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Abstract. This paper addresses the design of simple robot behaviors that realize emergent
group behaviors. We present a method to coordinate a large number of under-actuated robots
by designing control laws on a small dimensional abstraction manifold, independent of the
number and ordering of the robots. The abstraction manifold has a product structure consisting
of elements of a Lie group that capture the position and orientation of the ensemble in the world
frame, and elements of a shape manifold that provide an intrinsic description of the distribution
of team members relative to one another. We design decoupled controls for regulating the
group and the shape variables. The realization of the controller on each robot requires the
feedback of the robot state, and the state on the abstraction manifold. We present experimental
results with a team of five car-like robots equipped with omnidirectional cameras and IEEE
802.11b networking.

1 Introduction

There are many examples of swarms in nature where simple, local behaviors, lead
to a wide array of complex, group behaviors [1,2]. Behavior-based approaches in
robotics have used similar ideas to demonstrate cooperative, multi-robot behaviors
[3]. However, the inverse problem of designing robot behaviors to achieve a desired
group behavior has proved to be very difficult.

There are some inverse problems that have been solved. For example, if the
robots are required to form a rigid formation or a virtual structure, the team can be
viewed as a left invariant control system on SE(l) (l = 2, 3), and the individual
trajectories are SE(l) - orbits [4]. The literature on stabilization and control of rigid
formations is rather extensive. The interaction between the robots involves leader-
follower controllers [5] and can be described by formation graphs whose edges
represent inter-robot constraints that must be satisfied. Characterizations of rigid
formations can be found in [6,4], and variants on the robot controllers leading to
different forms of inter-robot interactions can be found in [7–9].

While a rigid formation may be appropriate for applications such as cooperative
manipulation [10], formation flying [11], and cooperative sensing [12], such an
approach is, in general, too restrictive for environments with obstacles. In addition,
a rigid formation generally requires robots to be identified and formations to be
pre-planned [5].
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We introduce a general framework for the inverse problem of designing robot
controls that can realize desired collective behaviors. We primarily focus on the
synthesis of emergent spatial patterns at the group level as a result of designed
interactions at the level of individual robots. Our specific goal is to control a large
number of car-like robots that may be tasked to move while maintaining a desired
spatial distribution. An example of simple task may be to move hundreds of robots
from arbitrary initial configurations through a obstacle-filled environment while
staying grouped together. The large number makes the synthesis of motion plans
for each individual robot intractable. Our framework involves the abstraction of the
collection of robots at the group level so that the motion planning for the group can
be done on a lower-dimensional manifold, whose dimension is independent of the
number of robots or the labelling of these robots. The control problem then is to
design individual robot controllers so that the motion plan developed at the abstract
higher level can be realized, and to ensure that the sensing and control tasks and
the related computations that must be performed by individual robots do not scale
poorly as the number of robots is increased.

The key contributions of this work are as follows. First, we define our abstraction
manifold to have a product structure of a Lie group, which captures the dependence
of the ensemble on the world frame, and a shape manifold, which is an intrinsic
description of the team. We show how decoupled controllers can be designed for the
group and shape variables. The realization of the controller on each robot requires
the feedback of the robot state, and the state on the abstraction manifold. We discuss
the design and implementation of an observer that can estimate the state of the group
and broadcast the estimate to all robots. Finally, we present experimental results
with a team of five car-like robots equipped with omnidirectional cameras and IEEE
802.11b networking using this architecture and show how simple robot controllers
can be used to realize group behaviors in a principled manner.

