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Temporal Logic Analysis of Gene Networks
Under Parameter Uncertainty

Grégory Batt, Calin Belta, and Ron Weiss

Abstract—The lack of precise numerical information for the
values of biological parameters severely limits the development
and analysis of models of genetic regulatory networks. To deal
with this problem, we propose a method for the analysis of genetic
regulatory networks under parameter uncertainty. We consider
models based on piecewise-multiaffine differential equations,
dynamical properties expressed in temporal logic, and intervals
for the values of uncertain parameters. The problem is then either
to guarantee that the system satisfies the expected properties for
every possible parameter value—the corresponding parameter set
is then called valid—or to find valid subsets of a given parameter
set. The proposed method uses discrete abstractions and model
checking and allows for efficient search of the parameter space.
However, the abstraction process creates spurious behaviors
in the abstract systems, along which time does not progress.
Consequently, the verification of liveness properties, expressing
that something will eventually happen, and implicitly assuming
progress of time, often fails. A solution to this second problem is
proposed using the notion of transient regions. This approach has
been implemented in a tool for robust verification of gene networks
and applied to the tuning of a synthetic network built in E. coli.

Index Terms—Discrete abstraction, model checking, piecewise-
multiaffine (PMA) system, genetic regulatory network, synthetic
biology.

I. INTRODUCTION

NUMEROUS cellular processes are controlled at the molec-
ular level by networks of interactions between genes, pro-

teins, and small molecules, called genetic regulatory networks.
Understanding how the cellular behavior emerges from these
networks of interactions is a central problem in systems and syn-
thetic biology [3], [4]. Arguably, the most widely used modeling
frameworks for the analysis of the dynamics of these networks
are based on differential equations [5]. With few exceptions
[6], it is generally assumed that the numerical values of state
variables and model parameters are precisely known. However,
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given the current limitations of experimental measurement tech-
niques, and the fact that parameter values themselves vary with
the ever-fluctuating extra- and intracellular environments, the
results obtained by these techniques may be of limited validity.

In this study, we present a method for the analysis of genetic
regulatory networks with parameter uncertainty. We consider
gene network models based on piecewise-multiaffine (PMA)
differential equations, dynamical properties expressed in tem-
poral logic (LTL), and intervals for the values of uncertain
parameters. Unlike most other classes of gene network models,
PMA models present specific mathematical properties that
allow the formal verification of quantitative yet uncertain
models. More precisely, the problems that we consider here are
either to guarantee that the system satisfies the expected prop-
erties for every possible parameter value—the corresponding
parameter set is then called valid—or to find valid subsets of a
given parameter set.

In the proposed approach, we use a partition of the state space
induced by the piecewise nature of the models and specific prop-
erties of multiaffine functions [7] to define an equivalence rela-
tion on parameters. Extending an approach widely used in hy-
brid systems theory, we use discrete abstractions [8] to trans-
pose the problem defined on (infinite) continuous state and pa-
rameter spaces into a problem defined on (finite) discrete spaces.
Algorithmic analysis of the abstract system by model-checking
[9] is then possible. Because the abstractions used are conser-
vative approximations, we guarantee that the parameter sets re-
turned by the procedure are valid. However, not all valid param-
eters are guaranteed to be found. A second consequence of the
use of abstraction is that spurious behaviors are introduced in the
abstract systems. In particular, some behaviors, called time-con-
verging behaviors, violate the natural requirement that along
every behavior of a dynamical system, time progresses without
upper bound [10], [11]. This causes the verification on the ab-
stract systems of commonly encountered properties expressing
that something will eventually happen [12], called liveness prop-
erties, to fail. We propose an approach to deal with this problem
by enforcing progress of time in the abstract systems. We in-
troduce the notion of transient region and show how transient
regions can be used to rule out time-converging behaviors in
abstract systems. Sufficient conditions for the identification of
transient regions of uncertain PMA systems are then proposed.
This approach has been implemented in a tool for Robust Verifi-
cation of Gene Networks (RoVerGeNe) and applied to the anal-
ysis of the tuning of a synthetic gene network, built in the bac-
terium E. coli. This case study demonstrates the practical appli-
cability and biological relevance of the proposed approach.

This paper is organized as follows. Section II introduces
preliminary notions. Our modeling framework is presented

/ © 2008 IEEE
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in Section III. In Section IV, we detail our approach for the
analysis of uncertain PMA systems using discrete abstractions.
In Section V, we present how to enforce progress of time in
the abstract systems for the verification of liveness properties.
In Section VI, we present an application to the tuning of a
synthetic gene network. The final section summarizes our
contributions and discusses the results in the context of related
work.

II. PRELIMINARIES

A. Transition Systems and LTL Model-Checking

We consider Kripke structures defined
over sets of atomic propositions and simply called transition
systems [9]. is a (finite or infinite) set of states, , a
total transition relation, and , a satisfaction relation.
An execution of is an infinite sequence
such that, for every and .

To every transition system , we associate
the directed graph . A strongly connected compo-
nent (SCC) of a directed graph is a maximal sub-
graph of such that, for every pair ,
there exists a path in from to . When , the SCC
is called trivial. The SCCs of a transition system are the SCCs
of its associated graph.

A simulation relation between transition systems is defined
as follows.

