NS 543 Concepts in Physics IV: Electrostatics, Magnetostatics, and DC Circuits Schedule

N.B.: The schedule below has not yet been adapted to the blended schedule of online and in-class meetings. Course readings may vary between course offerings.

Session 1: Charge, Conductors and Insulators, Induced Charge, Coulomb's Law

Pre-test

Sections from Cutnell & Johnson: 18.1 – 18.5 **Reading assignment for Session 3**:

• Excerpt from I.B. Cohen's *Benjamin Franklin's Experiments* (1941). Chapter Two: Electricity Before Franklin. Read Sections 1 and 2, pp. 21 – 47.

Session 2: Electric Field, Charge on Conductors

Sections from Cutnell & Johnson: 18.6 – 18.11 *Web assignment 1*

Session 3: Electric Potential Energy and Electric Potential.
Sections from Cutnell & Johnson: 19.1 – 19.4
Laboratory Experiment: Electric Fields and Potentials
Philosophy/History/Education Research: Overview of the history of electricity.
Reading assignment for Session 5:
Benjamin Franklin: Papers on Electricity collected by Robert A. Morse. Read Part III.
Experiments and theory of the Leyden jar. Read Franklin's theory and try some experiments.

ONLINE Session 4: Connecting Potential and Field; Capacitors and Dielectrics
 Sections from Cutnell & Johnson: 19.5
 Home Laboratory Experiment: Construct a Leyden Jar following Ben Franklin as my Lab
 Partner: Section I. Bring your Leyden Jar for Session 7.
 Web assignment 2

Session 5: Current, Batteries, Resistance, and Ohm's Law
Sections from Cutnell & Johnson: 20.1 – 20.7
Laboratory Experiment: Ohm's Law
Reading assignment for Session 7:
Benjamin Franklin: Papers on Electricity collected by Robert A. Morse. Observations and Conjectures, Sections 1 through 18 (pp. 36 – 43) and Sections 33 – 36 (pp. 51 – 53).

Morse's annotated version is Ben Franklin as my Lab Partner, Part VI.

ONLINE Session 6: Series and parallel circuits, ammeters and voltmeters
 Sections from Cutnell & Johnson: 20.8 – 20.9. 20.13 – 20.14
 Chapter 2 from *Structure of Scientific Revolutions* by Thomas Kuhn.
 Web assignment 3

Session 7: Franklin's theory

Philosophy/History/Education Research: Franklin's electricity theory and experiments.

ONLINE Session 8: Kirchhoff's Rules, RC Circuits. Sections from Cutnell & Johnson: 20.10 – 20.11 Web assignment 4

Session 9: Midterm Exam

Laboratory Experiment: RC Circuits

- ONLINE. Session 10: Magnetic Fields Sections from Cutnell & Johnson: 21.1, 21.7 Web assignment 5 Reading assignments for online discussion and summative Session 13:
 - McDermott, L. and Shaffer, P. (1992). Research as a guide for curriculum development: An example from introductory electricity. Part I: Investigation of student understanding. *American Journal of Physics*, 60, 994-1003.
 - Shaffer, P. and Shaffer, P. and McDermott, L. (1992). Research as a guide for curriculum development: An example from introductory electricity. Part II: Design of instructional strategies. *American Journal of Physics*, 60, 1003-1013.
 - Cohen, R., Eylon, B., Ganiel, U. (1983). Potential difference and current in simple electric circuits: A study of students' concepts. *American Journal of Physics*, 51, 407-412.
 - Heller, P.M. and Finley, F.N. (1992). Variable Uses of Alternative Conceptions: A Case Study in Current Electricity. *Journal of Research in Science Teaching*, 29, 259-275.

Session 11: The magnetic force on charged particles and wires Sections from Cutnell & Johnson: 21.2.21.4 Laboratory Experiment: Charge-to-mass ratio of the electron

ONLINE Session 12: Magnetic fields produced by current Sections from Cutnell & Johnson: 21.5 – 21.6 Web assignment 6

Session 13: Forces on wires, torques on wire loops; Magnetic materials
 Sections from Cutnell & Johnson: 21.8 – 21.10
 Laboratory Experiment: Ampere's Law
 Philosophy/History/Education Research: Misconceptions on electricity.
 Take home exam handed out
 Electrostatic generators due.

Session 14: Wrap-up

Student presentations. Take home exam due

Bibliography

Selections from primary sources

Morse, R. A. (2004). A Comprehensive Collection of Franklin's Electrical Works: The Electrical Writings of Benjamin Franklin. http://www.tufts.edu/as/wright_center/fellows/bob_morse_04/index.html Specifically, refer to Letter III to Peter Collinson (1747) and to Additional Papers for Peter Collinson, Opinions and Conjectures (1750).

Selections from secondary sources

Cohen, I.B. (1941). Benjamin Franklin's Experiments. Cambridge: Harvard University Press.

Selections from Physics Education Research Literature

McDermott, L. and Shaffer, P. (1992). Research as a guide for curriculum development: An example from introductory electricity. Part I: Investigation of student understanding. *American Journal of Physics*, *60*, 994-1003.

Shaffer, P. and McDermott, L. (1992). Research as a guide for curriculum development: An example from introductory electricity. Part II: Design of instructional strategies. *American Journal of Physics*, *60*, 1003-1013.

Cohen, R., Eylon, B., Ganiel, U. (1983). Potential difference and current in simple electric circuits: A study of students' concepts. *American Journal of Physics*, *51*, 407-412.

Heller, P.M. and Finley, F.N. (1992). Variable Uses of Alternative Conceptions: A Case Study in Current Electricity. *Journal of Research in Science Teaching*, *29*, 259-275.