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Abstract

We address the problem of controlling a noisy differential drive mobile robot such that the probability of satisfying a
specibcation given as a bounded linear temporal logic formula over a set of properties at the regions in the environment
is maximized. We assume that the vehicle can determine its precise initial position in a known map of the environment
However, motivated by practical limitations, we assume that the vehicle is equipped with noisy actuators and, during
its motion in the environment, it can only measure the angular velocity of its wheels using limited accuracy incremental
encoders. Assuming the duration of the motion is bnite, we map the measurements to a Markov decision process (MDF
We use recent results in statistical model checking to obtain an MDP control policy that maximizes the probability of
satisfaction. We translate this policy to a vehicle feedback control strategy and show that the probability that the vehicle
satisbes the specibcation in the environment is bounded from below by the probability of satisfying the specibcation on tt
MDP. We illustrate our method with simulations and experimental results.
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1. Introduction (applying an available action can enable multiple transi-

Robot motion planning and control has been widely studf® nrsr; \;\gthmrc])(;tlrg?;nr:gtg;t;nzgé)eé;“keng]cO;riSre(%ﬁ f?]ro
ied in the last twenty years. In OclassicalO motion planni pie, z ’ )- Sulls show

problems (LaValle, 2006), the specibcations are usuaw/ tif se_n_sor and actuator noise models car_1 be obtained
om empirical measurements or an accurate simulator, then

tricted to simple primiti f the t Ogo frént . e
restricted to simple primitives ot the type £go frexrto the robot motion can be modeled as a Markov decision

B and avoid obstaclesO, whekeand B are two regions ] MDP). and probabilistic temporal loai h
of interest in some environment. Recently, temporal Iog— ocess ( ), and probabilistic temporal logics, such as

ics, such as linear temporal logic (LTL) and computation robabilistic CTL (PCTL) and probabilistic LTL (PLTL),

tree logic (CTL) (Baier and Katoen, 2008; Clarke et a1can be used for motion planning and control (see Lahijanian
' X étal., 2012).

1999) have become increasingly popular for specifyin However, robot dynamics are normally described by con-

robotic tasks (see, for example, Loizou and Kyriakopou- ) .
( b Y b Lfrol systems with state and control variables evaluated over

los, 2004; Kress-Gazit et al., 2007; Karaman and Frazzol,p ite d ins. A widel d hfor t oai
2008; Kloetzer and Belta, 2008b; Fainekos et al., 2008!PNIte domains. A widely used approach fortemporafiogic

: ) . véribcation and control of such a system is through the con-
Wi I, 2 Bh l., 2011). It h . . .
ongpiromsarn et al., 2009; Bhatia et al., 2011). It asggcnon of a Pnite abstraction (Tabuada and Pappas, 2006;

been shown that temporal logics can serve as rich Iangua%gg
o : o ~airard, 2007; Kloetzer and Belta, 2008b; Yordanov et al.
capable of ifying complex motion missions such as ' ’ . ’ L
pable of specifying complex motion missions suc © 12). Even though recent works discuss the construction

to regionA and avoid regiorB unless region& or D are . .
visited. O ofNabstractlons for stochastic systems (see, for example,
POInnocenzo et al., 2008; Julius and Pappas, 2009; Abate

In order to use existing model checking tools for motio A . !
planning (see Baier and Katoen, 2008), many of the abO\Fet-al" 2011), the existing methods are either not applicable

mentioned works rely on the assumption that the motion—— — —
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of the vehicle in the environment can be modeled as a
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due to nonlinearities in robot dynamics or are computatiogpecibcations, where the vehicle performance is measured
ally very expensive due to the partition-based abstractiohg the completion of time constrained temporal logic tasks.
of the state and control spaces. Additionally, in order to deal with the increase in the size
In this paper, we consider a vehicle whose performanoéthe problem we use computationally efpcient techniques
is measured by the completion of time constrained tempotased on sampling. In Henriques et al., 2012, the authors
logic tasks. In particular, we provide a conservative soluise SMC for MDPs to solve a motion planning problem for
tion to the problem of controlling a stochastic differentiah vehicle moving on a Pnite grid, assuming perfect localiza-
drive mobile robot such that the probability of satisfyindion,when the task is given as a BLTL formula. We adopt
a specibcation given as a bounded linear temporal lodhis approach to control a vehicle with continuous dynam-
(BLTL) formula over a set of properties at the regions ifics and allowing for uncertainty in its state. Some of the
the environment is maximized. We assume that the vehlesults in this paper were presented without proofs in Cizelj
cle can determine its precise initial position in a knowand Belta, 2013. In this paper, we include all the technical
map of the environment. The actuator noise is modeled adetails and a complexity analysis of the overall approach.
random variable with a continuous probability distributiorin addition, this paper contains a detailed description of our
supported on a bounded interval, where the distribution éxperimental validations and two more case studies.
obtained through experimental trials. Also, we assume thatThis work is related to Lahijanian et al., 2012, where
the vehicle is equipped with two limited accuracy increthe problem of maximizing the probability of satisfying a
mental encoders, each measuring the angular velocity ®ETL formula over a set of regions was considered. In
one of the wheels, as the only means of measurement ava#éhijanian et al., 2012, the MDP model of the robot was
able. These assumptions are motivated by realistic robotionstructed by partitioning the environment and perform-
applications with communication constraints, e.g. in GP#ig extensive experiments and simulations. The approach
denied environments. For example, the robot can use Gp®posed here avoids this expensive process. This paper is
only from time to time to localize itself on a known map ofalso closely related to OclassicalO dynamic programming
the environment. In between GPS readings, the robot uged?)-based approaches (Alterovitz et al., 2007). In these
its (noisy) incremental encoders and maximizes the prolaroblems, the set of allowed specibcations is restricted to
bility of satisfying the specibcation until a new GPS readingeaching a given destination state, whereas our BLTL con-
can be made. trol framework allows for richer, temporal logic specibca-
Assuming the duration of the motion is Pnite, througtions and multiple destinations. In Shkolnik et al., 2009,
discretization, we map the incremental encoder measutke authors solve the problem of reaching a given destina-
ments to an MDP. By relating the MDP to the vehicldéion while avoiding obstacles using the rapidly exploring
motion in the environment, the vehicle control problemandom tree (RRT) algorithm that takes into account local
becomes equivalent to the problem of Pnding a control pakachability, as debPned by differential constraints. In our
icy for an MDP such that the probability of satisfying theapproach, when relating the MDP to the vehicle motion in
BLTL formula is maximized. Due to the size of the MDPthe environment, reachable sets are also considered, but we
Pnding the exact solution is prohibitively expensive. Wiake into account reachability under uncertainty. Moreover,
trade-off correctness for scalability, and we use compour approach produces a feedback control strategy and a
tationally efbcient techniques based on sampling. Spedidwer bound on the probability of satisfaction, whereas the
ically, we use recent results in statistical model checkingethod presented in Shkolnik et al., 2009 only returns a
(SMC) for MDPs (Henriques et al., 2012) to obtain an MDRollision-free trajectory. In addition, these methods differ
control policy and a bayesian interval estimation (BIEjrom our work since they require precise state of the vehi-
algorithm (Zuliani et al., 2010) to estimate the probabilitgle, at all times. One approach for planning under motion
of satisfying the specibcation. We show that the probabilncertainty (Melchior and R.Simmons, 2007), called the
ity that the vehicle satisbes the specibcation in the origir@édrticle RRT algorithm, explicitly considers uncertainty in
environment is bounded from below by the maximum prolits domain. Each extension to the search tree is treated
ability of satisfying the specibcation on the MDP under thas a stochastic process and is simulated multiple times.
obtained control policy. Even though this method produces a collision-free trajec-
The main contribution of this work lies in bridging thetory together with the probability of following the path, it
gap between low level sensory inputs and high level ters restricted to a simple task of reaching a given destina-
poral logic specibcations. We develop a framework for then state and requires precise state information. In Grady
synthesis of a vehicle feedback control strategy from suetal., 2013 the authors solve a motion planning problem for
specibcations based on a realistic model of an incremenear-like vehicle under uncertainty by posing the problem
tal encoder. This paper extends our previous work (Cizels a partially observable MDP (POMDP). In particular, the
and Belta, 2012) of controlling a stochastic version of framework bnds a policy that provides the optimal action
Dubins vehicle such that the probability of satisfying a tengiven all past noisy sensor observations, while abstracting
poral logic statement, given as a PCTL formula, over sons®me of the motion constraints to reduce computation time.
environmental properties, is maximized. Specibcally, thiéhe same problem has been solved in Bai et al., 2013 where
approach presented here allows for richer temporal logize authors present a simple algorithm for off3ine POMDP