Definition 1: [13] Let and
be two transition systems defined on a same

set of propositions . is a simulation relation be-
tween and if and only if (iff), for every
such that , the following conditions hold:

• for every such that , there exists
such that and ;

• for every iff .
Then, we say that simulates (denoted by ) iff there
exists a simulation relation between and such that, for
every , there exists for which .

Given a transition system , an equiva-
lence relation is called proposition-preserving iff
for every and such that and ,
it holds that . The quotient transition system of the
transition system given the proposition-pre-
serving equivalence relation is the transition system

, where is the quotient state
space, i.e., the set of all equivalence classes of , the transi-
tion relation is defined such that, for every

iff there exists such
that and the satisfaction relation is de-
fined such that, for every , and iff
there exists such that . It holds that .

Definition 2 (Syntax of LTL Formulas [14]): The syntax of an
LTL formula over a set of atomic propositions is inductively
defined as follows:

• if , then is an LTL formula;
• if and are LTL formulas, then and

are LTL formulas.

We also use the standard derived operators:
, and .

The semantics of LTL formulas are defined over executions
of transition systems.

Definition 3 (Semantics of LTL Formulas [14]): Given an
execution of the transition system , and an
LTL formula over is inductively defined as
follows:

• , if , with ;
• , if it is not the case that ;
• , if and ;
• , if ;
• , if there exists such that and

for all ;
where denotes the suffix of starting at state .

Temporal operators have an intuitive interpretation. and
stand for “neXt state” and “Until,” respectively. Similarly,

and can be interpreted as meaning “for some Future state”
and “Globally” (i.e., for all future states). The distinction be-
tween the satisfaction relation , defined over states and atomic
propositions, and the satisfaction relation , defined over
executions and LTL formulas, is generally clear from the con-
text. When no ambiguity is possible, we use for both.

A (finite or infinite) transition system sat-
isfies an LTL formula , denoted , if every execution
of satisfies the formula . If is a finite transition system,
model-checking tools exist that can test automatically whether

. If not, a counterexample for the property is returned.
Finally, we will use the following proposition and its contra-

positive. Note that the converse is not generally true.
Proposition 1 (Simulation Weakly Preserves LTL [15]): Let
and be two transition systems such that and

be an LTL formula. If , then .

B. Convex Sets and Polytopes, Affine and Multiaffine Functions

Let be a subset of . and denote respectively
its closure in and its convex hull. A polytope is a bounded
intersection of finitely many open or closed halfspaces. A
polytope is hyperrectangular if it is the Cartesian
product of (possibly degenerate) intervals of the real line.
A face of a polytope is the intersection of with one of
its supporting hyperplanes. A facet is an -dimensional
face, with , the dimension of . The sets of points

satisfying and
, is the

set of vertices of . The Minkowski sum of two sets and
is .
An affine function , with , is a polyno-

mial of degree at most 1. A multiaffine function ,
with , is a polynomial in the variables with
the property that the degree of in any of the variables is at
most 1. Stated differently, nonlinearities are restricted to prod-
ucts of distinct variables. Theorem 1 [respectively, 2] states that
the value of an affine (multiaffine) function in a polytope (re-
spectively, hyperrectangular polytope) is a convex combination
of the values of the function at the vertices of the polytope (re-
spectively, hyperrectangular polytope).
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Fig. 1. Cross-inhibition network: gene network comprising two genes a and b and coding for two repressor proteins, A and B. Each protein represses the expression
of the other gene, that is, the synthesis of the other protein.

Theorem 1: [16] Let be an affine function and
be a polytope in . Then,

Theorem 2: [7] Let be a multiaffine function
and be a hyperrectangular polytope in . Then

III. UNCERTAIN PMA MODELS OF GENETIC

REGULATORY NETWORKS

A. PMA Systems and LTL Specifications

Here, we present a formalism for modeling gene networks
and use a cross-inhibition network (Fig. 1) as an illustrative
example. Some notations and terminology are adapted from
[17].1 We consider a gene network consisting of genes. The
state of the network is given by the vector ,
where is the concentration of the protein encoded by gene
. The state space is a hyperrectangular subset of :

, where denotes a maximal
concentration of the protein encoded by gene . Some pa-
rameters may be uncertain: is the vector
of uncertain parameters, with values in the parameter space

, where and denote a
minimal and a maximal value for .

The dynamics of the network are given by the differential
equations

(1)

where and are sets of indices,
and are (possibly uncertain) production and degrada-
tion rate parameters, and are continuous, PMA
functions called regulation functions. PMA functions arise from
products of ramp functions and (Fig. 2), used to capture
the combined effect of several regulatory proteins on the control
of gene expression or protein degradation (see Fig. 6(b) ( ) and
[18]). With the additional assumption that does not depend on

for ,2 it holds that
is a (nonsmooth) continuous function of and , a piecewise

1Note, however, that, unlike [17], we consider here quantitative piecewise-
multiaffine models.

2This assumption requires that a protein does not regulate its own degradation.
In practice, this assumption is generally satisfied.

Fig. 2. Ramp functions r and r . Ramp functions are used to capture the
effect on gene expression of a regulatory protein (activator or inhibitor). � and
� are threshold parameters.

multiaffine function of and an affine function of . Note that
production and degradation rate parameters may be uncertain,
but regulation functions (with their threshold parameters) must
be known precisely. Each component of the vector of uncer-
tain parameters is either a production or a degradation rate pa-
rameter. Finally, (1) is easily extended to account for constant
inputs by considering as new variables satisfying .

