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Abstract— This paper presents a provably-correct Model
Predictive Control (MPC) scheme for a discrete-time linear
system. The cost is a quadratic that penalizes the distance from
desired state and control trajectories, which are only available
over a finite horizon. Correctness is specified as a syntactically
co-safe Linear Temporal Logic (scLTL) formula over a set of
linear predicates in the states of the system. The proposed MPC
controller solves a set of convex optimization problems guided
by the specification. The objective of each optimization is to
minimize the quadratic cost function and a distance to the
satisfaction of the specification. The latter part of the objective
and the constraints of the problem guarantee that the closed-
loop trajectory satisfies the specification, while the former part
is used to minimize the distance from the reference trajectories.

I. INTRODUCTION

The goal in formal synthesis for dynamical systems is to
compute control strategies from specifications expressed in
formal languages, such as Linear Temporal Logic (LTL). As
opposed to classical control specifications, such as stability
and safety, one can easily express a complex specification,
such as “Do not go to A unless B is visited before, eventually
visit C and avoid D until C is visited”, as a temporal
logic formula. Recent studies show that control strategies for
dynamical systems can be generated from such specifications
by adapting existing model checking and game-theoretic
techniques [1]–[7].

In this work, as a natural extension to formal synthesis, we
study the problem of synthesizing optimal control strategies
from temporal logic specifications. In particular we consider
specifications given in the form of syntactically co-safe linear
temporal logic (scLTL) formulas. The syntactically co-safe
fragment of LTL is rich enough to express a wide spectrum
of finite-time properties of dynamical systems including the
example given above. Despite the rich literature on formal
synthesis for dynamical systems, the research on optimal
formal synthesis is limited [3], [8].

We consider the following problem: given a discrete-
time linear system, an initial system state, and an scLTL
formula over linear predicates in the states of system, find
a feedback control strategy such that the trajectory of the
closed-loop system satisfies the formula and minimizes the
cost. The cost is a quadratic function that penalizes the
distance between the actual and desired state and control
trajectories, which are only available over a finite horizon.
Our approach consists of two main steps. The first step is the
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construction of an automaton from the specification formula
and the system dynamics. The second step is the design of a
Model Predictive Control (MPC) scheme over the automaton
and system state spaces.

MPC has been shown to be an efficient and successful
method in constrained control [13]. In the basic MPC setup,
at each time step, the controller optimizes the cost over
a finite horizon, finds the optimal control sequence, and
applies the first control. The proposed MPC controller for
solving optimal temporal logic control problem produces
an optimal control sequence with respect to the available
reference trajectory by solving a set of quadratic programs
(QPs) guided by the specification.

MPC for dynamical systems from temporal logic specifica-
tions was first studied in [3], where a controller was derived
for a finite abstraction of the system, and then refined to
the original system. The satisfaction of the specification was
guaranteed by assuming that the specification automaton had
a known partial order structure. MPC of finite-state transition
systems was studied in [9], where the satisfaction of the
specification was guaranteed by a Lyapunov-type function.
In [8], we extended this technique to dynamical systems
with infinitely many states. Essentially, we used a Lyapunov-
type function to implement a progress constraint in the
optimization problem, which resembles terminal constraint
in MPC. Here, we further extend this concept and define a
contractive function, which we call a potential function. The
value of this function decreases as a system trajectory makes
progress towards a final automaton state. The objective of
the optimization problem is a weighted sum of the potential
and the quadratic cost. The weight of the potential increases
at each time step with a user defined parameter γ, which
guarantees that the trajectory eventually reaches a final au-
tomaton state. Moreover, by changing γ, we can enforce the
trajectory to visit some regions (via the reference trajectory),
before it reaches a final automaton state. Due to the progress
constraint this was not possible in [8].

Due to space limitations, the results in this paper are stated
without proofs. The proofs and additional details can be
found in [10].

