PPV: 𝐹 =
��A����
8∗��A∗���

. In Figure 6, shaded bands reflect isoquants (contours) for the F-measure.  
 
Based on the grid search we decided to use a weighted diameter threshold of 𝜃 = 0.7. 
Although 0.7 was outperformed in the training data by 0.825 and 0.6, we considered 
that the underperformance of 0.7 was likely a reflection of noise in the training data.  

 
Figure 6. Optimizing graph-based entity resolution. Figure shows Sensitivity and PPV of the 
linkage algorithm in the training data, using different thresholds for the weighted diameter. 

.35
.4
.45

.5

.6.65
.7.75

.775.8
.825.85.875

.9
.925.95

.8
.8

5
.9

.9
5

1
Po

si
tiv

e 
Pr

ed
ic

tiv
e 

Va
lu

e

.8 .85 .9 .95 1
Sensitivity



Working Paper. Version: October 10, 2018 

 26 

3.6 Computational performance 
 
The graph-based record linkage pipeline was implemented on Boston University's 
Shared Computing Cluster (SCC) in a secure environment. Most tasks were implemented 
in Stata-MP 15.0. The moving window search strategy was written in C/CUDA and 
executed on the cluster using graphic processing units (GPUs). The optimization of 
weights via BAGging and the graph-based entity resolution step were conducted in R 
3.2.3.  Table 4 shows computational time of each step. During training, Stata was used 
to assess performance of the algorithm compared to manually-coded data.  
 
Table 4. Computing procedures and time 
 
Linkage Step Software Computing Time 
1. Pre-processing Stata-MP ~3 h 
2. Search C/CUDA, Stata-MP ~5 h 
3. Scoring R, Stata-MP ~3 h 
4. Graph-based entity resolution R  ~4 h 
Notes: Steps 1,3 and 4 were executed using Intel Xeon Processor E5-2650x. Step 2 was executed using 2 
NVIDIA's V100 GPUs with 16GB of memory. 
 
4. LINKAGE RESULTS AND VALIDATION 
 
4.0 Preliminary results of the linkage project 
 
Results of an earlier version of the linkage were presented in April 2016, based on data 
on all CD4 counts and viral loads collected January 2004 – first quarter of 2015. 
Comparison of the results to the manually matched training data revealed estimated 
Sensitivity of 91.0% and PPV of 90.5%. The results presented here reflect updated data, 
improvements to the algorithm, and further review of the manually-matched data. 
 
4.1 Results of the graph-based record linkage 
 
The database included all CD4, VL, HB, ALT, CrAg, CrCl, and HIVPCR records in the NHLS 
CDW from January 2004 – December 2016. (An additional 978 results were 
inadvertently included from outside this range.) We started with 239.8 million CD4 
counts and viral loads, associated with 117.5 million specimens (Figure 7). After pre-
processing and removing exact duplicates, we were left with 62.8 million unique sets of 
identifying information. Our algorithm identified 11,632,222 unique patients from these 
data, who had at least one CD4 count or VL. These 11.6 million HIV patients had 70.9 
million specimens corresponding to 97.7 million CD4, VL, or one of the other laboratory 
tests used in HIV monitoring: HB, ALT, CrAg, CrCl, PCR; 44.7 million specimens were 
excluded because they corresponded to one of the other laboratory tests but were not 
linked to a patient with a CD4 or VL. Appendix Table 1 displays the distribution of tests 
by type and year in the dataset.  



Working Paper. Version: October 10, 2018 

 27 

Figure 7. Results of graph-based record linkage: flow chart.  
 

 
 
 
Table 5a shows the distribution of numbers of nodes in each cluster associated with an 
individual patient. Nearly half of patients had multiple sets of identifying information. 
However, just one percent had 10 or more sets of identifying information. The 
maximum was 71. Table 5b displays the distribution of laboratory episodes per patient. 
The median number of episodes was 3 with an IQR of 1 to 8. 28% of patients had just a 
single specimen. About half of patients had between 2 and 7 results. And a quarter had 
8 or more specimens. Only 1% of patients had more than 38 specimens. Table 5c 
displays the distribution of laboratory tests across test type in the linked cohort. Note 
that there can be multiple laboratory tests per specimen. There were 20.1 million viral 
loads, 32.5 million CD4 counts, and 45.0 million other tests conducted 2004-2016 in 
these patients.   