The cross-inhibition network in Fig. 1 can be represented by
the following PMA differential equations:

For example, the first equation states that protein A synthesis is
inhibited by protein B ( function) and that its degradation is
not regulated. Note that, because of its simplicity (the expression
of each gene is controlled by a single protein), this model is
actually piecewise-affine. We assume the following values for
known and uncertain parameters:

Synthesis parameters are unknown:
. For illustrating our purpose, we also consider a

particular parameter , with .
A number of dynamical properties of gene networks can be

specified in temporal logic by LTL formulas over atomic propo-
sitions of type or , where is a constant.
We denote by the set of all such atomic propositions. A PMA
system is then defined by a PMA function defined as above
and a set of atomic propositions : .

The cross-inhibition network is known to be bistable. If the
system is in a state in which the concentration of protein A is low
and the concentration of protein B is high, then it will remain in
such a state for all time. A symmetrical property holds with the
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Fig. 3. (a) Vector field describing the continuous dynamics in the state space of the cross-inhibition network for parameter p = (� ; � ) = (36; 17). (b) Discrete
abstraction of the dynamics in (a). Dots denote self transitions.

concentrations of A and B being high and low, respectively. This
property can be expressed in LTL by the formula

For example, the first part of the property expresses that, if the
concentrations of proteins A and B are respectively low

and high , then the system will always remain
in such a state. This states that the region

is invariant. We refer the reader to
[19] for a discussion on the use of invariants to express stability
in biology. Another well-known property of the cross-inhibition
network is mutual exclusion. The proteins cannot both remain
present at high concentrations. Stated differently, it should hold
that, irrespective of the initial state, eventually at least one
protein is present at low or average concentration (i.e., )

(2)

The use of PMA models for gene networks has been pro-
posed in [20] (see also [21] for a related piecewise-continuous
approach). The class of uncertain PMA models considered here
is also closely related to the class of piecewise-affine (PA) dif-
ferential equation models proposed by Glass and Kauffman [22]
(see [17] and [21] for further developments and [23] and [24]
for alternative, discrete formalisms). In PA models, step func-
tions are used instead of ramp functions. Both are simplifica-
tions of the sigmoids (e.g., Hill functions) traditionally used for
representing genetic regulations [25], [26]. However, contrary
to step functions, ramp functions capture the graded response
of gene expression to continuous changes in effector (activator
or inhibitor) concentrations and allow the development of finer
models.

B. Embedding Transition Systems

The specific form of the PMA function suggests a divi-
sion of the state space into hyperrectangular regions (see
Fig. 3(a) for our example). For every , let

be the ordered set of all threshold constants in

and of all atomic proposition constants in , associated with
gene , together with 0 and . Then, we define as the
following set of -dimensional hyperrectangular polytopes

, simply called rectangles:

and

where

The -tuple is called the coordinate of rectangle . The union
of all rectangles in is denoted by : . Note
that . Notably, threshold hyperplanes are not included
in . Two rectangles and are said to be adjacent, denoted

, if they share a facet.
maps every rectangle to its coordinate, and

maps every point in to the rectangle such that .
For the cross-inhibition network, the set
of all rectangles is represented in Fig. 3(a). and are
adjacent , whereas and are not.

Formally, the semantics of a PMA system is defined by
means of an embedding transition system.

Definition 4: Let . The embedding transition
system associated with the PMA system is

defined such that:
• is the transition relation defined by

iff there exists a solution of (1) and
such that

, and either
or ;

• is the satisfaction relation defined by
iff satisfies the proposition

(of type or ) with the usual semantics.
Remark: Not all solution trajectories of (1) are represented

by executions of the embedding transition system. First, due to
our restricted notion of adjacency , solution trajectories of
(1) that go from a rectangle to another by passing through a face
of low dimension are not represented in the embed-
ding. Second, the dynamics of the system in (including
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threshold hyperplanes) is not described by the embedding. How-
ever, since the vector field is continuous everywhere, trajectories
originating in full-dimensional rectangles can not “disappear”
in a facet by sliding along the supporting hyperplane. Conse-
quently, the embedding describes almost all solution trajectories
of (1), which is satisfying for all practical purposes.

Definition 5: A PMA system satisfies an LTL formula
for a given parameter if , that is, if every
execution of satisfies .

Then, valid parameter sets are defined as follows.
Definition 6: Let be a PMA system and an LTL formula.

A parameter set is valid for iff satisfies for almost
all .

Again, the use of almost all is motivated by the fact that this
criterion is sufficient for all practical purposes and allows us to
avoid tedious technicalities. Finally, we consider the following
problems.

Problem 1: Let be a PMA system, let be a
hyperrectangular parameter space, and let be an LTL formula
over .

A) Robustness Analysis: Check whether is valid for .
B) Synthesis: Find a set such that is valid for .
Our focus on hyperectangular parameter spaces comes from

our hypothesis that uncertain parameters are given by intervals.
However, in full generality, the proposed method can deal with
bounded polyhedral parameter spaces.