II. NOTATION AND PRELIMINARIES

We use R, R+, Z, and Z+ to denote the sets of real num-
bers, non-negative reals, integer numbers, and non-negative
integers. For m,n ∈ Z+, we use Rn and Rm×n to denote the
set of column vectors and matrices with n and m × n real
entries, respectively. A polyhedron (polyhedral set) in Rn

is the intersection of a finite number of open and/or closed
half-spaces. A polytope is a compact polyhedron.



In this work, the control specifications are given as for-
mulas of syntactically co-safe linear temporal logic (scLTL).
A detailed description of the syntax and semantics of scLTL
is beyond the scope of this paper and can be found in [11].
Roughly, an scLTL formula is built up from a set of atomic
propositions P , standard Boolean operators : ¬ (negation),
∨ (disjunction), ∧ (conjunction), and temporal operators X
(next), U (until) and F (eventually). The semantics of scLTL
formulas are given over infinite words σ = σ0σ1 . . . where
σi ∈ 2P for all i and 2P is the power set of P . A word σ
satisfies an scLTL formula φ, if it holds at the first position
of the word σ. Informally, Xφ1 holds if φ1 is true at the next
position of the word, φ1Uφ2 holds if φ2 eventually becomes
true and φ1 is true until this happens, and Fφ1 holds if φ1

becomes true at some future position in the word.
While the semantics of scLTL formulas are defined over

infinite words, their satisfaction is guaranteed in finite-time.
Particularly, for any scLTL formula Φ over P , any satisfying
infinite word over 2P contains a finite good prefix and any
word that contains a good prefix satisfies Φ. We use LΦ

to denote the set of all (finite) good prefixes. We abuse the
terminology and say that a finite word satisfies a formula if
it contains a good prefix.

Definition II.1 A deterministic finite state automaton (FSA)
is a tuple A = (Q,Σ,→, Q0, F ), where Q is a finite set of
states, Σ is a set of symbols,→⊆ Q×Σ×Q is a deterministic
transition relation, Q0 ⊆ Q is a set of initial states, and
F ⊆ Q is a set of final states.

An accepting run r of an automaton A on a finite word
σ = σ0 . . . σd over Σ is a sequence of states r = q0 . . . qd+1

such that q0 ∈ Q0, qd+1 ∈ F and (qi, σi, qi+1) ∈→ for all
i = 0, . . . , d. The set of all words corresponding to all of
the accepting runs of A is called the language accepted by
A and is denoted as LA.

For any scLTL Φ formula over P , there exists an FSA A
with input alphabet 2P that accepts the good prefixes of Φ,
i.e. LΦ [11]. There are algorithmic procedures and tools, such
as scheck2 [12], for the construction of such an automaton.

Definition II.2 Given an FSA A = (Q,Σ,→, Q0, F ),
its dual automaton is a tuple AD = (QD,→D,
Σ, τD, QD

0 , F
D), where QD = {(q, σ, q′) | (q, σ, q′) ∈→},

→D= {((q, σ, q′), (q′, σ′, q̄)) | (q, σ, q′), (q′, σ′, q̄) ∈→},
τD : QD 7→ Σ, τD((q, σ, q′)) = σ, QD

0 = {(q, σ, q′) |
q ∈ Q0}, and FD = {(q, σ, q′) | q′ ∈ F}.

Informally, the states of the dual automaton AD are the
transitions of A. There is a transition between two states
of AD if the corresponding transitions are connected by a
state in A. The set of output symbols of AD is the same as
the set of symbols of A, i.e. Σ. τD is an output function.
For a state of AD, τD produces the symbol that enables the
transition in A. The set of initial states QD

0 of AD is the set
of all transitions that leave an initial state in A. Similarly,
the set of final states FD of AD is the set of transitions that
end in a final state of A.