 154.8 million laboratory test  results 

117.5 million episode numbers 

62.8 million exact matches  
on first name, last name, date of birth, 

gender, facility 

115.6 million episode numbers,  
pre-processed 

432.9 million edges scored 

2 million removed due to invalid 
or missing data 

11.6 million unique patient IDs with at 
least one CD4 or VL, 

70.9 million episode numbers, 
97.7 million laboratory results  

 
Note: 44.7 million episodes excluded 
because the patient they were linked 

to had no CD4/VL) 
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Table 5a. Number of sets of identifying information (nodes) per BU_uniq_ID  
 

Nodes per Patient (#) Frequency Percent Cumulative  
Percent 

1 6,327,257 54.4 54.4 
2 1,954,408 16.8 71.2 
3 1,160,172 10.0 81.2 
4 777,756 6.7 87.9 
5 517,944 4.5 92.3 
6 337,447 2.9 95.2 
7 215,129 1.9 97.1 
8 133,815 1.2 98.2 
9 82,894 0.7 98.9 
10+ 125,400 1.1 100 
Note: Unique patients were identified while setting the threshold for weighted 
diameter to 0.7. 

 
 

Table 5b. Number of specimens per patient (wd=70) 

Episodes per patient (#) Frequency Percent Cumulative  
Percent 

1 3,254,841  28.0   28.0  
2 1,719,683  14.8   42.8  
3 1,136,989  9.8   52.5  
4 861,037  7.4   59.9  
5 668,485  5.8   65.7  
6 552,676  4.8   70.4  
7 463,988  4.0   74.4  
8 392,856  3.4   77.8  
9 333,329  2.9   80.7  
10-14 1,060,424  9.1   89.8  
15-19 503,270  4.3   94.1  
20-49 648,691  5.6   99.7  
50-99 34,058  0.3   100.0  
100+ 1,895  0.0   100.0  

Total 11,632,222 100.0  

Note: Unique patients were identified while setting the threshold for weighted 
diameter to 0.7. 
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Table 5c. Laboratory tests among HIV patients identified in the linked cohort  
 Test type Number of Results Percent 
HIV monitoring labs CD4 32,541,453 33.3 

Viral Load 20,152,341 20.6 
Labs used in ART work-
up and HIV 
confirmatory testing 

ALT 14,510,715 14.9 
CRAG 777,627 0.8 
Creatinine 5,558,418 5.7 
HIV Elisa/PCR 3,261,202 3.3 
Hemoglobin 20,907,431 21.4 

 Total 97,709,187 100 
Note: Unique patients were identified while setting the threshold for weighted diameter to 0.7. 

 
4.2 Validation of the linkage 
 
We validated the linkage algorithm using three approaches. Our primary approach was 
to assess the Sensitivity and PPV of the BU_uniq_ID compared to the manually-matched 
validation set, based on our random sample of CD4/VL results from Fall 2014. We also 
computed corrected Sensitivity/PPV measures after a second round of manual review of 
this validation set.  We computed standard errors/confidence intervals using the cluster 
bootstrap, resampling reference Episode_No’s (specimens) from the validation set. 
 
We also assessed sensitivity in relation to two other identifiers available for a portion of 
the database: Folder Number (17% of episodes) and National ID Number (2% of 
episodes). We cleaned folder numbers eliminating garbage codes, e.g. “NO FOLDER 
NUMBER”, codes with fewer than 7 digits (which could correspond to multiple patients), 
and other codes that were likely to be non-unique or errors. Manual inspection revealed 
that even after cleaning, there were a substantial number of folder numbers that were 
clearly non-unique (including some associated with over 10 patients). However, we 
could not detect systematic patterns to enable further cleaning. Sensitivity estimates 
based on the folder number are likely to be biased downwards due to the presence of 
these non-unique codes. To ameliorate this problem, we also combined folder numbers 
with facility identifiers because different facilities may use the same folder number 
(however, in doing so we also eliminate transfers). National ID numbers were restricted 
to valid ID numbers, defined as those containing exactly thirteen digits and for which 
the “check digit” value in the final number was valid based on the Luhn algorithm. 
 