IV. ANALYSIS OF PMA SYSTEMS WITH

PARAMETER UNCERTAINTY

A. Discrete Abstraction

We use discrete abstractions [8] to obtain finite transition sys-
tems preserving dynamical properties of and amenable to
algorithmic verification [9]. Let be the (propo-
sition-preserving) equivalence relation defined by the surjective
map iff . is the set of
equivalence classes. Then, we define the discrete abstraction of

as follows.
Definition 7: Let . The discrete abstraction of is

, the quotient of given the
equivalence relation .

For our example network, is represented in Fig. 3(b).
From the definition of quotient transition systems (Section II),
the following is true.

Proposition 2: For every

In words, the discrete transition system is a conser-
vative approximation of the continuous dynamics of the PMA
system described by , in the sense that, for every execu-
tion of , there exists a corresponding
execution in : . Because
simulation relations weakly preserve LTL (Proposition 1), if we
can prove that an LTL property holds for , then it also
holds for . Note that the converse does not necessarily
hold.

To compute , we provide the following characterization
of its transition and satisfaction relations. These results exploit
specific properties of multiaffine functions defined over hyper-
rectangular polytopes [7].

Proposition 3: Let . ,
where:

• is such that iff ,
or and there exists such that

with and
such that .

• is such that iff for every
.

Proof: Let . By Definitions 4 and 7, it is clear
that, if neither nor , there cannot exist a tran-
sition from to . If , then, since it exists a solution
of (1) that remains in on for some , there exists
a (self) transition from to (Definitions 4 and 7). The last
case is when . Then, let
and such that and let be the facet
shared by and . We assume without loss of generality that

, the other case being symmetrical.
(by contradiction): Suppose that, for every

. Using Theorem 2, it holds that, for every
. Consequently, no solution can enter

from and .
: Assume that there exists such that .

By continuity of , there exists a ball of center and radius
such that . In particular, there exist

, such that . Then, there exists
a solution entering from without leaving , and, by
Definitions 4 and 7, .

The characterization of follows immediately from the
fact that the equivalence relation preserves the atomic
propositions in .

Informally, Proposition 3 simply states that there is a tran-
sition between two adjacent rectangles iff there exists at least
one common vertex at which the direction of the vector field

is in agreement with the relative position of the two
rectangles . An approach using similar intuitions has
been proposed for reachability analysis of multiaffine systems
in [27].

For exemplification, consider the two rectangles and
in Fig. 3(a). They share two vertices: and

. From Proposition 3, there is a transition from to
, because , and there is no transition from
to , because neither nor

[check with Fig. 3(b)].
In summary, Proposition 3 provides a means to compute the

relation for a given parameter by evaluating at all the
vertices of the rectangles. The computation of the set of states

and of the satisfaction relation are trivial. So can
be computed, and because is a finite transition system,
one can use model checking for testing whether .
If the abstract system satisfies , then so does the orig-
inal system (Propositions 1 and 2), and is valid for .
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Fig. 4. Parameter space in the dimensions of � and � . Parameter p =
(36; 17) is represented. The shaded region is a set of valid parameters for prop-
erty � .

Conversely, if does not satisfy , no conclusion on the
validity of can be obtained. If some parameters are unknown,
we will use Proposition 3 to define an equivalence relation on
parameters and reason for parameter sets.

B. Parameter Equivalence Classes

Consider a vertex . Because is an affine
function of is an affine expression in :

, with and . Let be the set of
all such nonconstant affine expressions

and

After having removed repeated elements, we denote by
the cardinality of and order the elements in :

. For our example network, with un-
certain parameters and , out of the 32 affine expressions
only four different nonconstant expressions exist

with

The affine predicates , divide the parameter
space into polyhedral regions (Fig. 43). These regions can be
represented by a Boolean encoding. Let be the set of Boolean
numbers of length : . We denote by the Boolean
of length 0. Then, to every Boolean , we
associate the parameter set such that and, if ,
then

if and

if

The sets are subsets of obtained by adding constraints
of type or , with . If is a prefix of

, then . The hierarchy between the sets induced
by the set-inclusion partial order is represented in Fig. 5 for the
cross-inhibition network (see [28] and [29] for similar ideas in
the context of predicate abstraction).

We say that two parameters and are equivalent if their as-
sociated discrete transition systems and are iso-

3Note that, in general, the partition of the parameter space is not hyperrect-
angular.

morphic. A similar definition is used in [17] and [30]. Naturally,
a PMA system satisfies the same LTL properties for two equiv-
alent parameters.

Definition 8: Let be the equivalence relation
defined by iff .

Then, it holds that the set of all predicates ,
divide the parameter space in equivalence classes.

Proposition 4: Let . For all .
Proof: Let and . Then,

and iff
, with . So, by Proposition 3,

and .
With , if for some , then using

Propositions 1, 2, and 4, it holds that, for all
: is a valid parameter set. Since we can compute for

any given (Proposition 3), solutions to Problems 1.A and 1.B
can be obtained by testing for every equivalence class
whether for some (randomly chosen) .
Note, however, that, if , no conclusion can be ob-
tained on the validity of , since does not imply
that . On our example network, only two equiva-
lence classes, and , both corresponding to , are
found to be valid for the bistability property (Figs. 5 and 4).
However, this naive approach is impractical since the number
of equivalence classes (i.e., the leaves of the tree in Fig. 5) in-
creases exponentially with the number of affine predicates in ,
the latter increasing exponentially with the number of variables
and uncertain parameters. A more efficient approach is proposed
in the next section.