An accepting run rD of a dual automaton is a sequence
of states rD = q0 . . . qd such that q0 ∈ QD

0 , qd ∈ FD and
(qi, qi+1) ∈→D for all i = 0, . . . , d−1. An accepting run rD

produces a word σ = σ0 . . . σd over Σ such that τ(qi) = σi,
for all i = 0, . . . , d. The output language LAD of a dual
automaton AD is the set of all words that are generated by
accepting runs of AD. The construction of a dual automaton
AD from an FSA A guarantees that any word produced by
AD is accepted by A, and any word accepted by A can be
produced by AD, i.e. LA = LAD .

III. PROBLEM FORMULATION

Consider a discrete-time linear control system of the form

xk+1 = Axk +Buk, xk ∈ X, uk ∈ U, (1)

where A ∈ Rn×n and B ∈ Rn×m describe the system
dynamics, X ⊂ Rn and U ⊂ Rm are polyhedral sets, and
xk ∈ X and uk ∈ U are the state and the applied control
at time k ∈ Z+, respectively. Let xr0, x

r
1 . . . and ur0, u

r
1, . . .

denote reference state and control trajectories, respectively.
The stage cost at time k is defined with respect to xrk and
urk by L : X× U→ R+:

L(xk, uk) = (xk−xrk)>Q(xk−xrk)+(uk−urk)>R(uk−urk),
(2)

where Q ∈ Rn×n and R ∈ Rm×m are positive definite matri-
ces. We assume that, for some N , at time k the reference state
and control trajectories of length N are known. At time k,
the cost of a finite trajectory xk, . . . , xk+N−1 originating at
xk and generated by the control sequence uk, . . . , uk+N−1 is

N−1∑
i=0

L(xk+i, uk+i). (3)

Let P = {pi}i=0,...,l for some l ≥ 1 be a set of atomic
propositions given as linear inequalities in Rn. Each atomic
proposition pi induces a half-space

[pi] := {x ∈ Rn | c>i x+ di ≤ 0}, ci ∈ Rn, di ∈ R. (4)

A trajectory x0, x1, . . . of system (1) produces a word
P0P1 . . . where Pi ⊆ P is the set of atomic propositions
satisfied by xi, i.e. Pi = {pj | xi ∈ [pj ]}. scLTL formulas
over the set of predicates P can therefore be interpreted over
such words (see Section II). A system trajectory satisfies an
scLTL formula over P if the word produced by the trajectory
satisfies the corresponding formula.

Problem III.1 Given an scLTL formula Φ over a set of
linear predicates P , a dynamical system as defined in (1),
and an initial state x0 ∈ X, find a feedback control strategy
such that the closed-loop trajectory originating at x0 satisfies
Φ while minimizing the cost (3).

We propose a two-step solution to Problem III.1. In
the first step, by using existing tools [5], we construct an
automaton from the specification formula. The states of the
automaton correspond to polyhedral subsets of the state space
of system (1), and any satisfying trajectory of system (1)



follows a sequence of polyhedral sets defined by an accepting
run of the automaton. In the second step, we design an
MPC controller that minimizes the cost over the available
reference trajectory and the distance to a final automaton
state, while ensuring that the resulting trajectory satisfies the
specification. The constraints of the optimization problem
ensure that the produced trajectory lies within an automaton
path. A terminal cost function, which is a distance measure
to a final automaton state, guarantees that the produced
trajectory reaches a final automaton state, and hence it
satisfies the specification while the cost over the available
reference trajectory is minimized.

IV. AUTOMATON GENERATION

A. Language-Guided Control

All words that satisfy the specification formula Φ over
the set of linear predicates P are accepted by an FSA A =
(Q, 2P ,→, Q0, F ). The dual automaton AD = (QD,→D

,Σ, τD, QD
0 , F

D) is constructed by interchanging the states
and the transitions of A (Definition II.2). As the transitions
of A become states of AD, elements from 2P label the
states and define polyhedral sets within the state-space of
system (1). For a dual automaton state q ∈ QD, Pq ⊂ X is
used to denote the corresponding polyhedral set.