Third, we assessed various metrics for each identifier (BU_uniq_ID_wd70, EM_ID, 
CDW_uniq_ID) in the dataset such as the number of unique patients, numbers of 
patients with many specimens, numbers jumping back and forth across provinces, 
numbers with multiple sexes, numbers with large CD4 count swings (>500 cells per year 
over a period of at least 6 months), and numbers with the first record being a viral load 
(by guidelines first test should be CD4). 
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Table 6. Validity of Unique Patient Identifiers 

Unique identifier Sensitivity  Positive Predictive 
Value 

  F-measure  

Original Corrected  Original Corrected  Corrected  

Exact match ID 59.5% 53.4%  100.0% 100.0%  69.6%  

CDW Unique ID 71.0% 64.0%  99.3% 100.0%  78.1%  

BU Unique ID (wd=50)  96.5% 96.5%  91.5% 97.7%  97.1%  

BU Unique ID (wd=70)  95.2% 93.7%  93.3% 98.6%  96.1%  

BU Unique ID (wd=90)  91.9% 88.4%  94.8% 99.5%  93.6%  

 
Table 6, Appendix Table 2, and Table 7 display validation results. BU_uniq_ID (with a 
weighted diameter of 0.7) attained Sensitivity of 93.7% (95% CI 92 to 96) and PPV of 
98.6% (95% CI 98 to 100) vis-à-vis the revised validation set. Results were broadly similar 
comparing BU_uniq_ID_wd70 to the original validation set and the training data. 
 
The BU_uniq_ID achieved similar PPV as the existing CDW_uniq_ID and exact matching 
(98.6 vs. 100.0% vs. 100.0%), while attaining large improvements in Sensitivity (93.7% 
vs. 64.0% vs. 53.4%). Due to the greater sensitivity of the graph-based algorithm, the 
BU_uniq_ID identified smaller total numbers of patients relative to the CDW_uniq_ID 
and exact matching (11.6M vs. 18.5M vs. 20.1M) and fewer patients currently on ART 
(4.2M vs. 5.3M vs. 5.5M). 11.6M is at the upper range of plausible values for the total 
number of patients that have ever sought care in South Africa’s national HIV program. 
Indeed, as the Sensitivity estimates indicate, there is still scope for further matching – 
although our algorithm was not able to accurately identify further matches. Assessment 
of the distribution of cluster sizes shows that the BU_uniq_ID was able to increase 
sensitivity by substantially increasing the number of mid-to-large clusters (10-25 sets of 
unique identifying information) while having no effect on the number of very large 
clusters (>25 sets of unique identifying information). In fact, whereas the CDW_uniq_ID 
identified three “patients” with over 1000 specimens; the BU_uniq_ID identified no such 
patients. 
 
Sensitivity of the BU_uniq_ID was very high (98.5%) vis-à-vis national ID numbers, albeit 
in the 2% of episodes that contained national ID numbers. Sensitivity was relatively high 
compared to folder numbers (89.8%) and when combining folder numbers with facility 
identifiers (92.8%). As a final indicator of improved sensitivity, the BU_uniq_ID cut in 
half the number of “patients” whose first test was a viral load (contrary to guidelines), 
from over 13% of “patients” identified by the CDW_uniq_ID or exact matching to 6.5%.  
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Table 7. Additional validation results 
 
Algorithm Exact match CDW unique ID BU unique ID 
A. Numbers of patients identified    

Unique Patients 20,212,961 18,459,757 11,632,222 
Ever on ART 9,884,397 9,069,305 5,945,339 

On ART in 2015/16 5,515,572 5,280,204 4,191,525 
    
B. Performance relative to manually-matched quasi-gold standard 

Sensitivity 59.5% 71.0% 95.2% 
Positive Predictive Value 100.0% 99.3% 93.3% 

Corrected Sena 53.4% 64.0% 93.7% 
Corrected PPVa 100.0% 100.0% 98.6% 

    
C. Performance relative to existing IDs     
Sensitivity relative to Folder_No (17% of specimens)b 76.3% 79.6% 89.8% 

Sensitivity relative to Folder_No-X-Facilityb  81.3% 84.9% 92.8% 
Sensitivity relative to National ID (2% of specimens)b 87.9% 95.3% 98.5% 

    
D. Measures internal to the dataset    

Evidence of over-matching      
  # with >10 nodes* 6900 10,001 125,400 
  # with >25 nodes* 1110 207 206 

  # with >100 specimens* 1379 1303 1895 
  # with >1000 specimens* 0 3 0 

  # with both M and F sex 2.1% 2.7% 4.8% 
  # changing provinces >5X 0.8% 1.0% 2.4% 

  # changing facilities >5X 5.8% 7.4% 18.2% 
  # with ΔCD4 > 500 cells/year 4.2% 4.3% 4.8% 

    
Evidence of under-matching    
  # with VL and no prior CD4 13.4% 13.2% 6.5% 

    
*Notes: Exact matches are on first, last, DOB. aCorrected sensitivity and PPV are based on re-review of the 
gold standard dataset. bSensitivity, for Validation Approach 2, is defined as the proportion of links 
identified by folder number or national ID also identified by a given algorithm. Ever on ART is defined as 
ever having had a VL. On ART in 2016 is defined as any VL in 2015/2016, with a 2-year window to ensure 
that individuals who are substantially late for their 12-monthly VL are included. Nodes = unique sets of 
identifying information defined by first/last/DOB/gender/facility/province. Specimens = Episode_No’s. 
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5. CONCLUSION 
 
