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Abstract
We address the problem of controlling a noisy differential drive mobile robot such that the probability of satisfying a
speciÞcation given as a bounded linear temporal logic formula over a set of properties at the regions in the environment
is maximized. We assume that the vehicle can determine its precise initial position in a known map of the environment.
However, motivated by practical limitations, we assume that the vehicle is equipped with noisy actuators and, during
its motion in the environment, it can only measure the angular velocity of its wheels using limited accuracy incremental
encoders. Assuming the duration of the motion is Þnite, we map the measurements to a Markov decision process (MDP).
We use recent results in statistical model checking to obtain an MDP control policy that maximizes the probability of
satisfaction. We translate this policy to a vehicle feedback control strategy and show that the probability that the vehicle
satisÞes the speciÞcation in the environment is bounded from below by the probability of satisfying the speciÞcation on the
MDP. We illustrate our method with simulations and experimental results.
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1. Introduction

Robot motion planning and control has been widely stud-
ied in the last twenty years. In ÒclassicalÓ motion planning
problems (LaValle, 2006), the speciÞcations are usually
restricted to simple primitives of the type Ògo fromA to
B and avoid obstaclesÓ, whereA and B are two regions
of interest in some environment. Recently, temporal log-
ics, such as linear temporal logic (LTL) and computational
tree logic (CTL) (Baier and Katoen, 2008; Clarke et al.,
1999) have become increasingly popular for specifying
robotic tasks (see, for example, Loizou and Kyriakopou-
los, 2004; Kress-Gazit et al., 2007; Karaman and Frazzoli,
2008; Kloetzer and Belta, 2008b; Fainekos et al., 2009;
Wongpiromsarn et al., 2009; Bhatia et al., 2011). It has
been shown that temporal logics can serve as rich languages
capable of specifying complex motion missions such as Ògo
to regionA and avoid regionB unless regionsC or D are
visited.Ó

In order to use existing model checking tools for motion
planning (see Baier and Katoen, 2008), many of the above-
mentioned works rely on the assumption that the motion
of the vehicle in the environment can be modeled as a
Þnite system (Clarke et al., 1999) that is either determinis-
tic (applying an available action triggers a unique transition
(see, for example, Ding et al., 2012)) or nondeterministic

(applying an available action can enable multiple transi-
tions, with no information on their likelihoods (see, for
example, Kloetzer and Belta, 2008a)). Recent results show
that, if sensor and actuator noise models can be obtained
from empirical measurements or an accurate simulator, then
the robot motion can be modeled as a Markov decision
process (MDP), and probabilistic temporal logics, such as
probabilistic CTL (PCTL) and probabilistic LTL (PLTL),
can be used for motion planning and control (see Lahijanian
et al., 2012).

However, robot dynamics are normally described by con-
trol systems with state and control variables evaluated over
inÞnite domains. A widely used approach for temporal logic
veriÞcation and control of such a system is through the con-
struction of a Þnite abstraction (Tabuada and Pappas, 2006;
Girard, 2007; Kloetzer and Belta, 2008b; Yordanov et al.,
2012). Even though recent works discuss the construction
of abstractions for stochastic systems (see, for example,
DÕInnocenzo et al., 2008; Julius and Pappas, 2009; Abate
et al., 2011), the existing methods are either not applicable
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due to nonlinearities in robot dynamics or are computation-
ally very expensive due to the partition-based abstractions
of the state and control spaces.

In this paper, we consider a vehicle whose performance
is measured by the completion of time constrained temporal
logic tasks. In particular, we provide a conservative solu-
tion to the problem of controlling a stochastic differential
drive mobile robot such that the probability of satisfying
a speciÞcation given as a bounded linear temporal logic
(BLTL) formula over a set of properties at the regions in
the environment is maximized. We assume that the vehi-
cle can determine its precise initial position in a known
map of the environment. The actuator noise is modeled as a
random variable with a continuous probability distribution
supported on a bounded interval, where the distribution is
obtained through experimental trials. Also, we assume that
the vehicle is equipped with two limited accuracy incre-
mental encoders, each measuring the angular velocity of
one of the wheels, as the only means of measurement avail-
able. These assumptions are motivated by realistic robotic
applications with communication constraints, e.g. in GPS-
denied environments. For example, the robot can use GPS
only from time to time to localize itself on a known map of
the environment. In between GPS readings, the robot uses
its (noisy) incremental encoders and maximizes the proba-
bility of satisfying the speciÞcation until a new GPS reading
can be made.

Assuming the duration of the motion is Þnite, through
discretization, we map the incremental encoder measure-
ments to an MDP. By relating the MDP to the vehicle
motion in the environment, the vehicle control problem
becomes equivalent to the problem of Þnding a control pol-
icy for an MDP such that the probability of satisfying the
BLTL formula is maximized. Due to the size of the MDP,
Þnding the exact solution is prohibitively expensive. We
trade-off correctness for scalability, and we use compu-
tationally efÞcient techniques based on sampling. Specif-
ically, we use recent results in statistical model checking
(SMC) for MDPs (Henriques et al., 2012) to obtain an MDP
control policy and a bayesian interval estimation (BIE)
algorithm (Zuliani et al., 2010) to estimate the probability
of satisfying the speciÞcation. We show that the probabil-
ity that the vehicle satisÞes the speciÞcation in the original
environment is bounded from below by the maximum prob-
ability of satisfying the speciÞcation on the MDP under the
obtained control policy.

The main contribution of this work lies in bridging the
gap between low level sensory inputs and high level tem-
poral logic speciÞcations. We develop a framework for the
synthesis of a vehicle feedback control strategy from such
speciÞcations based on a realistic model of an incremen-
tal encoder. This paper extends our previous work (Cizelj
and Belta, 2012) of controlling a stochastic version of a
Dubins vehicle such that the probability of satisfying a tem-
poral logic statement, given as a PCTL formula, over some
environmental properties, is maximized. SpeciÞcally, the
approach presented here allows for richer temporal logic

speciÞcations, where the vehicle performance is measured
by the completion of time constrained temporal logic tasks.
Additionally, in order to deal with the increase in the size
of the problem we use computationally efÞcient techniques
based on sampling. In Henriques et al., 2012, the authors
use SMC for MDPs to solve a motion planning problem for
a vehicle moving on a Þnite grid, assuming perfect localiza-
tion,when the task is given as a BLTL formula. We adopt
this approach to control a vehicle with continuous dynam-
ics and allowing for uncertainty in its state. Some of the
results in this paper were presented without proofs in Cizelj
and Belta, 2013. In this paper, we include all the technical
details and a complexity analysis of the overall approach.
In addition, this paper contains a detailed description of our
experimental validations and two more case studies.

This work is related to Lahijanian et al., 2012, where
the problem of maximizing the probability of satisfying a
PCTL formula over a set of regions was considered. In
Lahijanian et al., 2012, the MDP model of the robot was
constructed by partitioning the environment and perform-
ing extensive experiments and simulations. The approach
proposed here avoids this expensive process. This paper is
also closely related to ÒclassicalÓ dynamic programming
(DP)-based approaches (Alterovitz et al., 2007). In these
problems, the set of allowed speciÞcations is restricted to
reaching a given destination state, whereas our BLTL con-
trol framework allows for richer, temporal logic speciÞca-
tions and multiple destinations. In Shkolnik et al., 2009,
the authors solve the problem of reaching a given destina-
tion while avoiding obstacles using the rapidly exploring
random tree (RRT) algorithm that takes into account local
reachability, as deÞned by differential constraints. In our
approach, when relating the MDP to the vehicle motion in
the environment, reachable sets are also considered, but we
take into account reachability under uncertainty. Moreover,
our approach produces a feedback control strategy and a
lower bound on the probability of satisfaction, whereas the
method presented in Shkolnik et al., 2009 only returns a
collision-free trajectory. In addition, these methods differ
from our work since they require precise state of the vehi-
cle, at all times. One approach for planning under motion
uncertainty (Melchior and R.Simmons, 2007), called the
particle RRT algorithm, explicitly considers uncertainty in
its domain. Each extension to the search tree is treated
as a stochastic process and is simulated multiple times.
Even though this method produces a collision-free trajec-
tory together with the probability of following the path, it
is restricted to a simple task of reaching a given destina-
tion state and requires precise state information. In Grady
et al., 2013 the authors solve a motion planning problem for
a car-like vehicle under uncertainty by posing the problem
as a partially observable MDP (POMDP). In particular, the
framework Þnds a policy that provides the optimal action
given all past noisy sensor observations, while abstracting
some of the motion constraints to reduce computation time.
The same problem has been solved in Bai et al., 2013 where
the authors present a simple algorithm for ofßine POMDP
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planning in the continuous state space that produces a
POMDP policy, which can be executed efÞciently online
as a Þnite-state controller. However, these approaches are
restricted to simple motion planning problems (Ògo fromA
to B while avoiding obstaclesÓ).

The remainder of the paper is organized as follows. In
Section 2, we introduce the necessary notation and review
some preliminaries. We formulate the problem and outline
the approach in Section 3. In Sections 4Ð7 we explain the
construction of the MDP and the relation between the MDP
and the motion of the vehicle in the environment. The vehi-
cle control strategy is obtained in Section 8. Case studies
and experimental results illustrating our approach are pre-
sented in Section 9. We conclude with Þnal remarks and
directions for future work in Section 10.

2. Preliminaries

In this section we provide a short and informal introduction
to MDP and BLTL. For details about MDPs the reader is
referred to Baier and Katoen (2008) and for more infor-
mation on BLTL to Jha et al. (2009) and Zuliani et al.
(2010).