In [5], we developed a procedure for iterative refinement
of the dual automaton and the corresponding polyhedral
partition of the state space of system (1) with the goal
of finding initial states and corresponding feedback control
strategies producing satisfying trajectories. Starting with the
initial dual automaton, at each iteration, we checked whether
feedback controllers could be designed for the original
system to “match” the transitions of the dual automaton.
Essentially, each transition (q, q′) induced a Pq − to − Pq′

control problem. This problem and the controller synthesis
approach followed in this paper are presented below. At
each iteration, each transition (q, q′) was labeled with a cost
J((q, q′)) that equaled the minimum number of discrete time
steps necessary for all states in Pq to reach P ′q under the
determined state feedback law. If no controller could be
found, then the cost was set to infinity. The cost of a state q
was defined as the shortest path cost from q to a final state
on the graph of the automaton weighted with transition costs.

The refinement algorithm proposed in [5] iteratively parti-
tions the regions with infinite cost, i.e. the regions for which
there do not exist sequences of feedback controllers driving
all the corresponding states to a region corresponding to
a final state in the automaton. This procedure results in a
monotonically increasing, with respect to set inclusion, set
of initial states of system (1) for which an admissible control
strategy can be found. As we showed in [5] (Theorem 6.1),
if the refinement algorithm terminates, then all the satisfying
trajectories of system (1) originate in the resulting set of
initial states, denoted by XΦ

0 . In this paper, as our goal is
to find a control strategy for a given initial state x0, we
terminate the algorithm at the ith iteration if x0 ∈ XΦ

0,i,
where XΦ

0,i ⊆ X is the union of the regions corresponding to
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Fig. 1. The regions and the corresponding linear predicates for the
specification from Example IV.2. The predicates are shown in the half planes
where they are satisfied.

start states of the automaton with finite path costs obtained
at the ith iteration.

Transition controllers: To solve the Pq−to−Pq′ control
problem induced by the transition (q, q′) with q 6= q′ we
first define the set Bqq′ ⊆ Pq as Bqq′ := {x ∈ Pq|∃u ∈
U : Ax + Bu ∈ Pq′}, and decompose the Pq − to − Pq′

control problem in two subproblems. The first problem,
Bqq′ − to − Pq′ , consists of the computation of a control
law that generates a closed-loop trajectory, for all x ∈ Bqq′ ,
which reaches Pq′ in one discrete-time instant. The second
problem, Pq − to − Bqq′ concerns the computation of a
control law that generates a closed-loop trajectory, for all
x ∈ Pq , which reaches Bqq′ in a finite number of discrete-
time instants. By the definition of Bqq′ , the first problem is
always feasible. If (q, q′) 6∈→D, then a control law solves
the Pq−to−Pq′ control problem only if Pq ⊆ Bqq′ . To solve
the second problem, in [5] we presented two methods, one
based on vertex interpolation and the other one on polyhedral
Lyapunov functions. In this paper, we apply the polyhedral
Lyapunov functions method:

Definition IV.1 For a transition (q, q′) ∈→D, suppose that
the feedback control law g : Pq → U solves the Pq−to−Bqq′
control problem and is synthesized by using the polyhedral
Lyapunov functions method. Then, there exist xqq′ ∈ Bqq′
and ρqq′ ∈ [0, 1) such that

M(Ax+Bg(x)) ≤ ρqq′M(x), (5)

where
M(x) := max

i=1,...,w
Wi•(x− xqq′) (6)

such that W ∈ Rw×n and Pq = {x | Wx ≤ 1}. Then, the
transition cost is defined as

J((q, q′)) := 1 + arg min{k ≥ 0 |
ρkqq′(Pq ⊕ {−xqq′}) ⊆ (Bqq′ ⊕ {−xqq′})}, (7)

where ⊕ is the Minkowski sum operator.