C. Hierarchical Parameter Space Exploration

Our goal is to describe the behavior of the network for sets
of parameters . To do so, we introduce two transition
systems, and . Then, we show how they can be
computed and how they can be used to prove properties for sets
of parameters.

Definition 9: Let . Then,
and , where

• such that
, and

• iff .
By Definition 9, contains all the transitions present

in at least one transition system , and contains
only the transitions present in all the transition systems .
For every simulates , which simulates

. This follows immediately from the definition of
simulation between transition systems, using the fact that

. Informally, and can be,
respectively, considered as over- and under-approximations of
the possible behaviors of , when varies in .

Proposition 5: For every

In order to compute and , we first introduce the
function that associates to every pair of adjacent rectangles
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Fig. 5. Hierarchy between the parameter sets P , represented as a binary tree. Arrows indicate set inclusion: P ! P means P � P . Leaves (dark gray)
correspond to parameter equivalence classes. P ; . . . ; P refer to regions in Fig. 4. The fragment of the tree actually computed during hierarchical parameter
space exploration for the analysis of property � is emphasized. Model checking results used for backtracking are shown at the nodes where the recursive search
stops.

and the set of parameters for which there is a transition
from to in

such that

with and such
that .

Because for all and , the
are affine expressions in , the sets correspond

to unions of polytopes in . Then, using the following propo-
sition, the computation of the transition systems and

for polyhedral sets simply amounts to compute in-
tersections and decide inclusions of unions of polytopes, which
are standard polyhedral operations efficiently implemented in
toolboxes.

Proposition 6: Let

iff either

or and

iff either

or and

Proof: Let and be such that
(the other cases being trivial). From Proposition 3, it is easy to
see that is the set of parameters for which there
is a transition from to in . Then, the result follows
from the definition of the transition relations and
(Definition 9).

Using Propositions 1, 2, and 5, it holds that, for any ,
if , then : is a valid param-
eter set. Alternatively, using the contrapositive of Proposition
1 and Proposition 5, it also holds that if , then

: no valid parameter can be found in
using our approach, either because contains no valid

parameter, or because the discrete abstraction is overly con-
servative. Otherwise ( and ), it
is worth inspecting subsets of , that may contain valid
parameter sets. Accordingly, we propose an algorithm that
explores in a hierarchical manner by considering param-
eter sets associated with Booleans of increasing length,
starting from . The main procedure is Algorithm 1, which
essentially calls COMPUTE PARAMETER CONSTRAINTS and
TEST PARAMETER SET. The function COMPUTE PARAMETER

CONSTRAINTS (Algorithm 2) is a preprocessing step, in which
the set and the function are computed. Finally, the proce-
dure TEST PARAMETER SET (Algorithm 3) recursively explores
a binary tree, represented in Fig. 5 for our example and, for
each node, computes and , and test whether

and whether . As explained above,
Proposition 5 is used to stop the recursive search as soon as pos-
sible (either because , or because ).
For the leaves of the search tree (i.e., the parameter equiva-
lence classes), and the search necessarily
terminates. The maximum recursion depth is .

Because the efficiency of the computations may sig-
nificantly depend on the order in which the affine pred-
icates , are considered during the
search, we implemented a simple heuristic (in function
REMOVE REPEATED ELEMENT AND SORT, Algorithm 2) that
orders first the predicates splitting the parameter space the more
evenly (i.e., yielding two polytopes of similar volumes).

The fragment of the tree actually computed for the analysis of
property is represented in Fig. 5. The same result is obtained
as previously ( is a valid parameter set), but in much fewer
tests. (Please see Algorithms 1–3).

Note that, in general, does not provide information on
the original system , since no simulation relation exists
between and . Nevertheless, it makes it possible
to identify (potentially large) regions of the parameter space in
which no valid parameter can be found. Consequently, it plays
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a key role when exploring large parameter spaces where only
small regions are valid sets.

A number of dynamical properties can be tested this way for
robustness analysis or tuning of gene networks. However, be-
cause model checking results are almost always negative, this
approach fails when applied to the verification of liveness prop-
erties. As we will see in Section V, this problem is due to the
presence of spurious, time-converging executions in the abstract
transition systems.

V. ENFORCING PROGRESS OF TIME IN

DISCRETE ABSTRACTIONS

The analysis of counterexamples returned by model checkers
reveals why the verification of liveness properties generally
fails. For example, the execution of

[Fig. 3(b)], is a counterexample of the liveness property
[Equation (2)] expressing mutual exclusion. However, from

the sketch of the flow in Fig. 3(a), it is intuitively clear that the
system leaves in finite time. Consequently, the execution

that describes a system remaining always in conflicts
with the requirement that time progresses without upper bound.
Such executions are called time-converging [10], [31].4 Because
they do not represent genuine behaviors of the system, these
executions should be excluded when checking the properties of
the system.

A. Ruling Out Time-Converging Executions Using Transient
Regions

First, we define time-diverging executions in the transition
systems and .

Definition 10: Let .
An execution of is time-diverging

iff there exists a solution of (1) and a sequence of time in-
stants such that , for all , and

.