DeÞnition 2.1 (MDP) . An MDP is a tuple M =
( S,s0,Act,A,P), where S is a Þnite set of states; s0 ! S is
the initial state; Act is a Þnite set of actions; A: S " 2Act

is a function specifying the enabled actions at a state s;
P : S# Act # S " [0, 1] is a transition probability func-
tion such that for all states s! S and actions a! A( s):∑

s$! S P( s,a, s$) = 1, and for all actions a /! A( s) and
s$ ! S: P( s,a, s$) = 0.

A control policy for an MDP resolves nondeterminism
in each states by providing a distribution over the set of
actions enabled ins.

DeÞnition 2.2 (MDP control policy) . A control policyµ

of an MDP M is a functionµ : S # Act " [0, 1], s.t.,∑
a! A(s) µ( s, a) = 1 andµ( s, a) > 0 only if a is enabled in s.

A control policy for which eitherµ( s, a) = 1 or µ( s, a) = 0
for all pairs ( s, a) ! S# Act is called deterministic.

A control policyµ resolves all nondeterministic choices
in an MDP. Given an initial states0, an actiona ! A( s0)
is applied with probabilityµ( s0, a), and once the action
is applied, the next states$ is obtained by sampling from
the probability distributionP, i.e. the next state iss$ with
probabilityP( s0, a, s$), and so on.

We employ BLTL to describe high level motion spec-
iÞcations. BLTL is a variant of LTL (Baier and Katoen,
2008), for which it has been shown that Þnite simula-
tions of bounded duration are always sufÞcient for model
checking (Zuliani et al., 2010). A detailed description of
the syntax and semantics of BLTL is beyond the scope
of this paper and can be found in Jha et al. (2009) and

Zuliani et al. (2010). Roughly, formulas of BLTL are con-
structed by connecting properties from a set of proposi-
tion ! using Boolean operators (Â (negation),% (con-
junction), & (disjunction)), and temporal operators (U' t

(bounded until),F' t (bounded Þnally), andG' t (bounded
globally), wheret ! R( 0 is the time bound parameter
andR( 0 denotes the set of nonnegative real numbers). The
semantics of BLTL formulas are given over inÞnite traces
σ = ( o1, t1) ( o2, t2) . . ., oi ! 2!, ti ! R( 0, i ( 1, where
oi is the set of satisÞed propositions andti is the time spent
satisfyingoi. However, in Zuliani et al. (2010) the authors
show that model checking a trace on a BLTL formula is
well-deÞned and can be based on only a Þnite preÞx of the
trace of bounded duration. A trace satisÞes a BLTL formula
φ if φ is true at the Þrst position of the trace;F' tφ1 means
that φ1 will be true within t time units;G' tφ1 means that
φ1 will remain true for the nextt time units; andφ1U' tφ2

means thatφ2 will be true within the nextt time units andφ1

remains true until then. More expressivity can be achieved
by combining the above temporal and Boolean operators.

3. Problem formulation and approach

3.1. Problem formulation

Motion model: A differential drive mobile robot
(LaValle, 2006) is a vehicle having two main wheels, each
of which is attached to its own motor, and a third wheel
which passively rolls along preventing the robot from
falling over. In this paper, we consider a stochastic version
of a differential drive mobile robot, which captures actuator
noise:
⎡

⎣
úx
úy
úθ

⎤

⎦ =

⎡

⎣
r
2( ur + ϵr + ul + ϵl ) cos(θ )
r
2( ur + ϵr + ul + ϵl ) sin(θ )

r
L ( ur + ϵr ) ul ) ϵl )

⎤

⎦ , ur ! Ur, ul ! Ul

(1)
where (x, y) ! R2 andθ ! [0, 2π ) are the position and ori-
entation of the vehicle in a world frame,ur andul are the
control inputs (angular velocities before being corrupted
by noise),Ur and Ul are control constraint sets, andϵr

and ϵl are random variables modeling the actuator noise
with continuous probability density functions supported on
the bounded intervals [ϵmin

r , ϵmax
r ] and [ϵmin

l , ϵmax
l ], respec-

tively. L is the distance between the two wheels andr is
the wheel radius. We denote the state of the system by
q = [x, y, θ ]T ! SE( 2).

Motivated by the fact that the time optimal trajectories
for the bounded velocity differential drive robots are com-
posed only of turns in place and straight lines (Balkcom and
Mason, 2000), we assumeUr andUl are Þnite, but we make
no assumptions on optimality. We deÞne

Wi = { u + ϵ|u ! Ui, ϵ ! [ϵmin
i , ϵmax

i ]}, i ! {r, l}

as the sets of applied control inputs, i.e. the sets of angu-
lar wheel velocities that are applied to the system in the
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Fig. 1. Let nr = 3, i.e. [ϵmin
r , ϵmax

r ] is partitioned into three
noise intervals of length'ϵr , Er = { [ϵ1

r , ϵ1
r ], [ϵ2

r , ϵ2
r ], [ϵ3

r , ϵ3
r ]}.

Assume the applied control input at stagek is uk
r + ϵr , such that

ϵr ! [ϵ2
r , ϵ2

r ]. Then, the incremental encoderr, at stagek, will
return measured interval [wk

r ,wk
r ] = [uk

r + ϵ2
r , uk

r + ϵ2
r ].

presence of noise. We assume that time is uniformly dis-
cretized (partitioned) into stages (intervals) of length't,
where stagek is from (k ) 1)'t to k't. The duration of
the entire motion plan is Þnite and it is denotedK't (later
in this section we explain howK is determined). We denote
the control inputs and the applied control inputs at stagek
asuk

i ! Ui, i ! {r, l}, andwk
i ! Wi, i ! {r, l}, respectively.

Sensing model: We assume that the vehicle is equipped
with two incremental encoders, each measuring the applied
control input (i.e. the angular velocity corrupted by noise)
of one of the wheels. Motivated by the fact that the angular
velocity is considered constant inside the given observation
stage (Ekekwe et al., 2007; Petrella et al., 2007), the applied
controls are considered piecewise constant, i.e.wi : [( k) 1)
't, k't] " Wi, i ! {r, l}, are constant over each stage.

We denote the measurement resolution of an incremental
encoder (Petrella et al., 2007) as'ϵi , i ! {r, l}. Given'ϵi

and [ϵmin
i , ϵmax

i ], i ! {r, l}, then the following holds:*ni !
Z+ s.t. ni'ϵi = | ϵmax

i ) ϵmin
i |, i ! {r, l}. For more details

see Section 9 where we also explain how to obtain the mea-
surement resolutions and the probability density functions.
Then, [ϵmin

i , ϵmax
i ] can be partitioned1 into ni noise intervals

of length'ϵi : [ϵ ji
i , ϵ ji

i ], ji = 1,. . . , ni , i ! {r, l}. We denote
the set of all noise intervals byEi = { [ϵ1

i , ϵ1
i ], . . . , [ϵni

i , ϵni
i ]},

i ! {r, l}. At stagek, if the applied control input isuk
i + ϵi ,

the incremental encoderi will return the measured interval

[wk
i ,w

k
i ] = [uk

i + ϵ i , u
k
i + ϵ i ]

whereϵi ! [ϵ i , ϵ i ] ! Ei , i ! {r, l}. In Figure 1 we give
an example. The pair of measured intervals at stagek,
( [wk

r ,w
k
r ], [wk

l ,wk
l ]), returned by the incremental encoders,

is denoted byWk.

Remark 1 . Even though we focus on a differential drive
mobile robot, the approach presented in this paper can
be applied to any system where the motion of the vehicle
is given as a stochastic kinematic model equipped with a
limited accuracy sensor as long as the following assump-
tions hold: (1) the actuator noise is modeled as a random
variable with a continuous probability density function sup-
ported on a bounded interval, (2) the system is equipped

with a limited accuracy sensor such that the actuatorÕs noise
interval can be partitioned into subintervals of length'ϵ,
where'ϵ is the measurement resolution of the sensor, and
(3) given the actuator and sensor models, we can deÞne
an overapproximated uncertainty region (see Section 6.2).
For example, the presented method can be extended to a
stochastic version of a car-like robot equipped with two
limited accuracy incremental encoders (Fraichard and Mer-
mond, 1998) or to a stochastic version of a Dubins vehicle
equipped with a limited accuracy gyroscope (Cizelj and
Belta, 2012).

Environment model and speciÞcation:The vehicle
moves in a planar environment in which a set of non-
overlapping regions of interest, denoted byR, is present. Let
! be the set of propositions satisÞed at the regions in the
environment. One of these propositions, denoted byπu !
!, signiÞes that the corresponding regions areunsafe . In
this work, the motion speciÞcation is expressed as a BLTL
formulaφ over!:

φ = Â πuU' T1( ϕ1%ÂπuU' T2( ϕ2%á á á%ÂπuU' Tf ϕf ) ) (2)

f ! Z+ , andϕj , +j ! {1,. . . , f }, is of the following form:

ϕj = G' τ1
j (

∨

π ! !1
j

π ) & á á á& G' τ
nj
j (

∨

π ! !
nj
j

π )

wherenj ! Z+ , +n= 1,...,nj !
n
j , ! \ πu, +n= 1,...,nj τ

n
j ! R( 0

andTj ! R( 0.