http://ijr.sagepub.com/

Cizelj and Belta 3

planning in the continuous state space that producesZaliani et al. (2010). Roughly, formulas of BLTL are con-
POMDP policy, which can be executed efbciently onlinstructed by connecting properties from a set of proposi-
as a bnite-state controller. However, these approaches e I1 using Boolean operatorsA((negation),% (con-
restricted to simple motion planning problems (Ogo fromjunction), & (disjunction)), and temporal operators (
to B while avoiding obstaclesO). (bounded until)F ! (bounded Pnally), ané ' (bounded
The remainder of the paper is organized as follows. iglobally), wheret ! R(? is the time bound parameter
Section 2, we introduce the necessary notation and reviewdR( ° denotes the set of nonnegative real numbers). The
some preliminaries. We formulate the problem and outliremantics of BLTL formulas are given over inPnite traces
the approach in Section 3. In Sections 4D7 we explain the= (01,t1)(0x,t)..., 0 ! 27, t ! R(O i (1, where
construction of the MDP and the relation between the MD®, is the set of satisbed propositions danig the time spent
and the motion of the vehicle in the environment. The vehsatisfyingo;. However, in Zuliani et al. (2010) the authors
cle control strategy is obtained in Section 8. Case studiglsow that model checking a trace on a BLTL formula is
and experimental results illustrating our approach are pneell-debPned and can be based on only a Pnite prebx of the
sented in Section 9. We conclude with Pnal remarks atréce of bounded duration. A trace satispes a BLTL formula
directions for future work in Section 10. ¢ if ¢ is true at the Prst position of the trade;'¢, means
that ¢1 will be true withint time units;G' '¢; means that
Lo . ¢1 will remain true for the next time units; andp,U" ¢,
2. Preliminaries means thap, will be true within the next time units andp,

In this section we provide a short and informal introductiof@mains true until then. More expressivity can be achieved
to MDP and BLTL. For details about MDPs the reader i8Y combining the above temporal and Boolean operators.
referred to Baier and Katoen (2008) and for more infor-
ti BLTL to Jha et al. (2 Zuliani et al .
ggl'%r; on 0 Jha et al. (2009) and zuliani et alg - popiem formulation and approach
3.1. Problem formulation

Depnition 2.1 (MDP). An MDP is a tuple M = \ii0n model: A differential drive mobile robot
(S %, Act A P), where S is a Pnite set of stateg;!s SA'tS (LaValle, 2006) is a vehicle having two main wheels, each
the initial state; Act is a Pnite set of actions;: A" 2™ ot hich is attached to its own motor, and a third wheel
is a function specifying the enabled actions at a state ghich passively rolls along preventing the robot from
P S# Act# S” [0,1]is a transition probability func- ¢5)ing over. In this paper, we consider a stochastic version

tion such that for all states § S and actions & A(S): ¢t 4 differential drive mobile robot, which captures actuator
> asP(s a,s)= 1, and for all actions a¥ A(s) and

Sl S:P(sas)= 0. noise:
_ o X 5(Ur + e + U+ €)cos(d)
A control policy for an MDP resolves nondeterminism| y; | = %(Ur +e+u+e)sind) |, u! U, u! U
in each states by providing a distribution over the set of | 4 Hu+e) u) «q)
actions enabled in : Q)

where (x,y)! R?ande ! [0, 2r) are the position and ori-
Debpnition 2.2 (MDP control policy). A control policypu entation of the vehicle in a world frame, andu, are the
of an MDP M is a functiorn : S# Act " [0,1], s.t., control inputs (angular velocities before being corrupted
> a a9 H(s,@= landy(s a) > Oonlyifaisenabledins. by noise),U, and U are control constraint sets, ard
A control policy for which eithepi(s,a)= 1oru(s,a)= 0 ande¢ are random variables modeling the actuator noise
for all pairs (s,a)! S# Actis called deterministic. with continuous probability density functions supported on
the bounded intervals", ¢™] and [, ¢M®, respec-

A control policy p resolves all nondeterministic choicegively. L is the distance between the two wheels anid
in an MDP. Given an initial statey, an actiona ! A(s) the wheel radius. We denote the state of the system by
is applied with probabilityu(so, &), and once the action q= [x,y,08]" ! SH?2).
is applied, the next state® is obtained by sampling from  Motivated by the fact that the time optimal trajectories
the probability distributiorP, i.e. the next state is*with  for the bounded velocity differential drive robots are com-
probability P( o, a,s%, and so on. posed only of turns in place and straight lines (Balkcom and

We employ BLTL to describe high level motion speciMason, 2000), we assunig andU, are bnite, but we make
ibcations. BLTL is a variant of LTL (Baier and Katoen,no assumptions on optimality. We debne
2008), for which it has been shown that Pnite simula-
tions of bounded duration are always sufpcient for model W, = {u+ e|u! Uj,e! [¢™, ™}, it {r,1}
checking (Zuliani et al., 2010). A detailed description of
the syntax and semantics of BLTL is beyond the scomes the sets of applied control inputs, i.e. the sets of angu-
of this paper and can be found in Jha et al. (2009) atal wheel velocities that are applied to the system in the
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Ae, Ae, Ae, with a limited accuracy sensor such that the actuatorOs noise
interval can be partitioned into subintervals of lengtlz,
where A« is the measurement resolution of the sensor, and
5 (3) given the actuator and sensor models, we can debne
k + gmfm uff 4 gmax an overapproximated uncertainty region (see Section 6.2).
r r For example, the presented method can be extended to a
uf + €, stochastic version of a car-like robot equipped with two
) _ ) min _max ; - ) limited accuracy incremental encoders (Fraichard and Mer-
Fig. 1. Letny = 3, ie. ["" "] is partitioned into three )4 1998) or to a stochastic version of a Dubins vehicle

noise intervals of lengtier, & = {[ef, &1, [¢7, €1, [€7, €1} equipped with a limited accuracy gyroscope (Cizelj and
Assume the applied control input at stdges u'r‘ + €r, such that Belta, 2012)

er | [€2,€2]. Then, the incremental encoder at stagek, will
return measured intervabf, wK] = [uK + €2, uk + €2]. Environment model and speciPcation: The vehicle
moves in a planar environment in which a set of non-

.overlapping regions of interest, denotedm®ys present. Let

presence of noise. We assume that time is uniformly d|ﬁ— be th ; s isbed h . i th
cretized (partitioned) into stages (intervals) of length .Et e set of propositions satlspg at the regions in the
environment. One of these propositions, denotedrpy

where stagé is from (k) 1)At to kAt. The duration of I1, signibes that the corresponding regionsiarsafe . In

the entire motion plan is bnite and it is denotedt (later ; . . .2
S . ; . X this work, the motion specibcation is expressed as a BLTL
in this section we explain hoW is determined). We denote i

formula¢ overIT:

the control inputs and the applied control inputs at stage
asuf! Uj,i! {r,1}, andwf | Wi, i! {r,1}, respectively. ¢ =A 7,U T(p1%Am,U "2( 0% 8%Am,U Ter)) (2)

H 4
1
-
Al
SN

u

Sensing model: We assume that the vehicle is equipped ' ' Z"»andgj, i ! {1,...,f}, is of the following form:

with two incremental encoders, each measuring the applied D1 oo
control input (i.e. the angular velocity corrupted by noise) ¢ =G ( \/ 7)&aa&G i ( \/ 7)
of one of the wheels. Motivated by the fact that the angular xt ot ! nj”j
velocity is considered constant inside the given observation
stage (Ekekwe et al., 2007; Petrella et al., 2007), the appligdieren; | Z*, +n1 oI, T\ 7y, +p=1, 55" ! REO
controls are considered piecewise constantwi.e[(k) 1) andT;! R(°.
At KAl " W, i! {r,1}, are constant over each stage.