We developed and validated a record linkage algorithm that combined traditional 
scoring methods with graph-based concepts to guide the linkage. The graph-concept 
utilized – weighted diameter – captures the similarity of the most dissimilar nodes in a 
cluster and can therefore be used to identify clusters that could not plausibly reflect 
individual patients. Although our approach is not the first to use information on graph 
structure in record linkage, to our knowledge it is among the first to demonstrate the 
benefits of using information on weighted diameter in a large health dataset. Our 
approach incorporates information about both the size/shape of clusters and their 
locations within the broader network which is not traditionally utilized in record linkage 
procedures. Exploiting graph information has the potential to substantially improve the 
scalability of record linkage procedures in large datasets. 
 
We applied the algorithm to the complete laboratory records from South Africa’s 
national HIV program, as compiled in the NHLS CDW. We identified 11.6 million unique 
patients with 97.7 million laboratory tests, from 61 million different sets of identifying 
information. Comparing the results to a manually-matched validation set, we achieved 
93.7% Sensitivity and 98.6% PPV. We identified numbers of patients on HIV treatment 
similar to the numbers reported by South Africa’s NDOH.  
 
By applying a novel graph-based record linkage algorithm to the NHLS database, we 
generated and validated a unique patient identifier, enabling longitudinal patient-level 
analysis and incorporation of longitudinal concepts (such as retention) into monitoring 
and evaluation dashboards. To our knowledge, the linked NHLS database 
represents the first nationwide HIV cohort in any low- or middle-income country. In 
early work, we have used this cohort to quantify the national HIV care cascade, to assess 
geographic heterogeneity in viral suppression, to assess rates of transfer across 
facilities, to quantify trends in clinical presentation, and to assess the shifting burden of 
adolescents on HIV treatment.  In future work, we plan to assess the feasibility of real-
time assignment of this unique identifier and utilization of the record linkage algorithm 
to improve patient care. 
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Appendix Figure 1. Distribution of Similarity Scores for Each Domain Among “True Matches” 
Identified in the Manually-Matched Training Data. Box plot shows distributions of sub-scores 
from each of the domains in the comparison vector: first name, last name, gender, date of birth, 
province, and facility. Data are limited to 3899 comparisons coded as “true matches” in the 
(revised) manually-matched training data. The boxes denote the interquartile range, the midline 
is the median, and the whiskers denote 5th and 95th percentiles of the distribution.   
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Appendix Table 1. Number of laboratory test results by type and year 
 
Panel A. Complete Data Extract (n=154.8 million) 

 HIV monitoring labs Additional tests used in HIV treatment work-up  
Year CD4 Viral Load ALT CrAg Creatinine  HIV PCR Hemoglobin Total 
         
2004 200,074 19,814 509,049 0 0 476,007 2,188,976 3,393,920 

2005 597,682 106,731 808,012 0 9 537,808 2,954,115 5,004,357 
2006 976,332 292,406 1,091,489 0 0 619,128 3,405,571 6,384,926 

2007 1,309,862 478,732 1,309,045 0 1 660,174 3,595,749 7,353,563 

2008 1,783,554 737,468 1,675,214 0 825 803,138 4,067,444 9,067,643 
2009 2,023,709 875,474 1,965,300 2929 67 797,949 4,410,506 10,075,934 

2010 3,201,090 1,098,680 2,258,057 22,801 660,121 828,878 4,751,585 12,821,212 

2011 3,825,084 1,537,266 2,541,588 31,262 2,267,588 744,548 5,037,328 15,984,664 
2012 3,899,409 1,930,500 2,100,262 53,743 2,169,296 715,063 3,695,773 14,564,046 

2013 3,875,588 2,378,831 1,595,704 108,400 1,423,715 725,002 2,598,520 12,705,760 

2014 3,926,670 2,820,047 2,025,287 141,879 1,600,747 804,297 3,760,334 15,079,261 
2015 3,622,466 3,610,771 3,408,552 261,117 1,916,261 920,569 7,458,970 21,198,706 