Example 3.1 .Consider the environment shown in Figure2.
Let ! = { πu,πp,πt,πd}, where πu,πp,πt,πd label the
unsafe , pick-up , test , and thedrop-off regions,
respectively. Let the motion speciÞcation be as follows:

Start from an initial state qinit and reach apick-up
region within T1 time units to pick up a load. After entering
the pick-up region reach atest region within T2 time
units and stay in it at leastτ2 time units. Finally, after enter-
ing thetest region reach adrop-off region within T3

time units to drop off the load. Always avoid theunsafe
regions.

The speciÞcation translates to BLTL formulaφ:

φ = Â πuU' T1( πp %ÂπuU' T2( Gτ2πt %ÂπuU' T3πd) ) !
(3)

Note that, in the formulas given by the proposed frag-
ment of BLTL (equation (2)) the propositions are classiÞed
into two nonintersecting sets according to whether they rep-
resent regions that must be reached or avoided (the unsafe
regions). By introducing an extended set of propositions
(e.g., as presented in Fainekos et al. (2009)), this limiting
assumption can be lifted, and the presented approach can
be extended to BLTL formulas where a region needs to be
both reached and avoided.

For simplicity, we assume that the vehicle can precisely
determine its initial stateqinit = [xinit , yinit , θinit ], in a known
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Fig. 2. An example environment with the regions of interest. Theunsafe , pick-up , test , and thedrop-off regions are shown
in red, blue, cyan, and green, respectively. A sample state (position) trajectory of the system is shown in magenta.

map of the environment. However, our approach works as
long as the initial state is such that the corresponding dis-
tance and orientation uncertainties are bounded (for more
details see Section 6.2). For example, our approach can be
applied directly when the initial state is modeled as a ran-
dom variable with a Þnite support probability distribution
(e.g. localization via a particle Þlter). While the vehicle
moves, incremental encoder measurementsWk are avail-
able at each stagek. We deÞne avehicle control strategy
as a map that takes as input a sequence of pairs of mea-
sured intervalsW1W2 . . . Wk) 1, and returns control inputs
uk

r ! Ur anduk
l ! Ul at stagek. We are ready to formulate

the main problem we consider in this paper:

Problem 1 . Given a set of regions of interest R satisfying
propositions from a set!, a vehicle model described by
equation (1) with initial state qinit , a motion speciÞcation
expressed as a BLTL formulaφ over! (equation (2)), Þnd
a vehicle control strategy that maximizes the probability of
satisfying the speciÞcation.

To fully specify Problem 1, we need to deÞne the satis-
faction of a BLTL formulaφ by a trajectoryq : [0,K't] "
SE( 2) of the system from equation (1). A formal deÞnition
is included in Section 4. Informally,q( t) produces a Þnite
traceσ = ( o1, t1) ( o2, t2) . . . ( ol , tl ), oi ! ! - . , ti ! R( 0,
i ( 1, whereoi is the satisÞed proposition2 and ti is the
time spent satisfyingoi, as time evolves. A trajectoryq( t)
satisÞes BLTL formulaφ if and only if the generated trace
satisÞes the formula. Givenφ, for the duration of the entire
motion plan we use the smallestK ! Z+ for which model
checking a trace is well deÞned, i.e. the smallestK for which
the maximum nested sum of time bounds (see Zuliani et al.,
2010) is at mostK't.

3.2. Approach

In this paper, we develop a suboptimal solution to Prob-
lem 1 consisting of three steps. First, we deÞne a Þnite state
MDP that captures every sequence realization of pairs of
measurements returned by the incremental encoders. The
states of the MDP correspond to the sequences of pairs of
measured intervals and the actions correspond to the control
inputs.

Second, we Þnd a control policy for the MDP that
maximizes the probability of satisfying BLTL formulaφ.
Because of the size of the MDP, Þnding the exact solution is
computationally too expensive. We decided to trade-off cor-
rectness for scalability and we use a computationally efÞ-
cient technique based on system sampling. We use recent
results in SMC for MDPs (Henriques et al., 2012) to obtain
an MDP control policy and a BIE algorithm (Zuliani et al.,
2010) to estimate the probability of satisfyingφ.

Finally, since each state of the MDP corresponds to a
unique sequence of pairs of measured intervals, we translate
the control policy to a vehicle control strategy. In addition,
we show that the probability of satisfyingφ, in the original
environment, is bounded from below by the probability of
satisfying the speciÞcation on the MDP under the obtained
control policy.

Remark 2 . The approach presented in this paper can only
deal with Þnite time speciÞcations. There are two main rea-
sons for this. First, as it will be show in Section 6.2, the
vehicle is subject to cumulative and unbounded position
uncertainty. Second, in order to perform SMC, sampling
and model checking of traces needs to be computation-
ally feasible. Therefore, the reason why we decided to use
BLTL was the fact that, unlike LTL or metric LTL (Koy-
mans, 1990), the semantics of BLTL formulas is well deÞned
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on Þnite preÞxes of traces with a duration that is bounded.
Additionally, given a BLTL formula, we can determine the
duration of the entire motion plan, K't, easily, as described
in the previous subsection. Even though co-safe LTL (co-
safe LTL formulas are LTL formulas such that any good
trace satisfying the formula has a Þnite good preÞx (see,
for example, Bhatia et al., 2010)) can be used with our
approach as well, it does not provide such a method for
determining the duration of the entire motion plan. The rea-
son for using the proposed fragment of BLTL is that it is
the largest BLTL fragment for which we were able to prove
the main result (Theorem 8.1), i.e. the fact that the prob-
ability that the vehicle satisÞes the speciÞcation (given as
the fragment of BLTL) in the environment is bounded from
below by the probability of satisfying the speciÞcation on
the corresponding MDP.

4. Generating a trace

In this section, we formally deÞne the satisfaction of a
BLTL formula by a trajectory of (1). Let us denote [π ] =
{( x, y) ! R2|( x, y) ! - r! Rπ r} as the set of positions that
satisfy propositionπ , whereRπ / R is the set of regions
labeled with propositionπ .

DeÞnition 4.1 (Generating a trace). The trace corre-
sponding to a state trajectory q( t) = [x( t) , y( t) , θ ( t) ]T is
a Þnite sequenceσ = ( o1, t1) ( o2, t2) . . . ( ol , tl ), oi ! ! - . ,
ti ! [0,K't], i = 1,. . . , l, l ( 1, where oi is the satisÞed
proposition and ti is the time spent satisfying oi, generated
according to the following rules, for all t, t$, τ ! [0,K't]:

¥ o1 = π ! ! iff (if and only if) ( x( 0) ,y( 0) ) ! [π ] and
o1 = . otherwise.

¥ Let oi be the satisÞed proposition at some t. Then:

1. If oi = . , then oi+ 1 = π ! !, iff (a) * t$ >

t s.t. ( x( t$) , y( t$) ) ! [π ], and (b) ! τ ! [t, t$]
s.t. ( x( τ ) , y( τ ) ) ! [π$], +π$ ! ! and ti =
mint! [

∑i) 1
j= 0 tj ,K't] {t|( x( t) , y( t) ) ! [π ]} )

∑i) 1
j= 0 tj ,

with t0 = 0.
2. If oi = π ! !, then oi+ 1 = . iff

* t$ > t s.t. ( x( t$) , y( t$) ) /! [π ], and ti =
mint! [

∑i) 1
j= 0 tj ,K't] {t|( x( t) , y( t) ) /! [π ]} )

∑i) 1
j= 0 tj ,

with t0 = 0.

¥ Let for K't, ol be the current satisÞed propositions.
Then, tl = K't )

∑l) 1
j= 1 tj .

A trajectoryq( t) satisÞes BLTL formulaφ (equation (2))
if and only if the trace generated according to the rules
stated above satisÞes the formula. Note that, since the dura-
tion of the entire motion plan is Þnite, the generated trace
is also Þnite. In Zuliani et al. (2010) the authors show that
model checking a trace on a BLTL formula is well deÞned
and can be based on only a Þnite preÞx of the trace of
bounded duration. The fact that the traceσ satisÞesφ is
denotedσ " φ. Given a traceσ , theith state ofσ , denoted

σi , is (oi , ti ), i = 1,. . . , l. We denoteσ |i as the Þnite sub-
sequence ofσ that starts inσi . Finally, given a formulaφ
in the form (2), we useφj to denote subformulaÂπuUTj ϕj ,
j = 1,. . . , f . Using the BLTL semantics one can derive the
following conditions to determine whetherσ " φ:

DeÞnition 4.2 (Satisfaction conditions). Given a traceσ
and a BLTL formulaφ (equation (2)), let for j! {1,. . . , f },
ij , kj ! N be such that for some n! {1,. . . , nj } the following
hold:

1. oij+ kj ! !n
j .

2. For each ij ' i < ij + kj , oi 0= πu.

3.
∑ij + kj ) 1

i= ij
ti ' Tj .

4. tij + kj ( τ n
j .

Then,σ |ij " φj . If +j ! {1,. . . , f }, * ij , kj ! N s.t.σ |ij " φj

where ij+ 1 = ij + kj with i1 = 1, thenσ " φ.

Example 4.3 . Consider the environment and the sample
state (position) trajectory shown in Figure2. Let φ be
as in equation (3) with the following numerical values
for the time bounds: T1 = 6.2, T2 = 2.3, τ2 = 0.2,
and T3 = 2.3. The trajectory generates traceσ =
( . , 6.12) (πp, 0.75) (. , 0.44) (πt, 0.61) (. , 1.66) (πd, 1.22).
The following holds:σ |1 " φ1 since for i1 = 1 and k1 = 1,
o2 ! {πp}, o1 0= πu, t1 ' T1; σ |2 " φ2 since for i2 = 2 and
k2 = 2, o4 ! {πt}, o2, o3 0= πu, t2 + t3 ' T2, and t4 ( τ2;
and σ |4 " φ3 since for i3 = 4 and k3 = 2, o6 ! {πd},
o4, o5 0= πu, and t4 + t5 ' T3. Thus,σ " φ. !