We denote the measurement resolution of an incremendample 3.1 .Consider the environment shown in Fig@e

encoder (Petrella et al., 2007) As;, i ! {r,1}. GivenA¢ Let Il = {my,mp, 7, ma}, Where my,mp, 7, g label the
and g™, €™, i ! {r,1}, then the following holds*n; |  unsafe , pick-up , test , and thedrop-off  regions,
Z* st.mAe = | €M) eimi"|, i I {r,1}. For more details respectively. Let the motion specibcation be as follows:

see Section 9 where we also explain how to obtain the meaStart from an initial state g; and reach apick-up
surement resolutions and the probability density functiongggion within T, time units to pick up a load. After entering
Then, ™", "] can be partitionetlinto n; noise intervals the pick-up  region reach atest region within T, time

of lengthAe;: [€6,@],ji = 1,...,n;,i ! {r,I}. We denote units and stay in it at leasb time units. Finally, after enter-

the set of all noise intervals ty = { [¢},&'], ..., [¢!',€"]}, ingthetest region reach adrop-off  region within T

i I {r,1}. At stagek, if the applied control input isk + ¢;, time units to drop off the load. Always avoid thesafe

the incremental encodéewill return the measured interval regions. . .
The specibcation translates to BLTL formgla
[wf, W] = Ul + ¢, U+ &

_ _ _ ¢ =AU (7, %AmU 2(G2m %A U Brg)) B
wheree; ! [g,€] ! B,i ! {rI}. In Figure 1 we give ©)
an example. The pair of measured intervals at stiage
([M,w/ﬂ, [\L\,r,wr]), returned by the incremental encoders, Note that, in the formulas given by the proposed frag-
is denoted bywk. ment of BLTL (equation (2)) the propositions are classibped

into two nonintersecting sets according to whether they rep-
Remark 1. Even though we focus on a differential driveesent regions that must be reached or avoided (the unsafe
mobile robot, the approach presented in this paper cargions). By introducing an extended set of propositions
be applied to any system where the motion of the vehigkeg., as presented in Fainekos et al. (2009)), this limiting
is given as a stochastic kinematic model equipped withassumption can be lifted, and the presented approach can
limited accuracy sensor as long as the following assumpe extended to BLTL formulas where a region needs to be
tions hold: (1) the actuator noise is modeled as a randoivoth reached and avoided.
variable with a continuous probability density function sup- For simplicity, we assume that the vehicle can precisely
ported on a bounded interval, (2) the system is equippé@termine its initial statgnit = [Xinit, Yinit, @init], i @ known
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// I \\
(mp,0.75)(0, 0.44) (7, 0.61)
Fig. 2. An example environment with the regions of interest. Tiheafe , pick-up ,test , and thedrop-off  regions are shown
in red, blue, cyan, and green, respectively. A sample state (position) trajectory of the system is shown in magenta.

map of the environment. However, our approach works &2. Approach

long as the initial state is such that the corresponding dilsn- this paper, we develop a suboptimal solution to Prob-
tance and orientation uncertainties are bounded (for maQL, :

details see Section 6.2). For example, our approach canl\%?é] 1 consisting of three steps. First, we debne a Pnite state

applied directly when the initial state is modeled as a ran- P that captures every sequence realization of pairs of

dom variable with a Pnite support probability distributionmeasuremems returned by the incremental encoders_. The

(e.g. localization via a particle blter). While the vehicle§tates of the MDP correspond_to the sequences of pairs of
N ' .. measured intervals and the actions correspond to the control

moves, incremental encoder measuremaltsare avail- inputs

able at each stage We debne aehicle control strategy )

as a map that takes as input a sequence of pairs of m%e}?econd, we Pnd a control policy for the MDP that
sured intervalsVw? ... WX 1, and returns control inputs ximizes the probability of satisfying BLTL formuia.

K K Because of the size of the MDP, Pnding the exact solution is
;;e! mlilrinan:joutgle!muvl\/:litﬁgg(érﬁetﬁirse rzag?/. to formulate computationally too expensive. We decided to trade-off cor-
P paper. rectness for scalability and we use a computationally efp-
cient technique based on system sampling. We use recent
Problem 1. Given a set of regions of interest R satisfyingesults in SMC for MDPs (Henriques et al., 2012) to obtain
propositions from a sefl, a vehicle model described byan MDP control policy and a BIE algorithm (Zuliani et al.,
equation (1) with initial state g, @ motion specibcation 2010) to estimate the probability of satisfyitig
expressed as a BLTL formujaoverIT (equation (2)), bnd  Finally, since each state of the MDP corresponds to a
a vehicle control strategy that maximizes the probability afnique sequence of pairs of measured intervals, we translate
satisfying the specibcation. the control policy to a vehicle control strategy. In addition,
we show that the probability of satisfying in the original
To fully specify Problem 1, we need to debne the satisnvironment, is bounded from below by the probability of
faction of a BLTL formulag by a trajectoryq : [0, KAL] " satisfying the specibcation on the MDP under the obtained
SH 2) of the system from equation (1). A formal dePnitiortontrol policy.
is included in Section 4. Informallyg(t) produces a bnite
tracec = (01,t1) (02,t2)...(0,t), 0! TI-. ,t! R(° Remark 2. The approach presented in this paper can only
i (1, whereo is the satisPed propositibrandt; is the deal with Pnite time speciPcations. There are two main rea-
time spent satisfyin@;, as time evolves. A trajectorg(t) sons for this. First, as it will be show in Section 6.2, the
satisbes BLTL formula if and only if the generated tracevehicle is subject to cumulative and unbounded position
satisbes the formula. Given for the duration of the entire uncertainty. Second, in order to perform SMC, sampling
motion plan we use the smallast! Z* for which model and model checking of traces needs to be computation-
checking atrace is well debned, i.e. the smalefir which  ally feasible. Therefore, the reason why we decided to use
the maximum nested sum of time bounds (see Zuliani et @l.TL was the fact that, unlike LTL or metric LTL (Koy-
2010) is at mosK At. mans, 1990), the semantics of BLTL formulas is well debPned
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on bnite prebxes of traces with a duration that is bounded], is (0;,t;),i = 1,...,l. We denoter|; as the bnite sub-
Additionally, given a BLTL formula, we can determine theequence o# that starts inv;. Finally, given a formulap
duration of the entire motion plan, Xt, easily, as described in the form (2), we use; to denote subformulAm,UTi @i

in the previous subsection. Even though co-safe LTL (go= 1,...,f. Using the BLTL semantics one can derive the
safe LTL formulas are LTL formulas such that any goofbllowing conditions to determine whetherk ¢:

trace satisfying the formula has a Pnite good prebx (see,

for example, Bhatia et al., 2010)) can be used with oUpePnition 4.2 (Satisfaction conditiong. Given a traces
approach as well, it does not provide such a method fénd a BLTL formulap (equation (2)), letforj {1,...,f},
determining the duration of the entire motion plan. The redy, kj ! N be such that for some!n{1,.. ., nj} the following
son for using the proposed fragment of BLTL is that it iBold:

the largest BLTL fragment for which we were able to provb% | an
the main result (Theorem 8.1), i.e. the fact that the prob- ggki j Ei_ o 6
ability that the vehicle satisPes the specibcation (given as i,-rigcl ii<ijtk, 08 m.

the fragment of BLTL) in the environment is bounded frof Zizij t' T
below by the probability of satisfying the specibcation otk ( 7.

the corresponding MDP. _ .
Then,alij E d)j. If 4! {1,...,f}, *Ij,k" ' N S.t.(Tlij E ¢j

where |+ 1 = ij + kj with iy = 1, theno F ¢.