Example IV.2 Consider system (1) with A = [ 0.99 0
0 0.98 ],

B = I2, U = {u ∈ R2 | −0.5 ≤ ui ≤ 0.5, i = 1, 2 },
X = {x ∈ R2 | 0 ≤ xi ≤ 10, i = 1, 2 } and x0 = [ 1

1 ]. The



regions of interest are defined using a set of linear predicates
P = {p0, . . . , p12}, which are shown in Figure 1. The
specification is defined as “A system trajectory originates
in S, eventually visits T, and before visiting T it either visits
R1 and R2 (in this order), or R3. Moreover, it does not visit
O before it reaches T”. The specification is translated to the
following scLTL formula over P :

Φex = ((p7 ∧ p10) ∧ (F(p4 ∧ ¬p5 ∧ ¬p6))) ∧ (¬(¬p11 ∧
p12)U(p4∧¬p5∧¬p6))∧(¬(p4∧¬p5∧¬p6)U((¬p8∧¬p9)∨
(¬p9∧p10)))∧((¬(¬p8∧¬p9)U(p4∧¬p5∧¬p6))∨(¬(¬p8∧
¬p9)U(p7 ∧ ¬p8))).

The refinement algorithm terminates at the first iteration
with XΦex

0 = S, hence there exists a sequence of controllers
such that all trajectories that originate from S and generated
by these controllers satisfy the specification. The refined dual
automaton has 101 states and 569 finite cost transitions.

In the remainder of the paper, for simplicity of notation,
we use

AD = (QD,→D,Σ, τD, QD
0 , F

D) (8)

to denote the (refined) dual automaton obtained at the last
iteration of the algorithm presented above. We use Pq ⊂ X
to denote the polyhedral region of state q ∈ QD. We denote
the transition cost function of AD by J :→D−→ Z+.

Assumption IV.3 For any q0 ∈ QD there exists an automa-
ton path q0 . . . qd, d ∈ Z+ such that J(qi, qi+1) <∞ for all
i = 0, . . . , d− 1 and qd ∈ FD.

B. Potential Function

To enforce the satisfaction condition of a dual automaton,
we define a real positive function that resembles a control
Lyapunov function. In [9], such a function was used to
enforce a Büchi acceptance condition on the trajectories of
a finite deterministic transition system. In [8], we focussed
on the acceptance condition of a finite state automaton and
extended this concept to discrete time linear systems. Here,
we further extend this idea and define a contractive function
based on the transition controllers given in Definition IV.1. In
addition to enforcing the accepting condition, this function
allows us to steer the trajectory towards desired regions via
the reference trajectory, which was not possible in [8].

Definition IV.4 A function V :
⋃

q∈QD {{q} × Pq} → R+

is called a potential function with contraction rate ρ ∈ [0, 1)
for a system (1) and a dual automaton (8) if it satisfies:
(i) V (q, x) = 0 for all q ∈ FD.

(ii) For each (q, x) ∈
⋃

q∈QD {{q} × Pq}, it holds that if
V (q, x) 6= 0 and V (q, x) 6= ∞, then there exists a
control u ∈ U such that x′ = Ax + Bu, x′ ∈ Pq′ ,
(q, q′) ∈→D, and V (q′, x′) ≤ ρV (q, x).

We define a potential function based on the transition cost
function J(·). Informally, the potential function at (q, x),
q ∈ QD, x ∈ Pq is defined as an upper bound for the time
required to reach Pqf from x by applying the polytope-to-
polytope feedback controllers along a shortest path qq1 . . . qf

from q to a final automaton state qf ∈ FD. In the rest of
this section, we formalize this description and then show that
this function satisfies the properties of Definition IV.4.

The set of all finite paths from q to FD is denoted by Pq:

Pq = {q = q0q1 . . . qd | d ∈ Z+, (qi, qi+1) ∈→D,

i = 0, . . . , d− 1, qd ∈ FD, q0 = q}. (9)

The cost Jp(q) of an automaton path q = q0 . . . qd is defined
as the sum of the corresponding transition costs, i.e. Jp(q) =∑d−1

i=0 J((qi, qi−1)). The cost Js(q) of a state q ∈ QD is the
cost of the shortest path from q to a final state:

Js(q) = min
q∈Pq

Jp(q).