2 Problem Formulation

Consider N identical Hilare-like planar robots, each described by a 3-dimensional
state vector xi = [xi

1, x
i
2, x

i
3]

T , i = 1, . . . N , where (xi
1, x

i
2) give the Cartesian

coordinates of the center of the drive axle and xi
3 measures the orientation of the

robot frame in a given world frame {W}. Each robot is modeled as a kinematic,
drift free control system

ẋi = G(xi)ui = g1(xi)ui
1 + g2(xi)ui

2 (1)

where the control vector fields are given by

g1(x) = [cos x3, sin x3, 0]T , g2(x) = [0, 0, 1]T

for x = [x1, x2, x3]T . The control ui = (ui
1, u

i
2) consists of driving and steering

speeds. On each robot we pick a reference point Pi along the longitudinal axis of
symmetry perpendicular to the drive axle but different from the robot center. The
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Cartesian coordinates of the reference points, qi = (qi
1, q

i
2), are used to formulate

cooperative tasks. In other words, for each robot i, i = 1, . . . , N , we define an output
map

qi = h(xi) (2)

where (omitting the superscript i) h is given by

h(x) = [x1 + d cos x3, x2 + d sin x3]
T (3)

Note that the choice of output function h together with the linearity of dynamics (1)
in ui leads to a linear nonsingular relationship between the derivative of the output
q̇i and the control variables q̇i = dh(xi)G(xi)ui, unless d = 0.

Problem 1 (Control). Design control laws ui, i = 1, . . . , N so that the team of
robots accomplishes a cooperative task formulated in terms of the reference points
qi.

We first define new inputs

q̇i = vi (4)

which are related to the original ones by

ui = A(xi)vi, (5)

A(x) = (dh(x)G(x))−1 =
[

cos x3 sin x3

− sin x3
d

cos x3
d

]
(6)

where dh denotes the differential of h. Equations (1), (2), (4) and (5) represent
an input-output feedback linearization problem [13]. The next natural step would
be to set vi = q̇id + k(qid − qi), k > 0 so that qi exponentially tracks a given
desired trajectory qid(t). However, this would require us to obtain specifications
of desired trajectories for each individual robot, something that is not practical for
large numbers of robots. Instead, we will show how the redefined inputs vi can be
designed so that the robots described by the reference points qi, i = 1, . . . , N have
a desired collective behavior.

3 Abstraction

Consider the 2N -dimensional system describing the team of robots:

q̇ = v, q ∈ Q, v ∈ V (7)

Q = {q| = (q1, . . . , qN ) ∈ R
2N},

V = {v| = (v1, . . . , vN ) ∈ R
2N}, (8)

with the canonical projection

πi(q) = qi, πi(v) = vi, i = 1, . . . , N (9)
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We define an abstraction of the team based as a map

φ : Q → A, φ(q) = a (10)

which is required to satisfy the following properties:

(i) The map φ is a surjective submersion.
(ii) The map φ is invariant to permutations of the robots and the dimension n of A

is not dependent on the number of robots N .
(iii) We require that A have a product structure

A = G × S, a = (g, s), φ = (φg, φs) (11)

where G is the Euclidean motion Lie group.
(iv) The map φ is left-invariant. In other words, if φ(q) = (g, s) and ḡ ∈ G is a

generic element, φ(ḡq) = (ḡg, s).
(v) The control systems on the group G and shape S are decoupled.

The key idea underlying the abstraction is simple. Instead of designing team motions
in the high-dimensional space Q, we want to be able to plan collective behaviors on
the lower-dimensional manifold A. The submersion condition (i) on φ implies the
surjectivity of the differential dφ at any q ∈ Q. This allows us to think of vector
fields (behaviors) on TQ and corresponding abstract behaviors on TA via the push-
forward map w = dφ(q)v. Thus, we can derive control inputs v that will realize any
vector field (behavior) w on the abstract space as follows:

v = dφT (dφdφT )−1w (12)

where w = ȧ are new inputs on the abstraction manifold. It is not difficult to see
that (12) guarantees that the energy spent by the vehicles to produce a specified
abstract behavior XA ∈ TA is minimized [14]. Further, the abstract state a is at rest
(ȧ = w = 0) if and only if all the robots (qi) are at rest (q̇ = v = 0). This guarantees
that each individual motion can be “seen” in the small dimensional manifold A.