4. Generating a trace
In this section, we formally debne the satisfaction of EX@mple 4.3.Consider the environment and the sample
state (position) trajectory shown in Figur2. Let ¢ be

BLTL formula by a trajectory of (1). Let us denote] = ) ) X : .
{(6xy)! R2(xY)! - nr.r}as the set of positions that®S N equation (3) with the following numerical values
; ; L for the time bounds: T= 6.2 T, = 23 1, = 0.2

satisfy propositionr, whereR, / R s the set of regions )
and T3 = 2.3 The trajectory generates trace =

labeled with propositionr .
(.,6.12) (7p, 0.75) (. , 0.44) (7, 0.61) (. , 1.66) (g, 1.22)

Debnition 4.1 (Generating a tracd. The trace corre- 1he following holdso |y = ¢4 since fori = 1and k = 1,
sponding to a state trajectory(§= [x(1),y(1),0(t)]Tis 02! {7} 016 my, u" Ti; o2 = ¢z since forp = 2and
a bnite sequence = (01,11) (0, 1)... (o t), 0! T-. , K= 204! {m}, 0,038 7y, o+ 13" Ty andty ( 7;
t ! [0,KAtl,i=1,...,,1 (1, where gis the satisped andols = ¢s since forp = 4andk = 2,05 ! {ra},
proposition and tis the time spent satisfying, generated 04058 7y, andi+ ts° T3. Thuso F¢. B

according to the following rules, for allt%z ! [0, KAt]:

¥ oy= ! Iiff (fand only if(x(0).y(0))! [x] and 5. Construction of an MDP model

0, = . otherwise. Recall thatk; is a random variable with a continuous proba-
¥ Letq be the satisbed proposition at some t. Then:  bility density function supported on the bounded interval
1 1o = then oy = 7 | TI, iff (a) *t® > [e™, €M, i ! {r,1}. The probability density functions
. i — .y |+ - . L]

are obtained through experimental trials (see Section 9) and

tst (x(t9.y(t)! [r], and (0)!7 ! [t1] they are debned as follows:

st (x(7),y(2))! [#Y, +x® ! T andt =

mlnt! [Z}):(l)tJ'KAt]{tl(X(t)1y(t))' [7.[]} ) Z;):étja Pr(Ei | [EJI',EJI']) = p:' (4)
with tp = 0. — . I '

2. If oo = 7 ! T then ou, = . iff [e.&]! Bji=1,...nsty p=1i! {l}.
> t st (x(t9,y(t))V [x], and t; = An MDP M that captures every sequence realization

Min, i 1, o A dHOCE, V(D) [7]}) Y21y, of pairs of measurements returned by the incremental
U DgmolKal Z’ 07 encoders is debned as a tuple= (S, 5, Act, A, P), where:

withtg = 0.
¥ Let for KAt, o be the current satisbed propositions¥ S= - k=1,.k{([U + &, U + &, [u +k§|1 u+ @) fur !
Then't: KAt) Z]I):itJ UryUI ' U|![§r1€r] | Efr[§|1€|] I E} The meanlng Of

the state is as follows:W?, ..., WK)! S, means that at
A trajectoryq(t) satispes BLTL formulg (equation (2)) stage, 1' i' K, the pair of measured intervalsvg'.
if and only if the trace generated according to the rulés s, = . isthe initial state.

stated above satisbes the formula. Note that, since the dafa-Act = U, # U, - £ is the set of actions, whekgis a
tion of the entire motion plan is Pnite, the generated trace dummy action.

is also Pnite. In Zuliani et al. (2010) the authors show th& A : S " 2% gives the enabled actions at statef
model checking a trace on a BLTL formula is well debned |9 = K, i.e. if the termination time is reache{,s) = &,
and can be based on only a Pnite prebx of the trace of otherwiseA(s)= U, # U,.

bounded duration. The fact that the tracesatispesp is ¥ P : S# Act# S " [0,1] is a transition probability

denotedr F ¢. Given a tracer, theith state ofo, denoted function constructed by the following rules:
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e &l €. e}, e, ] ji= Loom it {1} i.e.el is the midpoint of interval
| S— — E—— [, €l E,i! {r,I}. We denote the set of representative
emin € emn emazx o 1 Ny i
r r values ass; = {¢,...,¢ '}, i ! {r,1}.

We used(t), w&, andwf, t | [(k) 1)At kAL, k =
1,...,K, to denote the state trajectory and the constant
applied controls at stade respectively. With a slight abuse
of notation, we useX to denote the end of state trajectory
g“(1), i.e. g = g“(kAt). Given statey 1, the state trajec-
tory g(t) can be derived by integrating the system given
by equation (1) from the initial statg” !, and taking into
account that the applied controls are constant and equal to
wK andwk. Throughout the paper, we will also denote this
trajectory byg(g¥ 1, wk, wk, t), when we want to explic-
ity capture the initial statg ! and the constant applied
Fig. 3. A fragment of the MDPM wheren; = n; = 2. Thus, CONtrolsw andwj’.

Pl = Pr(er ! [l €M), form= 1,2, andp! = Pr(e ! [, &), Given a path through the MDP:
for n = 1,2. Action (ur,u)! A(S) enables four transitions. For
example, given state = (W1), the new state is\WW1w2), where Wy ) )

5 1o P 20 %)) " s)) S (5)
W3 =([ur) €, Uur+ €], [U) €f, U+ €f]), with probability py8pr.

This corresponds to applied control inputs being equal té e wheres, = (Wll o ,Wk), with WK :([Ulr( + KUk

1-1 2 =2 =T
andu; + ¢ whereer ! [e, ef] ande ! [ef €. €, [uk+ ek, U+ €k)), k = 1,...,K, we dePne thaominal

state trajectory qt),t! [0, KAt], as follows:

K
o,

uk
S 88k 1 )()

1. Ifs=(W1,...,WK! SthenP(s a s)= p"p iff

$= (V(\/l, L WK, ()[Ur"' em Ur’(" E:n]'s?ul +Zr|nfjl-ll + q(t)= qk(qk) o Ulr< + E:(r U:( + E|k,t) , T [(K) 1) At At

i'n]))! Sanda=(u,u)! {Ur# Upwherem= ", hereek | E is such thaiek | [ek, 2]

veon,n=1,... nandk=1,...,K. Ol | 4l = o i: hth Ihth IIVIDIP't
2. If|s|= KthenP(s,a,s)= liffa= £ ands’=s ' {r,1} andq” = gin;.. For every path through the » 11S
3. P(sas)= 0otherwise. nominal state trajgctory is ngl debned. The ngxt step is to
dePne the uncertainty evolution, along the nominal state tra-
Rule (1) debned above follows from the fact that giv¥n jectory, since the applied controls can take any value within
andu}‘ as the control inputs at staggethe pair of measured the measured intervals.
intervals at stagk+ 1is ([uf+ €™ uk+ €™, [uk+ €, uk +
€') with probability pfpf’, since Pre, ! [eM €)= p" . . .
and Pre | [, €)= p[‘,lwhich follows from equation (4) 6.2. Position uncertainty evolution
(see the MDP fragment in Figure 3). Rule (2) states thatdince a motion specibcation is a statement about the propo-
the length ofsis equal toK, i.e. if the termination time is sitions satisbed by the regions of interest in the environ-
reached, theA(s)= & with P(s,&,5)= 1. ment, in order to answer whether some state trajectory sat-
isbes BLTL formulay it is sufbcient to know its projection

Proposition 5.1. The model M debned above is a valigh R2 Therefore, we focus only on the position uncertainty.
MDP, i.e. it satisPes the Markov property and P is @ The position uncertainty of the vehicle when its nomi-
transition probability function. nal position is & Yy)! R?is modeled as a disc centered
at (x,y) with radiusd ! R, whered denotes the distance

Proof. The proof follows from construction &f. Given cur- ,
uncertainty:

rent states ! S and an actiora ! A(S), the conditional
probability distribution of future states depends only on the _ 2 ,
current state, not on the sequences of events that preceded D((%y),d)={OF)! RAIN(xY), Sy db (6)

it (see rule (1) above). Thus, the Markov property holds. In . - . .
addition, since for everganda! A(9): Y <P(s 2= where||a||denotes the Euclidian distance. Next, we explain

3 how to obtaind.
s St PP = e, oYLy pf = 1 itfollows that TR 8078

1 . : .
P is a valid transition probability functiorill S denote the orientation uncertainty.