The successor S(q) of a state q ∈ QD is the state that
succeeds q in the shortest path from q to FD, i.e.

qS(q) . . . = arg min
q∈Pq

Jp(q).

The continuous potential of a state x ∈ Pq with respect to
a transition (q, q′) ∈→D with J((q, q′)) 6=∞ is defined by
the function JT :

⋃
(q,q′)∈→D {{(q, q′)} × Pq} −→ Z+ as

JT ((q, q′), x) = (J((q, q′))− 1)M(x) + 1, (10)

where M(·) is defined as in (6).

Lemma IV.5 For any (q, q′) ∈→D with J((q, q′)) 6= ∞,
and x ∈ Pq , the function JT (·, ·) defined in (10) satisfies
JT ((q, q′), x) ≥ 1 and JT ((q, q′), x) ≤ J((q, q′)).

Finally, we define the potential function at (q, x) as

V (q, x) =

{
0 if q ∈ FD,

JT ((q, S(q)), x) + Js(S(q)) otherwise.
(11)

Lemma IV.6 For any q ∈ QD \FD and x ∈ Pq , the function
V (·, ·) defined in (11) satisfies that

Js(S(q)) + 1 ≤ V (q, x) ≤ Js(q).

Proposition IV.7 According to Definition IV.4, the function
defined in (11) is a potential function with contraction rate

ρ = max{max
q∈QD

Js(q)

Js(q) + 1
,

max
q∈QD\FD

(J((q, S(q)))− 1)ρ
J(q,S(q))
qS(q) + 1 + Js(S(q))

(J((q, S(q)))− 1)ρ
J(q,S(q))−1
qS(q) + 1 + Js(S(q))

}.

(12)

V. MPC STRATEGY

In Section IV, we outlined the generation of a dual au-
tomaton from the specification and the system dynamics (1),
and defined a potential function. In this section, we design
an MPC controller for a given dual automaton AD =
(QD,→D,Σ, τD, QD

0 , F
D) and a potential function V :⋃

q∈QD {{q} × Pq} → R+. At each time step, the controller
solves an optimization problem over

⋃
q∈QD {{q} × Pq}.



Definition V.1 An automaton-enabled finite trajectory

T = (q0, x0), . . . , (qN , xN )

is a sequence of automaton (8) and system (1) state pairs
such that
(i) for each k = 0, . . . , N − 1 there exists uk ∈ U such

that xk+1 = Axk +Buk,
(ii) xk ∈ Pqk , for all k = 0, . . . , N,

(iii) (qk, qk+1) ∈→D, for all k = 0, . . . , N − 1.

The projection γA(T) = q0 . . . qN of an automaton-
enabled trajectory onto the automaton states is an automaton
path and the projection γX(T) = x0 . . . xN onto the state
space of system (1) is a trajectory of system (1) that follows
the sequence of polyhedra defined by the automaton path.

Let x = x0, . . . , xd, d ∈ Z+ be a satisfying trajectory
of system (1). The definition of the automaton-enabled
trajectory and the construction of the dual automaton AD

from Section IV-A imply that there exists an automaton-
enabled trajectory T such that γX(T) = x and γA(T)
is an accepting run of AD. Therefore, in MPC controller
design, it is sufficient to search the control sequences that
generate automaton-enabled trajectories. We use UN (q, x)
to denote the set of all control sequences of length N that
produce automaton-enabled trajectories starting from (q, x)
as characterized in Definition V.1. By following the standard
MPC notation, we use

Tk = (q0|k, x0|k) . . . (qN |k, xN |k),

to denote a predicted automaton-enabled trajectory originat-
ing at (qk, xk), i.e. q0|k = qk, x0|k = xk, at time k ∈ Z+.