4Time-converging executions are sometimes called Zeno executions [10],
[31]. However, we prefer the former term since the latter is also used in a more
restricted sense [32].
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An execution of is time-diverging
iff there exists a time-diverging execution of

such that , for all .
Intuitively, an execution of the embedding transition system

is time-diverging if it represents at least one solution
on the time interval . Also, an execution of the discrete
transition system is time-diverging if it is the abstrac-
tion of at least one time-diverging execution of . Here,
we identify two causes for the absence of progress in the ab-
stract system . The first one is due to the time-abstracting
semantics used. The time-elapse corresponding to a transition in

can be infinitesimal such that the sum of all time-elapses
of the transitions of an execution of can be finite. The
second one is due to the discrete abstraction, since the abstrac-
tion process introduces the possibility to iterate infinitely on dis-
crete states of . While the first problem appears only for
dense-time systems, the second problem is also present in un-
timed systems and has been studied in the model checking com-
munity [33], [34]. is an example of
a time-converging execution of [Fig. 3(a) and (b)].

The notion of time-diverging executions can be extended to
and as follows.

Definition 11: Let .
An execution of is time-diverging, if, for some

is an execution of and is time-diverging.
An execution of is time-diverging, if, for all

is a time-diverging execution of .
Finally, we define transient regions as subsets of the state

space that are left in finite time by every solution. For a reason
that will become clear later, we focus on regions corresponding
to unions of rectangles. For example, as suggested by the sketch
of the flow in Fig. 3(a) and proved later, is a transient region
for parameter .

Definition 12: Let and be a union of rectangles
. is transient for parameter if, for every solution of

(1) such that , there exists such that .
From the maximality of strongly connected components

(SCCs), it follows that an infinite execution of a finite transition
system remains eventually always in a unique SCC. With

being either , or , and being an
execution of , we denote by the union of
the rectangles of the strongly connected component of in
which remains eventually always. Then, it is clear that, if an
execution of is time-diverging, that is, it represents at
least a solution trajectory on a time interval (Definition
10), then can not be a transient region. Proposition 7
captures this intuition and establishes a link between time-di-
verging executions and transient regions.

Proposition 7: Let . If an execution of is
time-diverging, then is not transient for .

Proof: Let and be a time-di-
verging execution of . By definition of , there
exists such that, for every . Let

be a suffix of and
. It holds that is a time-diverging execution of

. By Definition 10, there exists a time-diverging execu-
tion of such that, for all

. Then, by Definition 10, this implies the existence of

a solution of (1) such that such that .
Also, because every rectangle visited by
is necessarily in (Definitions 4 and 7). Consequently is
not transient for (Definition 12). Because , the
same necessarily holds for .

Consider again the execution of
[Fig. 3(b)]. As mentioned earlier,

is a transient region for parameter . By Proposition 7, is
consequently time-converging for .

The following property is a generalization of Proposition 7.
Proposition 8: Let .

1) If an execution of is time-diverging, then, for
some is not transient for .

2) If an execution of is time-diverging, then, for
all is not transient for .
Proof: First, note that we cannot use directly Proposition 7,

since by definition differs depending on whether
is an execution of or . However,
with an execution of (resp. of ), we can
show exactly as in the Proof of Proposition 7, the existence
of a set included in and nontransient for some
(respectively, every) parameter . The conclusion follows
immediately.

To summarize, let us denote by either
or and interpret “transient” as transient for , for
every or for some , respectively. Then, using the
contrapositive of Propositions 7 or 8, we obtain that given a
strongly connected component of , if the corresponding
region is transient then every execution of remaining
in (i.e., being eventually always in ) is time-converging
and should not be taken into account when checking the
properties of the system. Provided that transient regions can
be identified, this suggests a method to rule out time-converging
executions. To do so, we define a predicate ”transient”
that is true for all and only rectangles in transient SCCs.
Then, instead of testing whether

we test whether

with “transient”

The executions of satisfying (“transient”) necessarily
remain in a transient SCC and are consequently time-converging
(Proposition 7 or 8). So, only time-converging executions are
ruled out this way. However, because Propositions 7 and 8 give
only necessary conditions for an execution to be time-diverging,
not all time-converging executions are guaranteed to be ruled
out. Using these results, we propose a modified version of
Algorithm 3 (Algorithm 4).

Consider again our example network. As said earlier,
is a transient region. Because forms a (trivial) SCC,
it is labeled “transient” in . Then, the execution

, satisfying (“transient”), is not
a counterexample of and will not cause the property to be
falsely invalidated anymore.
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B. Transient Region Computation for Uncertain PMA Systems

The approach presented in the previous section is rather gen-
eral in the sense that it solely requires the capacity to charac-
terize transient regions. In this section, we provide sufficient
conditions for their identification in uncertain PMA systems.
More precisely, we provide conditions for proving that regions
corresponding to SCCs in the discrete abstractions are tran-
sient for a given parameter (Proposition 9), for some param-
eter (Proposition 11), or for all parameters in a bounded poly-
hedral set (Proposition 10). Using sufficient conditions, not all
transient regions are guaranteed to be identified. However, only
time-converging executions will be ruled out using the approach
presented in the previous section. More precisely, Propositions
9, 10 and 11 are used in combination with (the contrapositive
of) Propositions 7, 8(1), and 8(2), respectively. These properties
rely on the fact that in a rectangle the function is multiaffine
and hence is a convex combination of its value at the vertices of

(Theorem 2). Our focus on PMA systems is motivated by bi-
ological applications. However, Theorem 1 for affine functions
on polytopes is similar to, and in fact stronger than Theorem 2
for multiaffine functions on rectangles, such that the results in
this section also hold for similarly defined continuous, piece-
wise-affine systems on polytopes.