Let g(t), t ! [0,KAt], be the nominal state trajectory
o _ corresponding to a path through the MDP (equation (5)).
6. Position uncertainty Then, q(t) can be partitikonedk intdk state trajectories:

: : g“(t) = (g9 Luk+ ek uk+ €51, t 1 [(k) 1) At At],
6.1. Nominal state trajectory k=1,...,K, Wherreeik | Eli is sluch thatk | [k, € ! E,
For each interval belonging to the set of noise intervald {r,1} andq® = gy, (see Figure 4). The distance and ori-
E, we dePne a representative vakje = (¢! + €')/2, entation uncertainty at stat§ are denoted agt and A9,
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respectively. We sed* and A9¥ at stategt = [x<,y%,0%]T  which the trace corresponding to the uncertainty region
equal to: D((x(t),y(t)),d(t)) is generated. These rules guarantee
that if the generated trace satiskei@quation (2)) then any
d* = M m9m Rkl ||(xkk, Y9, 0EWIN+d9  and  giate (position) trajectory insid@( (x(1),y(1)),d(t)) will
AQK = marsyseqri ri(10¢) 69) satisfye.
(7)
Debnition 7.1 (Generating a trace under uncertainty.
RK = { (X0 L,y0 1,09 1+ o], Uk + €3 Uk + €S kAD)| The trace corresponding to an uncertainty region
L IAGR LY AGO LY 1 fek gky o$) rok ok D((x(t),y(t)),d(t)) is a bPnite sequencesc =
al {A075) et {eneha {eh @l (o t)(ont2),....(ont), o ! M-. , § ! [0,KAL,
® = 1,...,1,1 ( 1, where g@is the satisbed proposition and

s the fi A . h
fOrk = 1,...,K, whered® = 0 andag® = o i the e spent satising.generated acoording o the
Equations (7) and (8) are obtained using a worst-case sce- ' I ’

nario assumption. At stade the pair of measured intervalsy 01= 7! T\ 7y iff D((x(0),y(0),d(0))/ [x],01=

isWH = ([Uf + ef, U+ &1 [U+ 6 U+ @) andwe use it b (x(0),y(0),d(0))1[r] & . and @ = .
otherwise.

where

the endpoints of the measured intervals to dePnR $eR ¥

is the smallest set of points BE(2), at the end of stage  y | ¢t q be the satisbed proposition at some t. Then:
guaranteed to contain (a) the state with the maximum dis-

tance (in Euclidian sense) frogf given that the applied - If 6 = = ! T\ =, then o, = . iff

controls at stagiare within the measured intervals at stage *t:$> ts.t. D((x(t),y(t9),d(t)) 0/ [r] and t; =

i, and (b) the state with the maximum orientation difference min, [Z}):étj,KAt]{tlD((X( 1), y(1),d(1)) 0/ [x]})

compared ta given that the applied controls at stagae }):étj- with t = 0.

within the measured intervals at stagé = 1,...,k. (For 2. If o = m, then 0,1 = . iff *t® > t s.t.

more detalls.abo'le'see'Fralchard and Mermond (1998).) D((x(t),y(tY),d(th)1[7] = . and t; =

An example is givenin Figure 4. _ _ min, [Zi)_lt-,KAt]{tlD((X(t) Y(1),d(1)1[n] =
From equations (7) and (8) it follows that, given a Ji5011 i _

nominal state trajectorg(t), t ! [0,KAt], the distance -}) Xjzol, withto = 0. _

uncertainty increases as a function of time. The way it 3 If0i=..,thenoi., =71 I\ m, iff

changes alongy(t) makes it difbcult to characterize the (@) *t*>ts.t. D((X(t),y(tH),d(t))/ [n]

exact shape of the position uncertainty region. Instead, we () 'z ! [t1] st D((x(),¥(1)),d(1))/

use a conservative approximation of the region. We debne [79, +7%! T\ my

d: [0,KAt] " R as anapproximate distance uncertainty © 't ! [t st D((X(z),y(7)),d())

trajectory and we setd(t)= d¥, t | [(k) 1)At kAt], 1[m] © .

k=1,...,K, i.e. we set the distance uncertainty along the andt; = min, [Z}):(l)tj’Km]{tlD((x(t) (1), d(t))

state trajectoryg“(t) equal to the maximum value of the

N1ls i —
distance uncertainty alongf(t), which is at state). An I I7]}) Y=ot witho = 0.

example illustrating this idea is given in Figure 4. 4. Ifo = .. thenow, = my, iff
(@) *t*>ts.t. D((x(t,y(19),d(tH))1[n,] © .
Proposition 6.1 .Given a path through the MDP M (equa- (b) 'z ! ét,tﬁ s.t. D((X(7),¥(7)),d(7))/
tion (5)), and the corresponding(§) and dt), t ! [79, +7%! T\ 7y
[0,KAt], as deb$ned abo;/e, then any state trajectdfy) & and t; = min, [Z}):(l)tijM]{UD((x(t) ¥(1),d(t)
g9 LUk + Uk + €0, 1! [(k) 1)At kAL, k = N,
r r kS K —k K 1[7Tu]@ }) Z-:Otj,Wlthto— 0.
1,...,K, where § = i, € | [€€] and ¢ ! y _ -
[e! ,gr], is within the uncertainty region, i.éx{t),y{t))! ¥ ForKAt,letqg E? the current satisbed proposition. Then
D((x(t),y(t)),d(t)), +t! [0,KAL]. b= KAt) > i1t

Proof: The proof follows from the debnition of the approx- In Figure 5 we show an uncertainty region and the cor-
imate distance uncertainty trajectory and equations (6)D(@sponding trace generated according to the rules stated
| above. Next, we show that if the trace corresponding to
an uncertainty region satisbes then any state (position)
7. Generating a trace under the position trajectory inside the uncertainty region also satispes
uncertainty Proposition 7.2 . Let D((x(t),y(1)),d(t)) be the uncer-
Let g(t) be a nominal state trajectory with the distanctinty region corresponding to a path through the MDP
uncertainty trajectoryd(t), t ! [0,KAt]. In this subsec- M (equation (5)) and let §t) be any state trajectory as
tion we introduce a set of conservative rules according teePned in Proposition 6.1. Let® = (0D,tD)...(02,tP)
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Fig. 4. Left Evolution of the position uncertainty along the nominal state trajeaipty= [x(t),y(t),0(t)], whereq(t) is partitioned
into three state trajectorieg®(t), k = 1, 2, 3.Right The conservative approximation of regib (x(t),y(t)),d(t)) alongq(t), where
the distance uncertainty trajectorydét) = dk(t), t%! [(k) 1) At kAt], wheredX(t)= d¥ k= 1,2, 3.

$ o8 $ o5 ke
aljdaq$: (o, t7)... (o7, 1) be the corresponding traces. 3. Z?:;) e Z:’:ijk‘) 12" T (2nd relation above).
Given BLTL formulag (equation (2)), ifo® E ¢, then E

q® 4. tgsq
o F ¢.
. . . wheres;1 = §+ z withs; = 1.
Proof. First, we state two relations between the given traces: §+1_ 54 Slqs _
Thus,+j ! {1,...,f}, 05 F ¢, and according to Dep-

1. Leto? = x ! I\ m, for somei ! {1,...,Kk}. nition 4.2, it follows thate® £ ¢. In Figure 5 we give an

( ti?+k,- (7" (1strelation above).

Tr;en, the foIIowin$g holdsxj ! {1,...,1} such that examplem

of = randt®' t.

Informally, if t” is the timeD((X(t),¥(1)), d(t)) spent g \ehicle control strategy

inside the region satisfying proposition, then g¥t)

will spend at least® time units inside that region. Given the MDPM, the next step is to obtain a control policy

Leto® = = ! M\ m, andoR = 7%1 T\ m, for some that maximizes the probability of generating a path through

i,i®1 {1,...,k}, i®* > i. Then, the f0||0Win% holds: M such that the corresponding trace (as debned in Sec-

tions 6 and 7) is satisfying. There exist approaches that,

N 51,08, 9 1.0 given an MDP and a temporal logic formula, generate an

In addition, } ;.2 "ty h=i - exact control policy that maximizes the probability of satis-

fying the specibcation. In general, exact techniques rely on

Informally, if the time betweerD((x(1),¥(1)).d(t)) reasoning about the entire state space, which is a limiting

entering a region satisfying and then entering a factor in their applicability to large problems.

region satisfyingr$is Z}Zil tE time units, then the time  Given U, U,, n,, n;,, andK, the size of the MDPM is

betweeng t) entering the region satisfying and then bounded above by|U,| # |U| # n. # n)K. Even for a sim-

entering the region satisfying®is bounded from above ple case study, due to the size\f using the exact methods

by Zfl il tD. For more intuition about these relations set obtain a control policy is computationally too expensive.