5. Construction of an MDP model

Recall thatϵi is a random variable with a continuous proba-
bility density function supported on the bounded interval
[ϵmin

i , ϵmax
i ], i ! {r, l}. The probability density functions

are obtained through experimental trials (see Section 9) and
they are deÞned as follows:

Pr(ϵi ! [ϵ ji
i , ϵ ji

i ]) = pji
i (4)

[ϵ ji
i , ϵ ji

i ] ! Ei , ji = 1,. . . , ni , s.t.
∑ni

ji= 1 pji
i = 1, i ! {r, l}.

An MDP M that captures every sequence realization
of pairs of measurements returned by the incremental
encoders is deÞned as a tupleM = ( S,s0,Act,A,P), where:

¥ S = - k= 1,...,K{( [ur + ϵr , ur + ϵr ], [ul + ϵ l , ul + ϵ l ]) |ur !
Ur , ul ! Ul , [ϵr , ϵr ] ! Er , [ϵ l , ϵ l ] ! El }k. The meaning of
the state is as follows: (W1, . . . ,Wk) ! S, means that at
stagei, 1 ' i ' K, the pair of measured intervals isWi.

¥ s0 = . is the initial state.
¥ Act = Ur # Ul - ξ is the set of actions, whereξ is a

dummy action.
¥ A : S " 2Act gives the enabled actions at states: if

|s| = K, i.e. if the termination time is reached,A( s) = ξ ,
otherwiseA( s) = Ur # Ul .

¥ P : S # Act # S " [0, 1] is a transition probability
function constructed by the following rules:
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Fig. 3. A fragment of the MDPM wherenr = nl = 2. Thus,
pm

r = Pr(ϵr ! [ϵm
r , ϵm

r ]), for m = 1, 2, andpn
l = Pr(ϵl ! [ϵn

l , ϵn
l ]),

for n = 1, 2. Action (ur , ul ) ! A( s) enables four transitions. For
example, given states = ( W1), the new state is (W1W2

2), where
W2

2 = ( [ur ) ϵ1
r , ur + ϵ1

r ], [ul ) ϵ2
l , ul + ϵ2

l ]), with probabilityp1
r áp2

l .
This corresponds to applied control inputs being equal tour + ϵr
andul + ϵl whereϵr ! [ϵ1

r , ϵ1
r ] andϵl ! [ϵ2

l , ϵ2
l ].

1. If s = (W1, . . . ,Wk) ! S thenP( s,a, s$) = pm
r pn

l iff
s$ = (W1, . . . ,Wk, ( [ur + ϵm

r , ur + ϵm
r ], [ul + ϵn

l , ul +
ϵn

l ]) ) ! Sanda = ( ur , ul ) ! {Ur # Ul} wherem =
1,. . . , nr , n = 1,. . . , nl andk = 1,. . . ,K.

2. If |s| = K thenP( s,a, s$) = 1 iff a = ξ ands$ = s.
3. P( s,a, s$) = 0 otherwise.

Rule (1) deÞned above follows from the fact that givenuk
r

anduk
l as the control inputs at stagek, the pair of measured

intervals at stagek + 1 is ( [uk
r + ϵm

r , uk
r + ϵm

r ], [uk
l + ϵn

l , uk
l +

ϵn
l ]) with probability pm

r pn
l , since Pr(ϵr ! [ϵm

r , ϵm
r ]) = pm

r
and Pr(ϵl ! [ϵn

l , ϵn
l ]) = pn

r , which follows from equation (4)
(see the MDP fragment in Figure 3). Rule (2) states that if
the length ofs is equal toK, i.e. if the termination time is
reached, thenA( s) = ξ with P( s, ξ , s) = 1.

Proposition 5.1. The model M deÞned above is a valid
MDP, i.e. it satisÞes the Markov property and P is a
transition probability function.

Proof. The proof follows from construction ofP. Given cur-
rent states ! S and an actiona ! A( s), the conditional
probability distribution of future states depends only on the
current states, not on the sequences of events that preceded
it (see rule (1) above). Thus, the Markov property holds. In
addition, since for everys anda ! A( s):

∑
s$! S P( s,a, s$) =∑nr

m= 1

∑nl
n= 1 pm

r pn
l =

∑nr
m= 1 pm

r

∑nl
n= 1 pn

l = 1, it follows that
P is a valid transition probability function.!

6. Position uncertainty

6.1. Nominal state trajectory

For each interval belonging to the set of noise intervals
Ei, we deÞne a representative valueϵ

ji
i = ( ϵ

ji
i + ϵ

ji
i ) /2,

ji = 1,. . . , ni , i ! {r, l}, i.e. ϵ ji
i is the midpoint of interval

[ϵ ji
i , ϵ ji

i ] ! Ei , i ! {r, l}. We denote the set of representative
values asEi = { ϵ1

i , . . . , ϵni
i }, i ! {r, l}.

We useqk( t), wk
r , andwk

l , t ! [( k ) 1)'t, k't], k =
1,. . . ,K, to denote the state trajectory and the constant
applied controls at stagek, respectively. With a slight abuse
of notation, we useqk to denote the end of state trajectory
qk( t), i.e. qk = qk( k't). Given stateqk) 1, the state trajec-
tory qk( t) can be derived by integrating the system given
by equation (1) from the initial stateqk) 1, and taking into
account that the applied controls are constant and equal to
wk

r andwk
l . Throughout the paper, we will also denote this

trajectory byqk( qk) 1,wk
r ,wk

l , t), when we want to explic-
itly capture the initial stateqk) 1 and the constant applied
controlswk

r andwk
l .

Given a path through the MDP:

s0
(u1

r ,u1
l )

) )) " s1
(u2

r ,u2
l )

) )) " s2 á á ásK) 1
(uK

r ,uK
l )

)))) " sK (5)

where sk = ( W1, . . . ,Wk), with Wk = ( [uk
r + ϵk

r , u
k
r +

ϵk
r ], [uk

l + ϵk
l , u

k
l + ϵk

l ]), k = 1,. . . ,K, we deÞne thenominal
state trajectory q( t), t ! [0,K't], as follows:

q( t) = qk( qk) 1, uk
r + ϵk

r , uk
l + ϵk

l , t) , t ! [( k ) 1)'t,'t]

k = 1,. . . ,K, whereϵk
i ! Ei is such thatϵk

i ! [ϵk
i , ϵk

i ],
i ! {r, l} andq0 = qinit . For every path through the MDP, its
nominal state trajectory is well deÞned. The next step is to
deÞne the uncertainty evolution, along the nominal state tra-
jectory, since the applied controls can take any value within
the measured intervals.

6.2. Position uncertainty evolution

Since a motion speciÞcation is a statement about the propo-
sitions satisÞed by the regions of interest in the environ-
ment, in order to answer whether some state trajectory sat-
isÞes BLTL formulaφ it is sufÞcient to know its projection
in R2. Therefore, we focus only on the position uncertainty.

The position uncertainty of the vehicle when its nomi-
nal position is (x, y) ! R2 is modeled as a disc centered
at (x, y) with radiusd ! R, whered denotes the distance
uncertainty:

D( ( x, y) , d) = { ( x$y$) ! R2|||( x, y) , ( x$, y$) || ' d} (6)

where||á||denotes the Euclidian distance. Next, we explain
how to obtaind.

First, let 'θ ! S1 denote the orientation uncertainty.
Let q( t), t ! [0,K't], be the nominal state trajectory
corresponding to a path through the MDP (equation (5)).
Then, q( t) can be partitioned intoK state trajectories:
qk( t) = qk( qk) 1, uk

r + ϵk
r , uk

l + ϵk
l , t), t ! [( k ) 1)'t,'t],

k = 1,. . . ,K, whereϵk
i ! Ei is such thatϵk

i ! [ϵk
i , ϵk

i ] ! Ei ,
i ! {r, l} andq0 = qinit (see Figure 4). The distance and ori-
entation uncertainty at stateqk are denoted asdk and'θk,
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respectively. We setdk and'θk at stateqk = [xk, yk, θk]T

equal to:

dk = max[x$,y$,θ$]T! R k( ||( xk, yk) , ( x$, y$) ||) + dk) 1 and
'θk = max[x$,y$,θ$]T! R k( |θk ) θ$|)

(7)
where

R k = { qk( [xk) 1, yk) 1, θk) 1 + α]T, uk
r + ϵ$

r , u
k
l + ϵ$

l , k't) |

α ! {'θk) 1, ) 'θk) 1}, ϵ$
r ! {ϵk

r , ϵ
k
r }, ϵ

$
l ! {ϵk

l , ϵ
k
l }}
(8)

for k = 1,. . . ,K, whered0 = 0 and'θ0 = 0.
Equations (7) and (8) are obtained using a worst-case sce-

nario assumption. At stagek, the pair of measured intervals
is Wk = ( [uk

r + ϵk
r , u

k
r + ϵk

r ], [uk
l + ϵk

l , u
k
l + ϵk

l ]) and we use
the endpoints of the measured intervals to deÞne setR k. R k

is the smallest set of points inSE( 2), at the end of stagek,
guaranteed to contain (a) the state with the maximum dis-
tance (in Euclidian sense) fromqk given that the applied
controls at stagei are within the measured intervals at stage
i, and (b) the state with the maximum orientation difference
compared toqk given that the applied controls at stagei are
within the measured intervals at stagei, i = 1,. . . , k. (For
more details aboutR k see Fraichard and Mermond (1998).)
An example is given in Figure 4.