Requirement (ii) ensures the dimension of the control problem is independent
of the number of agents, and the controllers are robust to individual failures. The
main idea of requirement (iii) is to have a decomposition in the abstract manifold,
a = (g, s). The element g ∈ G is called the group element and describes the pose
of the team and the element s ∈ S describes the shape of the team. Since we
only address planar robots in this paper, G is SE(2). The left-invariance property
(iv) will guarantee that the shape is an intrinsic property of the formation and is
unaffected by the motion of the team. The decoupling property in requirement (v)
means that controllers for regulating the shape of the formation can be designed
independently from controllers that regulate the motion of the team. Specifically,
the control systems on G and S are decoupled if dφg and dφs are orthogonal as
subspaces (we assume that Q is equiped with an Euclidean metric, although we
could consider the more general case of a Riemannian metric).

Finally, it is desirable to limit the inter-robot communication in the overall control
scheme. We propose an architecture where the control law ui of a robot only depends
on its own state xi and the state of the low dimensional abstraction manifold a ∈ A.
Since ui = A(xi)vi and qi = h(xi), this is achieved if vi = πi(v) = vi(qi, a).
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4 Control

In this section we define a physically significant abstraction (10) with a product
structure (11) as follows. For an arbitrary configuration q ∈ Q, the group part g of
the abstract state a is defined by g = (R, µ) ∈ G = SE(2). Let

µ =
1
N

N�
i=1

qi ∈ IR2 (13)

Let the rotation R ∈ SO(2) be parameterized by θ ∈ (−π/2, π/2), Then, by
definition,

θ =
1
2
atan2

�
N�

i=1

(qi − µ)T E1(qi − µ),
N�

i=1

(qi − µ)T E2(qi − µ)

�
(14)

Let the shape variable be a two-dimensional vector s = [s1, s2] defined by

s1 = 1
2(N−1)

�N
i=1(qi − µ)T H1(qi − µ),

s2 = 1
2(N−1)

�N
i=1(qi − µ)T H2(qi − µ)

(15)

where

H1 = I2 + R2E2, H2 = I2 − R2E2, H3 = R2E1, (16)

E1 =
�

0 1
1 0

�
, E2 =

�
1 0
0 −1

�
, E3 =

�
0 −1
1 0

�
, I2 =

�
1 0
0 1

�
(17)

It is obvious that the abstraction defined by (13), (14), and (15) has the required
product structure and is independent of the number and the permutations of the robots
(requirements (ii), (iii)). In [14], it is shown that it also satisfies the left invariance
property (iv) and dµ, dθ, ds1, and ds2 are orthogonal with respect to the Euclidean
metric on Q. Therefore, each of the abstract variables can be controlled separately
and requirement (v) is satisfied. Then it makes sense to design separate controls
w = (wµ, wθ, ws1 , ws2) at a point a = (µ, θ, s1, s2).

A group behavior is described by a desired trajectory (gd(t), sd(t)), which can
be tracked using a controller on the abstraction manifold A:

ξ̇ = wξ = kξ(ξd(t) − ξ(t)) + ξ̇d(t), ξ ∈ {µ, θ, s1, s2} (18)

where kµ ∈ IR2×2 is a positive definite matrix and kθ, ks1,2 > 0.

4.1 Significance

As shown in [14], there are two slightly different interpretations of the abstraction
defined by (13), (14), and (15). Let

Σ =
1

N − 1

N�
i=1

(qi − µ)(qi − µ)T , Γ = −(N − 1)E3ΣE3 (19)
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µ and Γ
system of particles qi with respect to {W}. Let {M} define a virtual frame with
pose g = (R, µ) in {W}. The rotation equation (14) defines the orientation of the
virtual frame so that the inertia tensor of the system of points in {M} is diagonal.
(N−1)s1 and (N−1)s2 are the eigenvalues of the tensor and are therefore measures
of the spatial distribution of the reference points qi along the axis of the virtual frame
{M}. Specifically, in [14] it is shown that an ensamble of N robots described by
a 5 - dimensional abstract variable a = (g, s) = (R, µ, s1, s2) is enclosed in a
rectangle centered at µ and rotated by R ∈ SO(2) in the world frame {W}. The
sides of the rectangle are given by 2

�
(N − 1)s1 and 2

�
(N − 1)s2.