Figure 5. Therefore, we decide to trade-off correctness for scalabil-

ity and use computationally efbcient techniques based on

system sampling. In particular, we modify SMC for MDPs

(Henriques et al., 2012) that selectively samples traces of

*,J®1 {1,...,1},j%> j such thao’ = x ando} = x¢

Assumingo® F ¢, then+ ! {1,...,f}, *ij,k ! Nand
somen! {1,...,n} such tha’tri'jD F ¢; (see Debnition 4.2).

Then, from Proposition 6.1 and Debnition 4.1 and 7.1, #y MDP until enough statistical evidence has been found
follows that+j ! {1,...,f},*s,z ! N such that: to support the claim that some property holds in the MDP

1. o 1

with some probability. The problem is reduced to Pnding
stz ¢ s the probability under an optimal control policy: one that
2. Foreacly' i<s+ g, oiq e . maximizes the probability of satisfying the property. The
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(0,0.53) (m;,0.56)
(0,5.59) (mp, 1.45) I I (0,1.62) (m4,1.24)

H Ty

N B
E 7q

Ginit

| | | | |
(0,5.72) (mp.1.24) (0,087 | (0,1.96)  |(7a,0.82)

. | | i |
3

Fig. 5. An uncertainty region and a sample state (position) trajectory, inside the uncertainty region, are shown in black and
magenta, respectively. The corresponding generated tracesDare ,5.72) (mp, 1.24) (. ,0.87) (71, 0.24) (. , 1.96) (g4, 0.82) and
aq$ = (.,5.59) (7p, 1.45) (., 0.53) (t, 0.56) (. , 1.62) (g, 1.24). Lety be as given in Example 4.3. Then, it follows thelt ¢

$ s
ando® £ ¢. Note that fore? = o5 = mp, 15 < tJ (Lst relation above). Also, for? = a§$ = apando) = o] = m,

$
Y267 <32 ,tP (2nd relation above).

optimal control policy returned by the approach is the solu- (miﬁa‘ii‘jaf(ggﬁ)
tion to our original problem, and since the approach is sam-

ple based it considers only a very small fraction of potential 1
control policies. M, ¢, N, h, g| Control synthesis

‘ Control policy evaluation ‘

8.1. Overview

. . . : . I policy i
We obtain a suboptimal control policy by iterating over ’ Control po 'Cy'mprovemen’[

the control synthesisand theprobability estimationpro- u
cedure until the stopping criterion is met (see Section 8.3). _ Y _
In the control synthesis procedure we use the control synt’ ¢ % ¢ @ | Probability estimation
thesis approach from Henriques et al. (2012) to generate ‘Control policy determinisati#n p
a control policy for the MDPM. In particular we use a
control policy optimizatiomart of the algorithm which con-
sists of thecontrol policy evaluatiorand thecontrol policy
improvementprocedure to incrementally improve a can-
didate control policy (control policy is initialized with a e—> Probability convergence test
uniform distribution at each state). Next, in the probability
estimation procedure we use SMC by BIE, as presented in
Zuliani et al. (2010). We estimate the probability that the
MDP M, under the candidate control policy, generates a
path such that the corresponding trace satispes BLTL for-
mula¢. Finally, if the estimated probability converges, i.e. Vehicle control strategy constructio
if the stopping criterion is met, we map the control policy to
a vehicle control strategy. Otherwise, the control synthesis
procedure is restarted using the latest update of the contré. 6. Flow chart of the approach used to obtain the vehicle
policy. The Bow of this approach is depicted in Figure 6. control strategy.

‘ Bayesian interval estimatiob

My Hdets DM

False

True

Py = Pm Higer = Hdet

2
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Remark 3.In general, in order to use model checking toolsvhere Randk)" x ! X is a function that given a

for MDP control synthesis from temporal logic motion spe@onempty seK returns an element! X with probability

ibcations, the MDP needs to contain the information abowug: . In words, we compute a control policy that always picks

the motion of the vehicle in the environment. Note that, thiee best estimated action at each state. If at a state there

MDP M debned in Section 5 only captures the sequencesacé multiple actions that achieve the maximum, function

measurements returned by the incremental encoders, an&énd returns, with equal probability, one of the maximizing

does not explicitly capture the motion of the vehicle in thactions.

environment. However, given M and a motion specibcation

expressed as a BLTL formula, the. proposed cqnt_rol syntl*g_—s_ Probability estimation

sis approach returns a control policy for M. This is due to

the fact that SMC for MDPs allows for, brst, sampling &lext, we determine the estimate of the probability that the

path through M, and only then generating the corresponddDP M, under the deterministic control poligye, gener-

ing trace (i.e. relating the path to the motion of the vehiclates a path such that the corresponding trace satisPes BLTL

in the environment) and model checking it. formula¢. To do so we use the BIE algorithm as presented
in Zuliani et al. (2010). We denote the exact probability as
pu and the estimate gy .

8.2. Control synthesis The inputs of the algorithm are MDMI, control pol-

: - : 1
The details of the control policy optimization algorithm{CY Heaet BLTL .formulal¢>, half interval sized | (0,3),
can be found in Henriques et al. (2012), and here we orifjferval coefbcient ! (3, 1), and the coefbcients, § of
give an informal overview of the approach. In the conthe Beta prior. The algorithm returnd,. The algorithm

trol policy evaluation procedure we sample paths of tHgenerates traces by sampling paths throlvglinder piger

[ N K _ / « .« corresponding traces satisfy until enough statistical evi-
®=%) 8 aamy1) S, wherea’ = (U, ), gence has been found to support the claim ghats inside
the corresponding traeeis generated as described in SeGhe interval Bu) 8, B+ 8] with arbitrarily high probability,
tions 6 and 7. Next, we check formu¥aon eachs and i.e. Priow ! [Bu) 8,Pv + 8]) ( c.
_estim_ate how likely it is for e"_"Ch action tq lead to t_he sat- e stop iterating over the control synthesis and the prob-
isfaction of BLTL formulag, i.e. we obtain the estimate i, estimation procedure when the difference between
o;(thekarobaiblhty that a path crossing a statebaction pajie o consecutive probability estimates converges to a
(s%,2%7),k=0,...,K) 1,inw will generate a trace that aighhorhood of radius ! (0, 1), i.e. when the difference
satisbeg. These estimates are then used in the control p “smaller or equal t@. Let uZ,, and g, be the current

) et

icy improvement procedure, in which we update the contrgh ¢ policy and the corresponding probability estimate,

policy p by reinforcing the actions that led to the SatiSfaCr'espectively, when the stopping criterion is met.
tion of ¢ most often. In Henriques et al. (2012), the authors
show that the updated control policy is provably better than

the previous one by focusing on the more promising regiofis4- Control strategy

of the state space. The vehicle control strategy is a functipn: S" U, # U,

The algorithm takes as input MDW, BLTL formula¢  that maps a sequence of pairs of measured intervals, i.e. a
and the current control policy, together with the param- gtate of the MDP, to the control inputs:

eters of the algorithm (a greediness parameter § < 1,

a history parameter & h < 1, and the number of sample y((W*,...,W"))= y(s)= arg max aqs)Hied S )

paths in control policy evaluation procedure, denotetlhy 9)

and retqrns the updateq probablllstlc contrql policy _k =1,...,K) 1withy(s)= arg max, Act(So)uﬁet(So, a)
Despite being sufPcient to achieve maximum probabil- At stagek, the control inputs are

ities, deterministic control policies are a poor choice for

exploring the state space through simulation. Therefore, in (u‘r‘, ul‘): y((W1 ... ,WH Hyr {u, # U}

the control synthesis procedure we always use probabilistic

control policies since they are more Rexible and enable reihbus, given a sequence of pairs of measured interyals,

forcement of different actions. However, in the probabilityeturns the control inputs for the next stage; the control

estimation procedure, we use deterministic control policié@Puts are equal to the action returned g, at the state

in order to redirect the residual probabilities of choosingf the MDP corresponding to that sequence.

bad actions to the promising regions of the state space.

Thus, in the next stage we use the deterministic version bieorem 8.1 The probability that the system given by

W, denoteduge, Where for alls! Sanda! A, equation (1), under the vehicle control strategygener-

ates a state trajectory that satisbes BLTL formpilgequa-

Uae( S.8) = 1 ifa= R.and(arg Max acygy (S @)) ti9n (2)) IS bounded from below by}p where P(pZ, !