From equations (7) and (8) it follows that, given a
nominal state trajectoryq( t), t ! [0,K't], the distance
uncertainty increases as a function of time. The way it
changes alongq( t) makes it difÞcult to characterize the
exact shape of the position uncertainty region. Instead, we
use a conservative approximation of the region. We deÞne
d : [0,K't] " R as anapproximate distance uncertainty
trajectory and we setd( t) = dk, t ! [( k ) 1)'t, k't],
k = 1,. . . ,K, i.e. we set the distance uncertainty along the
state trajectoryqk( t) equal to the maximum value of the
distance uncertainty alongqk( t), which is at stateqk. An
example illustrating this idea is given in Figure 4.

Proposition 6.1 .Given a path through the MDP M (equa-
tion (5)), and the corresponding q( t) and d( t), t !
[0,K't], as deÞned above, then any state trajectory q$( t) =
qk( qk) 1, uk

r + ϵk$

r , uk
l + ϵk$

l , t), t ! [( k ) 1)'t, k't], k =
1,. . . ,K, where q0 = qinit , ϵk$

r ! [ϵk
r , ϵ

k
r ] and ϵk$

l !
[ϵk

l , ϵ
k
l ], is within the uncertainty region, i.e.( x$( t) , y$( t) ) !

D( ( x( t) , y( t) ) , d( t) ), +t ! [0,K't].

Proof: The proof follows from the deÞnition of the approx-
imate distance uncertainty trajectory and equations (6)Ð(8).
!

7. Generating a trace under the position
uncertainty

Let q( t) be a nominal state trajectory with the distance
uncertainty trajectoryd( t), t ! [0,K't]. In this subsec-
tion we introduce a set of conservative rules according to

which the trace corresponding to the uncertainty region
D( ( x( t) , y( t) ) , d( t) ) is generated. These rules guarantee
that if the generated trace satisÞesφ (equation (2)) then any
state (position) trajectory insideD( ( x( t) , y( t) ) , d( t) ) will
satisfyφ.

DeÞnition 7.1 (Generating a trace under uncertainty).
The trace corresponding to an uncertainty region
D( ( x( t) , y( t) ) , d( t) ) is a Þnite sequenceσ =
( o1, t1) ( o2, t2) , . . . , ( ol , tl ), oi ! ! - . , ti ! [0,K't],
i = 1,. . . , l, l ( 1, where oi is the satisÞed proposition and
ti is the time spent satisfying oi, generated according to the
following rules, for all t, t$, τ ! [0,K't]:

¥ o1 = π ! ! \ πu iff D( ( x( 0) ,y( 0) ,d( 0) ) / [π ], o1 =
πu iff D( ( x( 0) ,y( 0) ,d( 0) )1 [πu] 0= . and o1 = .
otherwise.

¥ Let oi be the satisÞed proposition at some t. Then:

1. If oi = π ! ! \ πu, then oi+ 1 = . iff
* t$ > t s.t. D( ( x( t$) , y( t$) ) , d( t$) ) 0/ [π ] and ti =
mint! [

∑i) 1
j= 0 tj ,K't] {t|D( ( x( t) , y( t) ) , d( t) ) 0/ [π ]} )

∑i) 1
j= 0 tj , with t0 = 0.

2. If oi = πu, then oi+ 1 = . iff * t$ > t s.t.
D( ( x( t$) , y( t$) ) , d( t$) ) 1 [πu] = . and ti =
mint! [

∑i) 1
j= 0 tj ,K't] {t|D( ( x( t) , y( t) ) , d( t) ) 1 [πu] =

. } )
∑i) 1

j= 0 tj , with t0 = 0.
3. If oi = . , then oi+ 1 = π ! ! \ πu, iff

(a) * t$ > t s.t. D( ( x( t$) , y( t$) ) , d( t$) ) / [π ]
(b) ! τ ! [t, t$] s.t. D( ( x( τ ) , y( τ ) ) , d( τ ) ) /

[π$], +π$ ! ! \ πu

(c) ! τ ! [t, t$] s.t. D( ( x( τ ) , y( τ ) ) , d( τ ) )
1 [πu] 0= .

and ti = mint! [
∑i) 1

j= 0 tj ,K't] {t|D( ( x( t) , y( t) ) , d( t) )

/ [π ]} )
∑i) 1

j= 0 tj , with t0 = 0.
4. If oi = . , then oi+ 1 = πu, iff

(a) * t$ > t s.t. D( ( x( t$) , y( t$) ) , d( t$) ) 1 [πu] 0= .
(b) ! τ ! [t, t$] s.t. D( ( x( τ ) , y( τ ) ) , d( τ ) ) /

[π$], +π$ ! ! \ πu

and ti = mint! [
∑i) 1

j= 0 tj ,K't] {t|D( ( x( t) , y( t) ) , d( t) )

1 [πu] 0= . } )
∑i) 1

j= 0 tj , with t0 = 0.

¥ For K't, let ol be the current satisÞed proposition. Then
tl = K't )

∑l) 1
j= 1 tj .

In Figure 5 we show an uncertainty region and the cor-
responding trace generated according to the rules stated
above. Next, we show that if the trace corresponding to
an uncertainty region satisÞesφ, then any state (position)
trajectory inside the uncertainty region also satisÞesφ.

Proposition 7.2 . Let D( ( x( t) , y( t) ) , d( t) ) be the uncer-
tainty region corresponding to a path through the MDP
M (equation (5)) and let q$( t) be any state trajectory as
deÞned in Proposition 6.1. LetσD = ( oD

1 , tD1 ) . . . ( oD
k , tDk )
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Fig. 4. Left: Evolution of the position uncertainty along the nominal state trajectoryq( t) = [x( t) , y( t) , θ ( t) ], whereq( t) is partitioned
into three state trajectories,qk( t), k = 1, 2, 3.Right: The conservative approximation of regionD( ( x( t) , y( t) ) , d( t) ) alongq( t), where
the distance uncertainty trajectory isd( t$) = dk( t), t$! [( k ) 1)'t, k't], wheredk( t) = dk, k = 1, 2, 3.

andσ q$
= ( oq$

1 , tq
$

1 ) . . . ( oq$

l , tq
$

l ) be the corresponding traces.
Given BLTL formulaφ (equation (2)), ifσD " φ, then
σ q$ " φ.

Proof. First, we state two relations between the given traces:

1. LetoD
i = π ! ! \ πu for somei ! {1,. . . , k}.

Then, the following holds:* j ! {1,. . . , l} such that
oq$

j = π andtDi ' tq
$

j .
Informally, if tDi is the timeD( ( x( t) , y( t) ) , d( t) ) spent
inside the region satisfying propositionπ , then q$( t)
will spend at leasttDi time units inside that region.

2. LetoD
i = π ! ! \ πu andoD

i$ = π$ ! ! \ πu for some
i, i$ ! {1,. . . , k}, i$ > i. Then, the following holds:
* j, j$ ! {1,. . . , l}, j$ > j such thatoq$

j = π andoq$

j$ = π$.

In addition,
∑j$) 1

h= j tq
$

h '
∑i$) 1

h= i tDh .

Informally, if the time betweenD( ( x( t) , y( t) ) , d( t) )
entering a region satisfyingπ and then entering a
region satisfyingπ$is

∑i$) 1
h= i tDh time units, then the time

betweenq$( t) entering the region satisfyingπ and then
entering the region satisfyingπ$is bounded from above
by

∑i$) 1
h= i tDh . For more intuition about these relations see

Figure 5.

AssumingσD " φ, then+j ! {1,. . . , f }, * ij , kj ! N and
somen ! {1,. . . , nj } such thatσD

ij
" φj (see DeÞnition 4.2).

Then, from Proposition 6.1 and DeÞnition 4.1 and 7.1, it
follows that+j ! {1,. . . , f }, * sj , zj ! N such that:

1. oq$

sj+ zj
! !n

j .

2. For eachsj ' i < sj + zj , oq$

i 0= πu.

3.
∑sj+ zj ) 1

i= sj
tq

$

i '
∑ij + kj ) 1

i= ij tDi ' Tj (2nd relation above).

4. tq
$

sj+ zj
( tDij+ kj

( τ n
j (1st relation above).

wheresj+ 1 = sj + zj with s1 = 1.

Thus,+j ! {1,. . . , f }, σ
q$

sj " φj , and according to DeÞ-
nition 4.2, it follows thatσ q$ " φ. In Figure 5 we give an
example.!

8. Vehicle control strategy

Given the MDPM, the next step is to obtain a control policy
that maximizes the probability of generating a path through
M such that the corresponding trace (as deÞned in Sec-
tions 6 and 7) is satisfying. There exist approaches that,
given an MDP and a temporal logic formula, generate an
exact control policy that maximizes the probability of satis-
fying the speciÞcation. In general, exact techniques rely on
reasoning about the entire state space, which is a limiting
factor in their applicability to large problems.