in (13) and (19) can be seen as the centroid and inertia tensor of the

Alternatively, µ and Σ given by (13) and (19) can be interpreted as sample mean
and covariance of a random variable with realizations qi. If the random variable is
normally distributed, then, for a sufficiently large N , µ and Σ converge to the real
parameters of the normal distribution. R in (14) is the rotation that diagonalizes the
covariance and s1, s2 are the eigenvalues of the covariance matrix. This means that,
for a large number of normally distributed reference points (qi), µ, R, s1 and s2 give
the pose and semiaxes of a concentration ellipse:

cs2, where
c is given by (20). Even though the normal distribution assumption might seem
very restrictive, we show in [14] that it is enough that the reference points qi be
normally distributed in the initial configuration. Our controls laws preserve the
normal distribution.

The abstraction based on the spanning rectangle has the advantage that it provides
a rigorous bound for the region occupied by the robots and does not rely on any
assumption on the distribution of the robots. The main disadvantage is that this
estimate becomes too conservative when the number of robots is large. On the
other hand, the size of the concentration ellipse does not scale with the number of
robots, which makes this approach very attractive for very large N . However, it
has the disadvantage of assuming a normally distributed initial configuration of the
team and does not provide a rigurous bound for the region occupied by the robots.
Roughly speaking, (1− p)N are left out of the p-ellipse. Increasing p will decrease
the number of the robots which might be outside but will also increase the size of
the ellipsoid.

(x − µ)T Σ−1(x − µ) = c, c = −2ln(1 − p) (20)

The ellipse in (20), also called equiprobability ellipse, has the property that p percent
of the points are inside it, and can be used as a spanning region for our robots.
Therefore we can make the following statement: p percent of a large number N
of normally distributed points described by a 5 - dimensional abstract variable
a = (g, s) = (R, µ, s1, s2) is enclosed in an ellipse centered at µ, rotated by
R ∈ SO(2) in the world frame {W} and with semiaxes

√
cs1 and

√
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Fig. 1. The control architecture showing decentralized controllers Ci, with a centralized
abstract motion planner and an observer that provides an estimate of the abstract state.

4.2 Individual Control Laws

In [14], it is shown that the map φ defined by (13), (14), and (15) satisfies the
submersion condition (i) if and only if s1 �= 0 and s2 �= 0. These cases of zero shape
physically correspond to degenerate situations when all the robots are on the Oy
and Ox axis of the formation frame {M}, respectively. Excluding these degenerate
cases, dφdφT is invertible and the projection (9) of (12) leads to the following
velocity for the reference points Pi, i = 1, . . . , N :

vi = wµ +
s1 − s2

s1 + s2
H3(qi−µ)wθ +

1
4s1

H1(qi−µ)ws1 +
1

4s2
H2(qi−µ)ws2 (21)

The solution to Problem 1 is therefore given by ui defined by (5) and (21).
The control architecture is shown in Figure 1. The motion plan on the abstraction

manifold, which consists of the desired group and shape motion, must be made
available by a centralized motion planner. Note, that the ith robot, Ri runs the
controller Ci given by (5,21), requiring only feedback of the robot state xi and the
abstract state, a (and not states of other robots in the team). As shown in the figure,
it is necessary to create an observer that provides partial state feedback in terms of
estimates of the low-dimensional abstract state vector.

In [14], it is shown that if control law (21) is applied to all the robots, then the
set of points qi undergoes an affine transformation in the plane. Therefore, control
law (21) can be used for formations in which preserving properties like collinearity,
ratios of distances on lines, and parallelism is important. Even more interesting, it is
known that affine transformations preserve the normal distribution. This means that
if the robots are initially normally distributed, by applying the control laws (21), they
remain normally distributed. The 5-dimensional abstract state, interpreted as sample
mean µ and sample covariance Σ, gives us control over the pose, aspect ratio and
size of the concentration ellipse as defined above.
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Fig. 2. The GRASP Lab.
robots (left) and a sample im-
age from an omnidirectional
camera (right).