Problem V.2 (MPC optimization problem) At time k ∈
Z+ let (qk, xk) ∈

⋃
q∈QD {{q} × Pq}, {xrk+i}i=0,...,N−1,

{urk+i}i=0,...,N−1, α ∈ R+ and γ ∈ (0, 1) be given.
Minimize the cost function

C(xk,uk) :=γk
∑

i=0,...,N−1

L(xi|k, ui|k)+

(1− γk)αV (qN |k, xN |k), (13)

over all control sequences uk = u0|k, . . . , uN−1|k ∈
UN (qk, xk) subject to

xi+1|k = Axi|k +Bui|k, i = 0, . . . , N − 1. (14)

The objective of the optimization is to minimize the cost
with respect to the available reference state and control
trajectories, while guaranteeing that the resulting trajectory
reaches an accepting state. To enforce the latter part, the
potential function V (·, ·) (11) is used as the terminal cost.
As time progresses, the weight of the terminal cost, i.e.
1−γk, increases, which in turn guarantees that the resulting
trajectory steers towards an accepting state. The value of
the potential function is scaled by a constant factor α ∈ R+,
since the objective is to minimize the potential and trajectory
cost together.

The optimization problem formulation is analogous to the
classical MPC formulation, where L(·, ·), V (·, ·), and N are

called the stage cost function, the terminal cost function,
and the prediction horizon, respectively [13]. However, due
to the definition of an automaton-enabled trajectory, there are
significant differences, e.g. the search space (UN (qk, xk)) is
not necessarily convex.

Next, we show that the optimal solution of Problem V.2
can be found by solving a set of convex optimization
problems. Specifically, we propose to solve an optimization
problem for each automaton path from the set

PN
qk

= {q′ = q0|kq1|k . . . qN |k | q0|k := qk,∃d ∈ Z+

s.t. N ≤ d,q = q0|k . . . qd|k,q ∈ Pqk}, (15)

where Pqk is defined as in (9). The definition of an
automaton-enabled trajectory Tk of horizon N (Defini-
tion V.1) implies that γA(Tk) ∈ PN

qk
for any trajectory that

can be produced by a control sequence u ∈ UN (qk, xk).
Given a finite automaton path qk ∈ PN

qk
, let Uqk

N (qk, xk)
denote the set of all control sequences that produce an
automaton-enabled trajectory Tk with γA(Tk) = qk. Es-
sentially, Uqk

N (qk, xk) is the set of all control sequences that
produce trajectories of system (1) that originate at xk and
follow the sequence of polyhedra defined by qk. Then, it is
straightforward to see that

UN (qk, xk) =
⋃

qk∈PN
qk

Uqk

N (qk, xk). (16)

Consider a path qk = q0|k . . . qN |k ∈ PN
qk

and the
following optimization problem in the variables uk =
u0|k, . . . , uN−1|k:

minC(xk,uk),

subject to

xi|k ∈ Pqi|k , i = 1, . . . , N, (17a)

ui|k ∈ U, i = 0, . . . , N − 1, , (17b)

where C(·, ·) and xi|k, i = 1, . . . , N are defined as in (13)
and (14), respectively. The set of control sequences that
satisfy constraints (17a) and (17b) is Uqk

N (qk, xk). Therefore,
the optimal solution of Problem V.2 can be found by solving
an optimization problem as given in (17) for each qk ∈ PN

qk
.

As shown above, the solution of Problem V.2 can be
found by solving a set of convex optimization problems for
a given prediction horizon. To guarantee that the resulting
closed-loop trajectory of system (1) reaches a region Pqf ,
where qf ∈ FD; at each time-step k the prediction horizon,
denoted as Ik, is determined with respect to the predicted
trajectory obtained at the previous step. Specifically, the
length of the observed reference trajectory, N , is used as
the initial prediction horizon I0 at time-step k = 0. Then,
for time-step k ≥ 1, if the predicted trajectory obtained
at the previous step visits a final state at position j for
the first time, j − 1 is used as the prediction horizon Ik.
Otherwise, the same prediction horizon as in the previous
time-step, Ik−1, is used. The following function is used
to determine the prediction horizon for a given trajectory



Tk = (q0|k, x0|k) . . . (qIk|k, xIk|k):

I(Tk) =

{
Ik if 0 < V (qi|k, xi|k),∀i = 0, . . . , Ik

j − 1 if 0 < V (qi|k, xi|k),∀i = 0, . . . , j − 1,

V (qj|k, xj|k) = 0.