Given Ur, Ul , nr , nl , andK, the size of the MDPM is
bounded above by (|Ur | # |Ul | # nr # nl )K. Even for a sim-
ple case study, due to the size ofM, using the exact methods
to obtain a control policy is computationally too expensive.
Therefore, we decide to trade-off correctness for scalabil-
ity and use computationally efÞcient techniques based on
system sampling. In particular, we modify SMC for MDPs
(Henriques et al., 2012) that selectively samples traces of
an MDP until enough statistical evidence has been found
to support the claim that some property holds in the MDP
with some probability. The problem is reduced to Þnding
the probability under an optimal control policy: one that
maximizes the probability of satisfying the property. The
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Fig. 5. An uncertainty region and a sample state (position) trajectory, inside the uncertainty region, are shown in black and
magenta, respectively. The corresponding generated traces areσD=( . , 5.72) (πp, 1.24) (. , 0.87) (πt, 0.24) (. , 1.96) (πd, 0.82) and

σq$
= ( . , 5.59) (πp, 1.45) (. , 0.53) (πt, 0.56) (. , 1.62) (πd, 1.24). Letφ be as given in Example 4.3. Then, it follows thatσD " φ

and σq$ " φ. Note that forσD
2 = σ

q$

2 = πp, tD2 < tq
$

2 (1st relation above). Also, forσD
2 = σ

q$

2 = πp and σD
4 = σ

q$

4 = πt,
∑3

i= 2 tq
$

i <
∑3

i= 2 tDi (2nd relation above).

optimal control policy returned by the approach is the solu-
tion to our original problem, and since the approach is sam-
ple based it considers only a very small fraction of potential
control policies.

8.1. Overview

We obtain a suboptimal control policy by iterating over
the control synthesisand theprobability estimationpro-
cedure until the stopping criterion is met (see Section 8.3).
In the control synthesis procedure we use the control syn-
thesis approach from Henriques et al. (2012) to generate
a control policy for the MDPM. In particular we use a
control policy optimizationpart of the algorithm which con-
sists of thecontrol policy evaluationand thecontrol policy
improvementprocedure to incrementally improve a can-
didate control policy (control policy is initialized with a
uniform distribution at each state). Next, in the probability
estimation procedure we use SMC by BIE, as presented in
Zuliani et al. (2010). We estimate the probability that the
MDP M, under the candidate control policy, generates a
path such that the corresponding trace satisÞes BLTL for-
mulaφ. Finally, if the estimated probability converges, i.e.
if the stopping criterion is met, we map the control policy to
a vehicle control strategy. Otherwise, the control synthesis
procedure is restarted using the latest update of the control
policy. The ßow of this approach is depicted in Figure 6.

Control synthesis

Control policy evaluation

Control policy improvement

Probability estimation

Control policy determinisation

Bayesian interval estimation

Probability convergence test

Vehicle control strategy construction

Fig. 6. Flow chart of the approach used to obtain the vehicle
control strategy.
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Remark 3 . In general, in order to use model checking tools
for MDP control synthesis from temporal logic motion spec-
iÞcations, the MDP needs to contain the information about
the motion of the vehicle in the environment. Note that, the
MDP M deÞned in Section 5 only captures the sequences of
measurements returned by the incremental encoders, and it
does not explicitly capture the motion of the vehicle in the
environment. However, given M and a motion speciÞcation
expressed as a BLTL formula, the proposed control synthe-
sis approach returns a control policy for M. This is due to
the fact that SMC for MDPs allows for, Þrst, sampling a
path through M, and only then generating the correspond-
ing trace (i.e. relating the path to the motion of the vehicle
in the environment) and model checking it.

8.2. Control synthesis

The details of the control policy optimization algorithm
can be found in Henriques et al. (2012), and here we only
give an informal overview of the approach. In the con-
trol policy evaluation procedure we sample paths of the
MDP M under the current control policyµ. Given a path

ω = s0
a1

)" s1
a2

)" s2 á á ásK) 1
aK

)" sK, whereak = ( uk
r , uk

l ),
the corresponding traceσ is generated as described in Sec-
tions 6 and 7. Next, we check formulaφ on eachσ and
estimate how likely it is for each action to lead to the sat-
isfaction of BLTL formulaφ, i.e. we obtain the estimate
of the probability that a path crossing a stateÐaction pair,
( sk, ak+ 1), k = 0,. . . ,K ) 1, in ω will generate a trace that
satisÞesφ. These estimates are then used in the control pol-
icy improvement procedure, in which we update the control
policy µ by reinforcing the actions that led to the satisfac-
tion of φ most often. In Henriques et al. (2012), the authors
show that the updated control policy is provably better than
the previous one by focusing on the more promising regions
of the state space.

The algorithm takes as input MDPM, BLTL formula φ

and the current control policyµ, together with the param-
eters of the algorithm (a greediness parameter 0< g < 1,
a history parameter 0< h < 1, and the number of sample
paths in control policy evaluation procedure, denoted byN),
and returns the updated probabilistic control policyµ.

Despite being sufÞcient to achieve maximum probabil-
ities, deterministic control policies are a poor choice for
exploring the state space through simulation. Therefore, in
the control synthesis procedure we always use probabilistic
control policies since they are more ßexible and enable rein-
forcement of different actions. However, in the probability
estimation procedure, we use deterministic control policies
in order to redirect the residual probabilities of choosing
bad actions to the promising regions of the state space.
Thus, in the next stage we use the deterministic version of
µ, denotedµdet, where for alls ! Sanda ! A,

µdet( s, a) =
{

1 if a = Rand( arg maxa! Act(s)µ( s, a) )
0 Otherwise

where Rand(X) " x ! X is a function that given a
nonempty setX returns an elementx ! X with probability

1
|X| . In words, we compute a control policy that always picks
the best estimated action at each state. If at a state there
are multiple actions that achieve the maximum, function
Rand returns, with equal probability, one of the maximizing
actions.

8.3. Probability estimation

Next, we determine the estimate of the probability that the
MDP M, under the deterministic control policyµdet, gener-
ates a path such that the corresponding trace satisÞes BLTL
formulaφ. To do so we use the BIE algorithm as presented
in Zuliani et al. (2010). We denote the exact probability as
pM and the estimate asöpM.

The inputs of the algorithm are MDPM, control pol-
icy µdet, BLTL formula φ, half interval sizeδ ! ( 0, 1

2),
interval coefÞcientc ! ( 1

2, 1), and the coefÞcientsα,β of
the Beta prior. The algorithm returnsöpM. The algorithm
generates traces by sampling paths throughM underµdet

(as described in Sections 6 and 7) and checks whether the
corresponding traces satisfyφ, until enough statistical evi-
dence has been found to support the claim thatpM is inside
the interval [öpM ) δ, öpM + δ] with arbitrarily high probability,
i.e. Pr(pM ! [ öpM ) δ, öpM + δ]) ( c.

We stop iterating over the control synthesis and the prob-
ability estimation procedure when the difference between
the two consecutive probability estimates converges to a
neighborhood of radiuse ! ( 0, 1), i.e. when the difference
is smaller or equal toe. Let µ2

det and öp2
M be the current

control policy and the corresponding probability estimate,
respectively, when the stopping criterion is met.

8.4. Control strategy

The vehicle control strategy is a functionγ : S " Ur # Ul

that maps a sequence of pairs of measured intervals, i.e. a
state of the MDP, to the control inputs:

γ ( ( W1, . . . ,Wk) ) = γ ( sk) = arg maxa! Act(sk)µ
2
det( sk, a)

(9)
k = 1,. . . ,K ) 1 with γ ( s0) = arg maxa! Act(s0)µ

2
det( s0, a)

At stagek, the control inputs are

( uk
r , uk

l ) = γ ( ( W1, . . . ,Wk) 1) ) ! {Ur # Ul}.

Thus, given a sequence of pairs of measured intervals,γ

returns the control inputs for the next stage; the control
inputs are equal to the action returned byµ2

det at the state
of the MDP corresponding to that sequence.

Theorem 8.1. The probability that the system given by
equation (1), under the vehicle control strategyγ , gener-
ates a state trajectory that satisÞes BLTL formulaφ (equa-
tion (2)) is bounded from below by p2

M, where Pr( p2
M !

[ öp2
M ) δ, öp2

M + δ]) ( c.
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Proof: Let ω be a path through the MDPM and
D( ( x( t) , y( t) ) , d( t) ) be the corresponding uncertainty
region as deÞned in Section 6. The probability that the
system given by equation (1), underγ , generates a state tra-
jectory q$( t) as deÞned in Proposition 6.1 is equal to the
probability of generating pathω underµ2

det. Let σD and
σ q$

be the corresponding traces. We consider two cases: (a)
traceσD satisÞesφ and (b) traceσD does not satisfyφ.

Let us Þrst consider the former. IfσD " φ from Proposi-
tion 7.2 it follows thatσ q$ " φ. Since underµ2

det the proba-
bility that a path through the MDPM generates a satisfying
trace isp2

M, it follows that the probability that the system
given by equation (1), underγ , will generate a satisfying
state trajectory is alsop2

M. To show thatp2
M is the lower

bound we need to consider the latter case. It is sufÞcient to
observe that because of the conservative approximation of
D( ( x( t) , y( t) ) , d( t) ) it is possible thatσ q$

satisÞesφ, even
thoughσD does not satisfy it. Therefore, it follows that the
probability that the system given by equation (1), under the
vehicle control strategyγ , generates a state trajectory that
satisÞes BLTL formulaφ, is bounded from below byp2

M.
The rest of the proof, i.e. Pr(p2

M ! [ öp2
M ) δ, öp2

M + δ]) ( c, is
given in Zuliani et al. (2010).!