4.3 Internal Dynamics

Note that (18) only guarantees the desired behavior and therefore the boundness of
the 5 - dimensional a ∈ A. The next step is to prove the boundness of the internal
dynamics. This usually implies a change of coordinates and explicit calculation of
the zero dynamics. Fortunately, the boundness of a ∈ A together with the definition
of φ easily imply the boundness of each of qi, i = 1, . . . , N [14]. Moreover, in the
stabilization to a point case, it can be proven that for any µd, θd, sd

1, sd
2, the closed

loop system globally asymptotically converges on Q to the equilibrium manifold
µ = µd, θ = θd, s1 = sd

1, s2 = sd
2. We conclude that the overall system is well

behaved on Q, and therefore, each individual output qi is well behaved. Moreover,
the remaining 1 - dimensional internal dynamics of each robot can also be proved to
be bounded [5].

5 Experimental Results

Our experiments were performed using a team of five car-like robots. Each robot is
equipped with its own processor and an omnidirectional camera as shown in Figure 2.
The low-level controllers, the communication protocols and state estimators are
discussed in [15].

In our implementation, an overhead camera mounted on a UAV provides the
feedback necessary for estimating the abstract state in Figure 1. However, the results
in this paper were obtained in an indoor setting with a fixed, calibrated, overhead
camera. A fixed supervisory computer estimates the 5-dimensional team variable
a = (µ, θ, s1, s2) and broadcasts it to the robots in the team. The supervisory
computer also broadcasts the abstract motion plan. In the experiments shown here,
the team behavior in (18) corresponds to stabilization to a point ad on the abstraction
manifold A.

It is important to note that the control computers on the robots do not communi-
cate with others on the team. Further, the computations at each node are independent
of the number of robots. In our implementation, the six computers have differ-
ent processing speed and therefore, different update rates, the slowest update rate
corresponding to approximately 15 Hz.

Two sample experimental runs are shown in this paper. Limitations on space pre-
clude us from providing more information, including simulation results for hundreds
of robots in an obstacle-cluttered environment [14].
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Fig. 3. The position and orientation of the team is stabilized at desired values while shape is
preserved.

Fig. 4. Sequence of snapshots in an expansion maneuver - illustrates control of shape while
pose in preserved.

In the first experiment we show how the pose of the team can be controlled
while shape is preserved, illustrating the decoupling property of controllers (5),
(21). The robots are initially “almost” aligned with the Oy axes of the world frame:
µ = (2.2020, 1.6817), θ = −1.499 rad, s1 = 0.5417, s2 = 1.6798e − 4. We use
controllers (18) with kµ = 4I2, kθ = 4, ks1 = ks2 = 0 without derivative terms
to stabilize the team at µd = (2.2, 3.7), θd = 0, and the shape, according to our
theoretical results, should be preserved. The ground truth information captured from
a calibrated, overhead camera are shown in Figure 3.

The second experiment illustrates an expansion maneuver. Instead of plotting
the experimental data, we show four snapshots from the actual experiment in Figure
4. The robots were initially grouped in a small circle s1 = s2 = 0.0738 around µ =
(2.4607, 2.6185). We again used the stabilizing controllers (18) without derivative
terms but this time with kµ = 0, kθ = 0, ks1 = ks2 = 4 to stabilize the team at
sd
1 = sd

2 = 0.6078. The pose of the team, as predicted by our theoretical results, is
preserved.

6 Conclusion

We propose a framework and control algorithms for coordinating a swarm of robots
that allows the synthesis of a class of emergent group behaviors in a scalable manner.
The first key idea is the abstraction of the team to a low-dimensional abstract state
vector and the design of the motion plan on a low-dimensional abstraction manifold.
The dimension of the abstract state is independent on the number (and identities) of
robots. The second key idea is the synthesis of individual robot controllers (behav-
iors) that rely on feedback of individual state and the abstract state to produce the
desired emergent group behavior. We illustrate these ideas with a team of a small
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number of indoor mobile robots. Our future work is directed toward the generation
of more complex emergent behaviors and controllers for air-ground coordination in
outdoor environments.
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