0 Otherwise (65 ) 8,85 + 8D ( c.
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Proof: Let w be a path through the MDRM and Measurement resolution: To obtain the angular wheel
D((x(t),y(t)),d(t)) be the corresponding uncertaintyelocity, the frequency counting method (Petrella et al.,
region as debned in Section 6. The probability that ti#007) was used, i.e. the encoder pulses inside a given sam-
system given by equation (1), undergenerates a state tra-pling period were counted. The number of pulses per rev-
jectory gXt) as debned in Proposition 6.1 is equal to thelution (i.e. the number of windows in the code track of
probability of generating patlv underp3,. Let o® and the encoders) was 378 and the sampling period was set

o be the corresponding traces. We consider two cases: {@)At = 2.6 s. Thus, according to Petrella et al. (2007)
traceo® satisbeg and (b) traces® does not satisfy. the measurement resolution WAs, = Ae = 2 3
Let us brst consider the former.dP £ ¢ from Proposi- 0.0064.
tion 7.2 it follows thais®* = ¢. Since undepiZ,, the proba-
bility that a path through the MDR®I generates a satisfying Probability density functions: We obtained the distri-
trace ispg,, it follows that the probability that the systembutions through experimental trials. Specibcally, we used
given by equation (1), under, will generate a satisfying control inputs fromU, # U, as the robot inputs and then
state trajectory is alsp?. To show thatp? is the lower measured the actual angular wheel velocities using the
bound we need to consider the latter case. It is sufPcientdncoders. Since the output of the encoders was a pair of
observe that because of the conservative approximationméasured intervals W, W], [w;, W]), from each measure-
D((x(t),y(t)),d(t))itis possible that o satisPeg, even ment we were able to determine the noise intervalsg[]
thougho® does not satisfy it. Therefore, it follows that theand [, €], of length A¢, and A€, respectively, by using
probability that the system given by equation (1), under ththe fact that (W, W], [w,, Wi]) = ([ur + €, U + &], [u +
vehicle control strategy, generates a state trajectory tha¢,,u; + &]) and the fact that ¢, u)! {U; # U} was
satispes BLTL formulap, is bounded from below bpg,. known. We obtained™" (¢™®) by taking the minimum
The rest of the proof, i.e. Pp; ! [i) 6,85+ &) ( cis  (maximum) overel, ..., ek} ({el, ..., &X}), where B, &),
given in Zuliani et al. (2010)@ i! {1,....,k} i ! {r1}, was the noise interval, of length
Agj, determined from thgth measurement of the encoder
i, andk was the total number of measurements. Note that

|€imax) Ein‘llr‘ll

8.5. Complexity n = =—-—, i ! {r,1}. Finally, the probabilities for

As stated above, the size of the MIPis bounded above equation (4) that debned the_ probab|llty densny_ functlons,
were equal to the number of times a particular noise interval

K . : T
by (|Ur|# |Ui|# ne# n)". Obviously, it can be expensive (mwas measured ovér Fork = 150 (i.e. by using each con-
sense of memory usage) to store the whole MDP. Since qur . , . min

: . % [ input from{U, # U} 50 times) we obtainedl ¢™" =
approach is sample-based, it is not necessary for the MDRs _ ) emin = emax = 0.0096 and the correspondin
to be constructed explicitly. Instead, a state of the MDgrobabilitiels ! ' P g

is stored only if it is samplgd during the _control synthesi In this section we consider three case studies in which we
procedure. As a result, during the execution, the number&f)validateour main result (Theorem 1), (b) provide further

states s'tored in the memory s bounded abovll ByK # n, insight into the complexity of the presented method, and (c)

wheren is the number of iterations between the control syn- . . :
. . L SL{ggest how a potential runtime speed-up can be achieved.

thesis and the probability estimation procedures. In the nex

section, through experiments and simulations, we provide

further insight into the complexity of our method. The com9.1. Case study 1

plexity analysis of the control synthesis part can be found jf the prst case study a BLTL formula and two differ-
Henriques et al. (2012) and the complexity analysis of Blgnt environments are considered. We use the simulation
algorithm can be found in Zuliani et al. (2010). and experiment based satisfaction probabilities to verify
Theorem 1.

The set of propositions wal = { my, 7p, 71, T2, 7d},
wheremy, mp, 1, T2, 74 labeled theunsafe |, pick-up
testl ,test2 , and thedrop-off regions, respectively.
We considered the system given by equatioTihe motion specibcation was:

(1) and we wused the numerical values corre- Start from an initial state g and reach apick-up
sponding to Dr RobotOs x80Pro mobile robeggion within14 time units and stay in it at lea€.8 time
(http://Iwww.drrobot.com/products.asp)  equipped  withinits, to pick-up the load. After entering thEck-up
two incremental encoders. The parameters were0.085 region, reach atest1 region within5 time units and stay
mandL = 0.295 m. To reduce the complexity; # Uy was in it at least1 time units or reach dest2 region within5
limited to {(%t, 3L), (£, 1), (&L, L)}, where the time units and stay in it at leagt8time units. Finally, after
pairs of control inputs corresponded to a vehicle turningntering thetest1 region or thetest?2 region reach a
left at 149 going straight, and turning right &2, grop-off  region within4 time units to drop off the load.
respectively, when the forward speed}iig. Always avoid theinsafe regions.

9. Case studies
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00 0|5 1 1.‘5 2| 2|5 ?‘. 3|5 J 4.‘5 x 5‘
Fig. 7. 20 sample state (position) trajectories for cadesdB (to be read top to bottom). Thensafe , pick-up ,testl ,test2 |,
and thedrop-off ~ regions are shown in red, blue, cyan, yellow, and green, respectively. Satisfying and violating trajectories are shown
in black and red, respectively. Note that, in césehe upper two red trajectories avoid thesafe regions and visit thgick-up ,
test2 , and thedrop-off  region in the correct order, but they violate the specibcation because they do not stay long enough in the
test2 region.

The specibcation translates to BLTL formgla Sinceit is not possible to obtain the exact probability
- . : " . that the system given by equation (1), under the vehicle
¢ =AmU (G (.)'8”9 YoAmU 5| control strategy, generates a satisfying state trajectory, in
([G 'm1 &G *®mg] AU *m4))  (10) order to verify our result (Theorem 8.1), we performed
Two different environments are shown in Figure 7. Theultiple runs of the BIE algorithm by simulating the sys-
estimated probability¥, corresponding to environmenttem under the vehicle control strategy (using the same
A and B was 0.664 and 0.719, respectively. From equawumerical values as stated above and by generating traces
tion (10) it followed thaK = 9. The numerical values in theas described in Sections 6 and 7). We denote the result-
control synthesis procedure and the probability estimatigmg probability estimate ags. Next, for each environ-
procedure were as followdl = 10000,h = 0.6,g = 0.6, ment, we performed 50 experimental runs of the robot
8 = 0.05,c = 0.95,« = B = 1, ande = 0.05. For both under the corresponding vehicle control strategy. A pro-
environments, we found the vehicle control strategy througgsctor was used to display the environment and the state
the method described in Section 8. (position) trajectory was reconstructed using an OptiTrack
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Table 1. Probability estimates of satisfying the specibcation.