8.5. Complexity

As stated above, the size of the MDPM is bounded above
by ( |Ur |# |Ul |# nr # nl )K. Obviously, it can be expensive (in
sense of memory usage) to store the whole MDP. Since our
approach is sample-based, it is not necessary for the MDP
to be constructed explicitly. Instead, a state of the MDP
is stored only if it is sampled during the control synthesis
procedure. As a result, during the execution, the number of
states stored in the memory is bounded above byN # K # n,
wheren is the number of iterations between the control syn-
thesis and the probability estimation procedures. In the next
section, through experiments and simulations, we provide
further insight into the complexity of our method. The com-
plexity analysis of the control synthesis part can be found in
Henriques et al. (2012) and the complexity analysis of BIE
algorithm can be found in Zuliani et al. (2010).

9. Case studies

We considered the system given by equation
(1) and we used the numerical values corre-
sponding to Dr RobotÕs x80Pro mobile robot
(http://www.drrobot.com/products.asp) equipped with
two incremental encoders. The parameters werer = 0.085
m andL = 0.295 m. To reduce the complexity,Ur # Ul was
limited to {( 1+ L

4r , 1) L
4r ) , ( 1

4r , 1
4r ) , ( 1) L

4r , 1+ L
4r ) }, where the

pairs of control inputs corresponded to a vehicle turning
left at 1

2
rad
s , going straight, and turning right at12

rad
s ,

respectively, when the forward speed is1
4

m
s .

Measurement resolution: To obtain the angular wheel
velocity, the frequency counting method (Petrella et al.,
2007) was used, i.e. the encoder pulses inside a given sam-
pling period were counted. The number of pulses per rev-
olution (i.e. the number of windows in the code track of
the encoders) was 378 and the sampling period was set
to 't = 2.6 s. Thus, according to Petrella et al. (2007)
the measurement resolution was'ϵr = 'ϵl = 2π

378á2.6 3
0.0064.

Probability density functions: We obtained the distri-
butions through experimental trials. SpeciÞcally, we used
control inputs fromUr # Ul as the robot inputs and then
measured the actual angular wheel velocities using the
encoders. Since the output of the encoders was a pair of
measured intervals ( [wr,wr], [wl ,wl ]), from each measure-
ment we were able to determine the noise intervals, [ϵr , ϵr ]
and [ϵ l , ϵ l ], of length 'ϵr and'ϵl , respectively, by using
the fact that ( [wr,wr], [wl ,wl ]) = ( [ur + ϵr , ur + ϵr ], [ul +
ϵ l , ul + ϵ l ]) and the fact that (ur , ul ) ! {Ur # Ul} was
known. We obtainedϵmin

i (ϵmax
i ) by taking the minimum

(maximum) over{ϵ1
i , . . . , ϵk

i } ({ϵ1
i , . . . , ϵk

i }), where [ϵ j
i , ϵ

j
i ],

j ! {1,. . . , k}, i ! {r, l}, was the noise interval, of length
'ϵi , determined from thejth measurement of the encoder
i, andk was the total number of measurements. Note that

ni =
|ϵmax

i ) ϵmin
i |

'ϵi
, i ! {r, l}. Finally, the probabilities for

equation (4) that deÞned the probability density functions,
were equal to the number of times a particular noise interval
was measured overk. Fork = 150 (i.e. by using each con-
trol input from {Ur # Ul} 50 times) we obtained) ϵmin

r =
ϵmax

r = ) ϵmin
l = ϵmax

l = 0.0096 and the corresponding
probabilities.

In this section we consider three case studies in which we
(a)validateour main result (Theorem 1), (b) provide further
insight into the complexity of the presented method, and (c)
suggest how a potential runtime speed-up can be achieved.

9.1. Case study 1

In the Þrst case study a BLTL formula and two differ-
ent environments are considered. We use the simulation
and experiment based satisfaction probabilities to verify
Theorem 1.

The set of propositions was! = { πu,πp,πt1,πt2,πd},
whereπu,πp,πt1,πt2,πd labeled theunsafe , pick-up ,
test1 , test2 , and thedrop-off regions, respectively.
The motion speciÞcation was:

Start from an initial state qinit and reach apick-up
region within14 time units and stay in it at least0.8 time
units, to pick-up the load. After entering thepick-up
region, reach atest1 region within5 time units and stay
in it at least1 time units or reach atest2 region within5
time units and stay in it at least0.8time units. Finally, after
entering thetest1 region or thetest2 region reach a
drop-off region within4 time units to drop off the load.
Always avoid theunsafe regions.
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Fig. 7. 20 sample state (position) trajectories for casesA andB (to be read top to bottom). Theunsafe , pick-up , test1 , test2 ,
and thedrop-off regions are shown in red, blue, cyan, yellow, and green, respectively. Satisfying and violating trajectories are shown
in black and red, respectively. Note that, in caseA, the upper two red trajectories avoid theunsafe regions and visit thepick-up ,
test2 , and thedrop-off region in the correct order, but they violate the speciÞcation because they do not stay long enough in the
test2 region.

The speciÞcation translates to BLTL formulaφ:

φ = Â πuU' 14( G' 0.8πp %ÂπuU' 5

( [G' 1πt1 & G' 0.8πt2] %ÂπuU' 4πd) ) (10)
Two different environments are shown in Figure 7. The

estimated probabilityöp2
M corresponding to environment

A and B was 0.664 and 0.719, respectively. From equa-
tion (10) it followed thatK = 9. The numerical values in the
control synthesis procedure and the probability estimation
procedure were as follows:N = 10000,h = 0.6,g = 0.6,
δ = 0.05,c = 0.95,α = β = 1, ande = 0.05. For both
environments, we found the vehicle control strategy through
the method described in Section 8.

Since it is not possible to obtain the exact probability
that the system given by equation (1), under the vehicle
control strategy, generates a satisfying state trajectory, in
order to verify our result (Theorem 8.1), we performed
multiple runs of the BIE algorithm by simulating the sys-
tem under the vehicle control strategy (using the same
numerical values as stated above and by generating traces
as described in Sections 6 and 7). We denote the result-
ing probability estimate asöpS. Next, for each environ-
ment, we performed 50 experimental runs of the robot
under the corresponding vehicle control strategy. A pro-
jector was used to display the environment and the state
(position) trajectory was reconstructed using an OptiTrack
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Table 1. Probability estimates of satisfying the speciÞcation.

Environment p̂!
M pE p̂S

Run 1 Run 2 Run 3

A 0.664 0.74 0.847 0.832 0.826
B 0.719 0.78 0.891 0.898 0.879

(http://www.naturalpoint.com/optitrack) system with eight
cameras. In addition, the OptiTrack system was used to
ensure that the robot always starts from the same initial
state. We denote the resulting experiment based satisfac-
tion probability (the number of satisfying runs over the total
number of runs) aspE.

In Figure 7 we show sample state trajectories and in
Table 1 we compare the estimated probabilities obtained
on the MDP,p̂!

M , with the experiment based satisfaction
probabilities,pE, and the estimated probabilities obtained
by simulating the system,̂pS. The results support Theo-
rem 8.1, since bothpE andp̂S are bounded from below by
p̂!

M . The discrepancy in the probabilities is mostly due to
the conservative approximation of the uncertainty region in
Section 6. Note that̂pS is higher thanpE, i.e. the system
given by equation (1), under the obtained vehicle control
strategy, performed better than the physical robot, under
the same vehicle control strategy. The reason for this is
the fact that the system given by equation (1) assumes that
the non-slipping and non-skidding conditions of the wheels
are satisÞed. However, during the experiments, slipping and
skidding are present and, as an unmodeled noise, dimin-
ish the performance of the physical robot. In Figure 8 we
show snapshots from the movie provided in Extension 1
which shows a sample experimental run of the robot in
environmentA.

Given Ur " Ul = {( 1+L
4r , 1# L

4r ) , ( 1
4r , 1

4r ) , ( 1# L
4r , 1+L

4r ) },
nr = nl = 3, andK = 9, for both environments, the
size of the corresponding MDPs was bounded above by
( 3 " 3 " 3)9. Due to the size of the MDPs using the
exact method to obtain a control policy was computation-
ally infeasible. However, our method was able to produce
a solution in approximately 2.2 hours and the actual num-
ber of states stored in the memory was approximately 3.5
million states (<< ( 3 " 3 " 3)9).

9.2. Case study 2

In the second case study we considered a simple BLTL for-
mula with an environment for which the exact MDP solu-
tion was computed. We compare the exact method with our
method by investigating the computation times, the mem-
ory usage, the obtained satisfaction probabilities, and the
obtained vehicle control strategies for both methods.

The set of propositions was! = {" u, " p, " t1}, where
" u, " p, " t1 labeled theunsafe , pick-up , and thetest1
regions, respectively. The motion speciÞcation was:

Fig. 8. Snapshots (to be read top to bottom) from a movie (see
Extension 1) showing robot motion produced by applying the vehi-
cle control strategy for environmentA. The generated trajectory
satisÞed# (equation (10)).

Start from an initial state qinit and reach apick-up
region within6.5time units and stay in it at least1 time unit,
to pick-up the load. After entering thepick-up region,
reach atest1 region within 5 time units. Always avoid
theunsafe regions.

The speciÞcation translates to BLTL formula#:

# = ¬" uU$ 6.5( G$ 1" p %¬" uU$ 5" t1) (11)

The numerical values were as given in Section 9.1. From
equation (11) it followed thatK = 4. The obtained esti-
mated probabilitŷp!

M was 0.945 and we found the vehicle
control strategy through the method described in Section 8
in 6.6 min and the actual number of states stored in the
memory was approximately 0.28 million states.