Proposition 9: Let and be a union of rectan-
gles . If

then is transient for parameter .
Proof: Let and be a union of rectangles

. Assume . Using
the separating hyperplane theorem, there exists such
that for all

. For every rectangle is a multiaffine
function of on , so it holds that, for every ,

(Theorem 2). Then, for
every , which
is included in . Consequently,

. Since is compact (union of compact sets

) and is continuous, is compact, which implies
that there exists such that the velocity in the direction
of is always larger than . Consequently, is left in
finite time.

The conditions of the above property are satisfied by ,
which proves that this region is transient, as hypothesized ear-
lier. We illustrated our approach on a trivial SCC (i.e., con-
taining a single rectangle, ), but note that Proposition 9 (and
10 and 11) applies also to nontrivial SCCs.

Propositions 10 and 11 are generalizations of Proposition 9
to polyhedral parameter sets.

Proposition 10: Let be a polytope and be a
union of rectangles . If

, then is transient for all parameters .
Proof: Using Proposition 9, we only have to prove that,

if , then
. We prove its

contrapositive. Let be such that
. Then, since is affine in , by Theorem 1 it holds

that
or, more simply

.
Proposition 11: Let be a polytope and

be a union of rectangles . If, for some
, then is transient for some

parameters .
By Proposition 9, Proposition 11 is obviously sufficient for

proving that a region is transient for some parameter in a polyhe-
dral set. However, it may seem very conservative to test whether

is true only at the ver-
tices of instead of testing whether this is true for every pa-
rameter in . The following proposition states that this is in fact
equivalent.

Proposition 12: Let be a polytope and
be a union of rectangles . such that

iff such that
.

Proof: The necessity is trivial. We prove sufficiency by
contradiction. Let and let and be two sets of in-
dexes labeling the vertices in and :
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Fig. 6. (a) Synthetic transcriptional cascade made of four genes. tetR inhibits lacI , lacI inhibits cI , and cI inhibits eyfp . The input aTc relieves the inhibition
of lacI expression by TetR. The fluorescence of the protein EYFP is the output. (b) PMA model. The notations follow those introduced in Section III. Equation
(2 ) states that lacI is repressed when the protein TetR is present and aTc absent. Parameter values estimated for the actual cascade from experimental data in
[40] are indicated. (c) I/O response of the cascade at steady state [zoomed in (d)]. Measured (dots), predicted (thick dashed line), and desired (region delimited by
dashed lines) behaviors of the actual network. Predicted (solid lines) behaviors for different parameters in the set P .

and . Then, there exists such
that , with , and .
Also, it holds that

is affine in

Minkowski sum of convex hulls

Then, for every implies
that . So, by definition of the
Minkowski sum, we have . This is a
contradiction.

From a computational point of view, it is important to note
that the conditions in Propositions 9–11, can be simply evalu-
ated by polyhedral operations. Moreover, as noted in [35], this
problem can be reformulated as an equivalent linear optimiza-
tion problem and solved more efficiently using linear program-
ming.

The methods described in Sections IV and V have been
implemented ina tool forRoVerGeNe.The tool is freelyavailable
and can be downloaded from [36]. It consists of approximatively
2000 lines of Matlab (The MathWorks, Inc.) code and exploits
the Multi-Parametric Toolbox [37] for polyhedral operations
and linear programming, the Matlab Boost Graph Library
[38] for SCC computations, and the CTL/LTL model-checker
NuSMV [39]. Given a PMA model, an LTL specification of
the property and an initial parameter set, the tool can either
test whether the given parameter set is valid (Problem 1.A),
or recursively search for valid parameter subsets (Problem
1.B). Valid parameter sets are returned as a list of polytopes.

VI. TUNING OF A TRANSCRIPTIONAL CASCADE

A. Modeling and Specification

The method presented in the previous section is illustrated
by the analysis of the steady-state input/output (I/O) behavior
of a synthetic transcriptional cascade built and analyzed in [40]
[Fig. 6(a)]. 5 Because of the topology of the network (cascade
of inhibitions), an ultrasensitive response might be achieved: the
output (EYFP) at steady state undergoes a dramatic change for a
moderate change of the input (aTc) in a transition region. More

5An improved version of this model and additional computational results can
be found in [41].
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precisely, the desired behavior is to obtain at least a 1000-fold
increase of the output value for a twofold increase of the input
value [Fig. 6(c)]. Using (“eventually, will be always
true”) to express that property holds at equilibrium, the spec-
ifications in Fig. 6(c) can be translated to LTL as follows:

eyfp

eyfp

eyfp

The actual network does not meet these specifications. So,
our goal is to tune the network by finding valid parameter sets
for property (Problem 1.B). Additionally, because it is im-
portant that the network behaves as expected despite environ-
mental fluctuations, we would like to test using our model if
the tuned network will present a robust behavior, before actu-
ally experimentally tuning it. More specifically, we would like
to verify that the tuned cascade satisfies specifications for all
production and degradation rate parameters varying in %
(or %) intervals centered at their reference values (Problem
1.A).