Environment  fj, PE Ps

Run 1 Run 2 Run 3
A 0.664 0.74 0.847 0.832 0.826
B 0.719 0.78 0.891 0.898 0.879

(http://www.naturalpoint.com/optitrack) system with eight =
cameras. In addition, the OptiTrack system was used tc
ensure that the robot always starts from the same initial
state. We denote the resulting experiment based satisfag
tion probability (the number of satisfying runs over the total
number of runs) ape.
In Figure 7 we show sample state trajectories and in
Table 1 we compare the estimated probabilities obtainec
on the MDP,p},, with the experiment based satisfaction
probabilities,pe, and the estimated probabilities obtained
by simulating the systenf)s. The results support Theo-
rem 8.1, since botpe andps are bounded from below by
pi,- The discrepancy in the probabilities is mostly due to
the conservative approximation of the uncertainty region in
Section 6. Note thaps is higher thanpg, i.e. the system
given by equation (1), under the obtained vehicle control
strategy, performed better than the physical robot, undel
the same vehicle control strategy. The reason for this is
the fact that the system given by equation (1) assumes thg
the non-slipping and non-skidding conditions of the wheels
are satisped. However, during the experiments, slipping a- 8- Snapshots (to be read top to bottom) from a movie (see
skidding are present and, as an unmodeled noise, dimfadtension 1) showing robot motion produced by applying the vehi-
ish the performance of the physical robot. In Figure 8 wee control strategy for environmedt The generated trajectory
show snapshots from the movie provided in Extension SRtisPed# (equation (10)).
which shows a sample experimental run of the robot in

environment. Start from an initial state g and reach apick-up
Given U, " Uy = {(&L %Ly (L1 1y (1%L 1tlyy region within6.5time units and stay in it at leagttime unit,
no=n = 3, andK = 4r9' for both eﬁwirorﬂnerﬂs, the to pick-up the load. After entering theick-up  region,

size of the corresponding MDPs was bounded above [@ach atestl region within 5 time units. Always avoid
(3" 3" 3 Due to the size of the MDPs using thgheunsafe regions.

exact method to obtain a control policy was computation- 1€ specibcation translates to BLTL formeda

ally infeasible. However, our method was able to produce

a solution in approximately 2.2 hours and the actual num- # =" USO(GP 1, %" (UPS" yy) (11)
ber of states stored in the memory was approximately 3.5
million states (<< (3" 3" 3)). The numerical values were as given in Section 9.1. From

equation (11) it followed thaK = 4. The obtained esti-

mated probabilityp}, was 0.945 and we found the vehicle

control strategy through the method described in Section 8
9.2. Case study 2 in 6.6 min and the actual number of states stored in the
In the second case study we considered a simple BLTL fonemory was approximately 0.28 million states.
mula with an environment for which the exact MDP solu- The size of the MDP was bounded from above by'(3
tion was computed. We compare the exact method with o8t 3)* & 0.5 million states. For the particular MDP we were
method by investigating the computation times, the merable to compute the exact control policy. To do so we only
ory usage, the obtained satisfaction probabilities, and theed a modibed version of the control synthesis procedure
obtained vehicle control strategies for both methods. of our algorithm as follows. In the control policy evalua-

The set of propositions was = {","p," 1}, where tion procedure we sampled all the paths through the MDP.

"u"p, " labeled thaunsafe |, pick-up , and thetestl This allowed us to obtain the exact probability that an MDP
regions, respectively. The motion specibcation was: path crossing a stateBaction pair will generate a trace that
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y 9.3. Case study 3

For the case study presented in Section 9.1, the Matlab code
executing the exact method (as proposed in Section 9.2)
ran out of memory after approximately 6 h on a computer
V with a 2.5 GHz processor and a 16 GB RAM using a single
sampling thread. On the same computer, our method pro-
duced the vehicle control strategy in approximately 2.2 h.
Even though successful, the key limitation of the proposed
approach is the computation time. However, the advantage
of SMC is that sampling is highly parallelizable and a sig-
nibcant runtime speed-up can be achieved by increasing the

(init

| i1 number of sampling threads (for more information see the
‘ . next section).
0 m Additional runtime speed-up can be achieved by decreas-
E s ing the conbdence interval coefbcieantr by increasing

the half interval sizes, i.e. by trading-off statistical con-
bPdence for runtime efpbciency. For example, for the case
Fig. 9. 20 sample state (position) trajectories under the exactvegitudy presented in Section 9.1 corresponding to environ-
cle control strategy and under the vehicle control strategy returnggbnt A, by decreasing from 0.95 to 0.80, runtime was
by our method are shown in black and red, respectively. Thaduced to 0.68 h and approximately 2.5 million states were
unsafe , pick-up , and thetestl regions are shown in red, stored in the memory, i.e. the running time and the mem-
blue, and cyan respectively. All state trajectories are satisfying. ory usage were reduced to approximately 30% and 70%,
respectively, of their original values. In Figure 10 (c#se
whenc = 0.8) we show sample state trajectories under
the vehicle control strategy and in Table 2 we compare the
satisPegp. These probabilities were then used in the corestimated probabilities obtained on the MIPR, with the
trol policy improvement procedure, in which we updatedstimated probabilities obtained by simulating the system,
the control policyp by reinforcing the actions that led tops, whenc = 0.8. Note that, by reducing, both &, and
the satisfaction ofp most often. The fact that each statgis are reduced in comparison with the results presented in
in the MDP had exactly one incoming transition, i.e. th&@able 1. This can also be seen in Figure 10 by noticing that
MDP had no cycles, is sufbcient to see that the procedut® new vehicle control strategy performs worse, since less
state above resulted in the optimal control policy. Under thsf the state space was explored by the algorithm.
obtained optimal control policy the probability of satisfying Finally, we propose an approach that can achieve a run-
the specibcation on the MDP was 1 and the optimal vehidiene speed-up by using coarser incremental encoders. In
control strategy was obtained in 3 minutes. particular, our algorithm can be initialized with a reduced
In Figure 9 we show sample state trajectories obtainedsolution incremental encoders (by increasivg, and
by simulating the system given by equation (1) under boile¢), which reduces the size of the MDP. Then, if the
vehicle control strategies. Note that the state trajectoriaser is not satisbed with the estimated satisfaction prob-
perform the same and all of them were satisfying. Bgbility returned by the algorithm, one can incrementally
using our method only 0.28 million states were stored iincrease the encoder resolution until a satisfactory vehicle
the memory compared to 0.5 million states stored by tlwntrol strategy is found or the original encoder resolution
exact method. However, our method ran for 6.6 min conis reached. We tested this method by using a coarser version
pared to 3 min needed by the exact method. The lattef the incremental encoders presented in Section 9, by set-
is due to the fact that our method samples paths throutihg the measurement resolutiat, = Ae = 0.0096, i.e.
the MDP and generates the corresponding traces in bbthsettingn, = n = 2. The size of the MDP was reduced
the control synthesis and the probability estimation pafom (3# 3# 3)° to (3# 2# 2)% i.e. it was reduced
of the algorithm. In particular, since the length of evergpproximately 1500 times. For the case study presented in
path through the MDP was equal ko = 4, by using the Section 9.1 corresponding to environmd)tby decreas-
exact method, the total number of paths through the MORgn, = n, = 3ton, = n = 2, runtime was reduced to
was 2200 = 0,125 million, and for each path only one1.1 h and approximately 2.7 million states were stored in
corresponding trace was generated. The number of saie memory, i.e. the running time and the memory usage
pled states, stored by our method, was 0.28 million, angere reduced to approximately 50% and 77%, respectively,
therefore, onlyLTi”iO” = 0.07 million distinctive paths of their original values. Note that, by reducing the MDP size
through the MDP were sampled. However, a total of 0.8y a factor of 1500, we achieved 50% and 23% reductions
million traces was generated during the control synthesisruntime and memory usage, respectively. From here, one
and the probability estimation part of the algorithm. can conclude that our algorithm scales gracefully with the

x
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Fig. 10. 20 sample state (position) trajectories for ca8endB, whenc = 0.8 andny = nj = 2, respectively (to be read top to bottom).
Theunsafe , pick-up ,testl ,test2 , and thedrop-off regions are shown in red, blue, cyan, yellow, and green, respectively.
Satisfying and violating trajectories are shown in black and red, respectively. Note that, iB,dfeeupper red trajectories avoid
the unsafe regions and visit thgick-up , testl ,test2 , and thedrop-off  region in the correct order, but they violate the
specibcation because they violate the time bounds.

size of the MDP. However, this is only the case when thEable 2. Probability estimates of satisfying the specibcation with
MDP is a structured model (models that have some symnt#dated system parameters.

try, e.g. robotics problem of motion planning) for which iteyironment  Updated Y Bs

has been shown that SMC for MDPs scales gracefully with Parameter Ronl Run2  Run3
the size of the MDP (for more details see Henriques et at-

(2012)). A c=08 0.623 0.686 0.687 0.692

In Figure 10 (cas® whenn, = n = 2) we show sample B n=n=2 0684 0793 0801 0.79%

state trajectories under the new vehicle control strategy and
in Table 2 we comparg,, andps.

: . satisfying a time constrained specibcation given in terms
10. Discussion and future work of a temporal logic statement is maximized. By mapping
We developed a feedback control strategy for a stochassiensor measurements to an MDP we translated the problem
differential drive mobile robot such that the probability oto Pnding a control policy maximizing the probability of
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