The size of the MDP was bounded from above by ( 3"
3" 3)4 & 0.5 million states. For the particular MDP we were
able to compute the exact control policy. To do so we only
used a modiÞed version of the control synthesis procedure
of our algorithm as follows. In the control policy evalua-
tion procedure we sampled all the paths through the MDP.
This allowed us to obtain the exact probability that an MDP
path crossing a stateÐaction pair will generate a trace that

 at BOSTON UNIV on August 5, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


Cizelj and Belta 15

Fig. 9. 20 sample state (position) trajectories under the exact vehi-
cle control strategy and under the vehicle control strategy returned
by our method are shown in black and red, respectively. The
unsafe , pick-up , and thetest1 regions are shown in red,
blue, and cyan respectively. All state trajectories are satisfying.

satisÞesφ. These probabilities were then used in the con-
trol policy improvement procedure, in which we updated
the control policyµ by reinforcing the actions that led to
the satisfaction ofφ most often. The fact that each state
in the MDP had exactly one incoming transition, i.e. the
MDP had no cycles, is sufÞcient to see that the procedure
state above resulted in the optimal control policy. Under the
obtained optimal control policy the probability of satisfying
the speciÞcation on the MDP was 1 and the optimal vehicle
control strategy was obtained in 3 minutes.

In Figure 9 we show sample state trajectories obtained
by simulating the system given by equation (1) under both
vehicle control strategies. Note that the state trajectories
perform the same and all of them were satisfying. By
using our method only 0.28 million states were stored in
the memory compared to 0.5 million states stored by the
exact method. However, our method ran for 6.6 min com-
pared to 3 min needed by the exact method. The latter
is due to the fact that our method samples paths through
the MDP and generates the corresponding traces in both
the control synthesis and the probability estimation part
of the algorithm. In particular, since the length of every
path through the MDP was equal toK = 4, by using the
exact method, the total number of paths through the MDP
was 0.5 million

4 = 0.125 million, and for each path only one
corresponding trace was generated. The number of sam-
pled states, stored by our method, was 0.28 million, and
therefore, only0.28 million

4 = 0.07 million distinctive paths
through the MDP were sampled. However, a total of 0.3
million traces was generated during the control synthesis
and the probability estimation part of the algorithm.

9.3. Case study 3

For the case study presented in Section 9.1, the Matlab code
executing the exact method (as proposed in Section 9.2)
ran out of memory after approximately 6 h on a computer
with a 2.5 GHz processor and a 16 GB RAM using a single
sampling thread. On the same computer, our method pro-
duced the vehicle control strategy in approximately 2.2 h.
Even though successful, the key limitation of the proposed
approach is the computation time. However, the advantage
of SMC is that sampling is highly parallelizable and a sig-
niÞcant runtime speed-up can be achieved by increasing the
number of sampling threads (for more information see the
next section).

Additional runtime speed-up can be achieved by decreas-
ing the conÞdence interval coefÞcientc or by increasing
the half interval sizeδ, i.e. by trading-off statistical con-
Þdence for runtime efÞciency. For example, for the case
study presented in Section 9.1 corresponding to environ-
ment A, by decreasingc from 0.95 to 0.80, runtime was
reduced to 0.68 h and approximately 2.5 million states were
stored in the memory, i.e. the running time and the mem-
ory usage were reduced to approximately 30% and 70%,
respectively, of their original values. In Figure 10 (caseA
when c = 0.8) we show sample state trajectories under
the vehicle control strategy and in Table 2 we compare the
estimated probabilities obtained on the MDP,öp2

M, with the
estimated probabilities obtained by simulating the system,
öpS, whenc = 0.8. Note that, by reducingc, both öp2

M and
öpS are reduced in comparison with the results presented in
Table 1. This can also be seen in Figure 10 by noticing that
the new vehicle control strategy performs worse, since less
of the state space was explored by the algorithm.

Finally, we propose an approach that can achieve a run-
time speed-up by using coarser incremental encoders. In
particular, our algorithm can be initialized with a reduced
resolution incremental encoders (by increasing'ϵr and
'ϵl ), which reduces the size of the MDP. Then, if the
user is not satisÞed with the estimated satisfaction prob-
ability returned by the algorithm, one can incrementally
increase the encoder resolution until a satisfactory vehicle
control strategy is found or the original encoder resolution
is reached. We tested this method by using a coarser version
of the incremental encoders presented in Section 9, by set-
ting the measurement resolution'ϵr = 'ϵl = 0.0096, i.e.
by settingnr = nl = 2. The size of the MDP was reduced
from ( 3 # 3 # 3)9 to ( 3 # 2 # 2)9, i.e. it was reduced
approximately 1500 times. For the case study presented in
Section 9.1 corresponding to environmentB, by decreas-
ing nr = nl = 3 to nr = nl = 2, runtime was reduced to
1.1 h and approximately 2.7 million states were stored in
the memory, i.e. the running time and the memory usage
were reduced to approximately 50% and 77%, respectively,
of their original values. Note that, by reducing the MDP size
by a factor of 1500, we achieved 50% and 23% reductions
in runtime and memory usage, respectively. From here, one
can conclude that our algorithm scales gracefully with the
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Fig. 10. 20 sample state (position) trajectories for casesA andB, whenc = 0.8 andnr = nl = 2, respectively (to be read top to bottom).
Theunsafe , pick-up , test1 , test2 , and thedrop-off regions are shown in red, blue, cyan, yellow, and green, respectively.
Satisfying and violating trajectories are shown in black and red, respectively. Note that, in caseB, the upper red trajectories avoid
the unsafe regions and visit thepick-up , test1 , test2 , and thedrop-off region in the correct order, but they violate the
speciÞcation because they violate the time bounds.

size of the MDP. However, this is only the case when the
MDP is a structured model (models that have some symme-
try, e.g. robotics problem of motion planning) for which it
has been shown that SMC for MDPs scales gracefully with
the size of the MDP (for more details see Henriques et al.
(2012)).

In Figure 10 (caseB whennr = nl = 2) we show sample
state trajectories under the new vehicle control strategy and
in Table 2 we compareöp!

M andöpS.

10. Discussion and future work

We developed a feedback control strategy for a stochastic
differential drive mobile robot such that the probability of

Table 2. Probability estimates of satisfying the speciÞcation with
updated system parameters.

Environment Updated öp!
M öpS

Parameter Run 1 Run 2 Run 3

A c = 0.8 0.623 0.686 0.687 0.692
B nr = nl = 2 0.684 0.793 0.801 0.796

satisfying a time constrained speciÞcation given in terms
of a temporal logic statement is maximized. By mapping
sensor measurements to an MDP we translated the problem
to Þnding a control policy maximizing the probability of
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satisfying a BLTL formula on the MDP. The solution was
based on SMC for MDPs and we showed that the proba-
bility that the vehicle satisÞes the speciÞcation is bounded
from below by the probability of satisfying the speciÞcation
on the MDP.

The key limitation of the proposed approach is the com-
putation time. The algorithm itself is extremely lightweight
when compared to sampling. In particular, model checking
and generation of control policies account for less than 10%
of runtime. The remaining time is spent generating sam-
ple traces. There are two main reasons for this. First, when
generating a trace corresponding to an uncertainty region,
a computationally expensive step of taking the intersection
between the uncertainty region and all of the regions of
interest is performed (see DeÞnition 7.1, Section 7). Sec-
ond, note that the system is continuous both in space and
time. Thus, at each time step, when constructing an uncer-
tainty region, the algorithm performs multiple integrations
of the system.

Faster sampling methods have the potential to signiÞ-
cantly decrease the runtime. One major advantage of using
SMC is that sampling is highly parallelizable and signiÞcant
gains can be obtained by increasing the number of sampling
threads. In particular, results from Henriques et al. (2012)
show that by having 10 threads, runtime can be reduced to
under 25% of its original value. To address the fact that
sampling (i.e. generating sample traces) accounts for the
majority of the runtime, future work includes improving
the sampling performance and making the implementation
fully parallel.

Another direction for our future research is to investigate
how increasing the control rate or having more available
controls will affect the vehicle control quality and the com-
putation time. It is obvious that this will increase the size of
the MDP which, due to the fact that sampling accounts for
more than 90% of runtime, will increase the computation
time. Also it is easy to see that having more measurements
and controls will result in an improved vehicle control strat-
egy. However, we believe that this is an important issue
that needs to be treated separately. To address the prob-
lem of discrepancy between the probabilities obtained on
the MDP and the probabilities obtained by simulating the
system, we also plan to use a less conservative uncertainty
model. In particular, we plan to implement the approach
presented in Althoff and Dolan (2011) where, given the
mathematical model of a vehicle and a bound on uncer-
tainty, the authors construct a tight overapproximated reach-
ability set for a Þnite lookahead horizon. Future work also
includes experimental implementations in which the algo-
rithm from this paper is used to control a ground robot that
is simultaneously deployed with an autonomous aircraft that
can observe the environment, formulate the time-bounded
temporal logic speciÞcations for the ground vehicle, and
provide position information to restart the control algorithm
for the ground vehicle.
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Notes

1. Throughout the paper, we relax the notion of partition by
allowing the endpoints of the intervals to overlap.

2. Since the regions of interest are non-overlapping it follows
thatoi ! ! - . .
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Appendix: Index to Multimedia Extensions

The multimedia extension page is found at
http://www.ijrr.org

Table of Multimedia Extensions

Extension Media type Description

1 Video Robot implementation in
environmentA
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