Adapting the prediction horizon according to function
I(·) allows us to optimize the cost until the specification
is satisfied, i.e. until a final automaton state is reached.

At each time step k, the proposed MPC controller solves
the optimization problem (17) for each automaton path q ∈
PIk
qk

(15), finds the optimal solution u∗k among all feasible
solutions of these QPs, applies the first control from u∗k and
computes (qk+1, xk+1).

Assumption V.3 The length of any satisfying trajectory of
system (1) originating at x0 is lower bounded by N .

Lemma V.4 Suppose that Assumption IV.3 and Assump-
tion V.3 hold, and there exists q0 ∈ QD such that x0 ∈ Pq0 .
Then, the optimization problem given in (17) is feasible for
some q0 ∈ PN

q0 at the initial condition (q0, x0).

The proposed controller is recursively feasible, meaning
that if Problem V.2 is feasible for the initial state at the initial
time instant, then it remains feasible until the specification
is satisfied, which is formally stated as:

Theorem V.5 Suppose that Assumption IV.3 and Assump-
tion V.3 hold, V (·, ·) and JT (·, ·) are defined as in (11)
and (10), respectively, and there exists q0 ∈ QD such that
x0 ∈ Pq0 . Then:
(i) If the optimization problem given in (17) is feasible

for some qk ∈ PIk
qk

at time k for state (qk, xk) and
qk+1 6∈ FD, then there exists qk+1 ∈ PIk+1

qk+1
such that

the problem is feasible for qk+1 and state (qk+1, xk+1).
(ii) The trajectory of system (1) produced by the closed-loop

system satisfies the specification.

VI. CASE STUDY

xc,99 xc,4

xc,2

(a)

xc,92

xc,100

xc,2

(b)

Fig. 2. The trajectories of the controlled system. (a-b) The refer-
ence trajectories are generated from automaton sequences q99, q4, q2 and
q92, q100, q2, respectively. The center points of the corresponding polytopes
are marked with green dots.

Consider the system dynamics and specification given in
Example IV.2, and a cost function defined as in (2) with

Q =

[
0.5 0
0 0.5

]
, R =

[
0.2 0
0 0.2

]
. (18)

We define reference trajectories according to a sequence
of automaton states. In particular, for a given sequence of
automaton states q0, . . . , qd, we define the first N − 1 states
of the reference trajectory as xri := xc,0, i = 0, . . . , N − 2,
where xc,0 is the center of the polytope Pq0 . Then, we keep
an index variable j (initialized to j = 0), and at each time
step k ≥ 0, we generate xrk+N−1 and update j according to
the state xk of the controlled system as follows:

[xrk+N−1, j] :=

{
[xc,j+1, j + 1] if xk ∈ Pqj

[xrk+N−2, j] otherwise.
(19)

Two system trajectories generated by the MPC controller
are shown in Figure 2 (a) and (b), where the reference
trajectories are generated as explained above according to the
sequences of automaton states q99, q4, q2 and q92, q100, q2,
respectively. For both of the experiments, the reference
control sequences are defined as uri = [ 0

0 ] , i ∈ Z+, the
prediction horizon (N) is 5, the scaling factor α is 1.45, and
the weight constant γ is 0.95.

Note that both of the trajectories from Figure 2 satisfy the
specification Φex. The experiments show that we can use
the reference trajectories to steer the closed-loop trajectory
towards the desired regions, which was not possible in [8].
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