2016 3,411,652 4,289,947 3,249,240 409,836 1,440,157 963,966 7,406,676 21,171,474 

Total 32,653,172 20,176,667 24,536,799 1,031,967 11,478,787 9,596,527 55,331,547 154,805,466 
 
Panel B. Results linked to HIV patients identified in linkage (n=97.7 million) 

 HIV monitoring labs Additional tests used in HIV treatment work-up  
Year CD4 Viral Load ALT CrAg Creatinine  HIV PCR Hemoglobin Total 
         
2004 192,123 18,849 119,790 0 0 136,456 391,896 859,114 

2005 580,876 105,162 306,555 0 1 226,304 710,822 1,929,720 
2006 957,880 289,603 505,477 0 0 312,175 969,864 3,034,999 

2007 1,293,151 475,323 698,692 0 0 337,842 1,171,444 3,976,452 

2008 1,767,369 733,696 1,009,775 0 316 414,713 1,496,058 5,421,927 
2009 2,006,579 871,603 1,261,655 775 53 398,235 1,742,092 6,280,992 

2010 3,178,807 1,093,519 1,486,696 8,379 314,139 372,682 1,993,163 8,447,385 

2011 3,809,838 1,529,635 1,706,235 15,077 1,247,948 245,420 2,158,181 10,712,334 
2012 3,892,324 1,926,688 1,456,931 28,935 1,185,088 179,575 1,676,614 10,346,155 

2013 3,868,985 2,373,954 1,112,687 73,238 658,550 166,181 1,281,708 9,535,303 

2014 3,919,564 2,813,138 1,271,004 100,858 719,382 168,509 1,661,921 10,654,376 
2015 3,615,553 3,598,710 1,867,337 204,964 841,286 161,644 2,889,233 13,178,727 

2016 3,405,709 4,277,149 1,707,878 345,401 591,655 131,799 2,764,413 13,224,004 

Total 32,488,758 20,107,029 14,510,712 777,627 5,558,418 3,251,535 20,907,409 97,601,488 
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Appendix Table 2, Sensitivity and PPV with 95% CIs and estimates relative to test and training 
data 

Unique identifier Sensitivity  Positive Predictive 
Value 

  F-measure  

Original Corrected  Original Corrected  Corrected  

Exact match ID: Test 
Test 95%CI 

Training 
Training 95%CI 

59.5% 
(55-64) 
58.8% 

(55-63) 

53.4% 
(50-57) 
 55.5% 
(52-59) 

 100.0% 
(100-100) 

100.0% 
(100-100) 

100.0% 
100-100) 

100.0% 
(100-100) 

 69.6% 
 

71.4% 

 

CDW Unique ID: Test 
Test 95%CI 

Training 
Training 95%CI 

71.0% 
(67-75) 
69.0% 

(65-73) 

64.0% 
(60-68) 
 65.7% 
(62-70) 

 99.3% 
(99-100) 

93.0% 
(87-99) 

100.0% 
(100-100) 

93.9% 
(88-99) 

 78.1% 
 

77.3% 

 

BU Unique ID (50): Test 
Test 95%CI 

Training 
Training 95%CI  

96.5% 
(95-98) 
95.6% 

(94-97) 

96.5% 
(95-98) 
 97.2% 
(96-98) 

 91.5% 
(89-93) 
 87.6% 
(85-90) 

97.7% 
(96-99) 
  94.4% 
(93-96) 

 97.1% 
 

95.8% 

 

BU Unique ID (70): Test 
Test 95%CI 

Training 
Training 95%CI  

95.2% 
(93-97) 
93.7% 

(92-96) 

93.7% 
(92-96) 
 94.7% 
(93-96) 

 93.3% 
(91-95) 
 89.7% 
(87-92) 

98.6% 
(98-100) 
   96.1% 
(95-98) 

 96.1% 
 

95.4% 

 

BU Unique ID (90): Test 
Test 95%CI 

Training 
Training 95%CI  

91.9% 
(90-94) 
90.4% 

(88-93) 

88.4% 
(86-91) 
 90.1% 
(88-92) 

 94.8% 
(93-97) 
 92.8% 
(90-95) 

99.5% 
(99-100) 

  98.0% 
(97-99) 

 93.6% 
 

93.9% 
 

 

Note: 95% CIs are constructed via bootstrapping clusters of records associated with the reference 
episode_no’s randomly sampled in the manual matching exercise.  
 