To do so, we have developed a PMA model of this system,
represented in Fig. 6(b). Parameter values were estimated based
on experimental data available in [40]. Note that is a liveness
property. The use of the approach described in Section V for
enforcing progress of time was necessary in this case, since no
conclusion could have been obtained otherwise. Also, because
the network has no feedback loops, it is not difficult to show
that oscillatory behaviors are not possible. Consequently, every
(time-diverging) execution necessarily eventually remains in a
single (nontransient) rectangle, instead of SCC in the general
case (see Proposition 8). We have consequently applied Propo-
sitions 10 and 11 to rectangles only, to obtain tighter predictions.

B. Tuning and Robustness Analysis

Using RoVerGeNe, we found a valid set by tuning three
production rate parameters, lacI cI and eyfp

lacI cI eyfp lacI

and eyfp

These results essentially suggest to increase the production rates
of LacI and EYFP by a factor 2 to 3. This could be achieved for
example by tuning promoter or ribosome binding site efficien-
cies (see, e.g., [42] and [43]). In order to evaluate the signifi-
cance of the above constraints, we computed by numerical sim-
ulation the steady-state I/O behavior of the system for different
parameters in , notably using extreme values [Fig. 6(c)]. This
clearly revealed that relevant constraints on the parameters have
been identified by our method.

With a partition of the state space having 1500 rectangles, 18
affine predicates on parameters were found, defining
parameter equivalence classes. The computation lasted
hours (PC, 3.4-GHz processor, and 1-Gb RAM) and only 350
different parameter sets were analyzed using the hierarchical
approach. This computational time can be considered as very
reasonable, given the difficulty of the problem: we system-
atically explored a three-dimensional (3-D) parameter space,

Fig. 7. Computational time for the verification of a liveness property as a func-
tion of the number of variables and uncertain parameters. The 3-D and 4-D sys-
tems correspond to similar but shorter transcriptional cascades (see [40]). NA:
not applicable.

testing a nontrivial dynamical property for any initial condition
in a five-dimensional (5-D) (one input and four state variables)
state-space.

Any parameter in is valid. However, it is not guaranteed
that the behavior of the network is robust for any param-
eter in . To test the robustness of the tuned network, we
have selected a valid parameter in and tested whether
the system satisfies the expected property for all of the
11 production and degradation rate parameters varying in

% intervals centered at their reference values. We used
lacI cI eyfp , and the values

given in Fig. 6(b) for the other parameters.
Using RoVerGeNe, we have been able to prove the robustness

of the property in h. Given that the problem was to prove
that a non-trivial property holds for every initial condition in a
5-D state space and for every parameter in an 11-dimensional
parameter set, this example illustrates the applicability of the
proposed approach to the analysis of networks of realistic size
and complexity. Computational times for smaller instances of
this problem are given in Fig. 7.

The same test has been performed for % parameter vari-
ations, and a negative answer was obtained ( h). We recall
that, from negative answers, one cannot conclude that the prop-
erty is false for some parameters in the set. Nevertheless, the
analysis of the counterexample given by the model checker has
revealed that the system can remain in a (nontransient) rectangle
in which the concentration of EYFP is below the minimal value
allowed by the specifications , when the production rate
constants eyfp and eyfp are minimal and the degradation rate
constant eyfp is maximal, in the % intervals. As a conse-
quence, the property is not robustly satisfied by the system for

% parameter variations. Again, this illustrates that relevant
constraints on parameters were identified by our approach.

VII. DISCUSSION

We have presented a method for the analysis of genetic reg-
ulatory networks under parameter uncertainty. Given a PMA
model, a dynamical property expressed in temporal logic and
a bounded polyhedral parameter set, the proposed approach can
be used to test whether the property is satisfied for every param-
eter in the parameter set—the set is then called valid—or to find
valid subsets of the given parameter set. The practical applica-
bility and biological relevance of our approach has been demon-
strated on the analysis of the tuning of a synthetic network built
in E. coli. Network tuning is a central problem in synthetic bi-
ology, since most initial attempts at constructing gene networks
do not result in a system exhibiting the desired behavior [4].
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In comparison with other modeling frameworks proposed
to describe gene networks (reviewed in [44]), uncertain PMA
models can be considered as an intermediate formalism
between exact, quantitative differential equation models
such as mass-action kinetics or Hill-type models [45], and
coarse-grained, qualitative models such as qualitative PA
differential equation models [17]. The analysis of exact quan-
titative models, essentially by numerical simulation since
analytical solutions seldom exist, yield precise predictions on
the network behavior. However because of large parameter
uncertainties, these results are often of limited validity. In
contrast, qualitative models yield coarse predictions on the
network behavior, but that hold for large sets of parameters.
The class of uncertain PMA models combines advantages from
both formalisms in the sense that one obtains predictions that
are finer than using qualitative models and more robust than
using exact quantitative models.

We briefly review the two main methodological contributions
of this work, dealing with the analysis of uncertain PMA sys-
tems (Section IV) and with the verification of liveness properties
of dynamical systems with dense-time semantics (Section V).
First, we use a discrete abstraction of the continuous dy-
namical system to define equivalence classes on param-
eters, in the sense that two equivalent parameters are associated
to the same discrete abstraction. Then, we define discrete transi-
tion systems, and , that over- and under-approx-
imate the discrete abstraction for every and show
how they can be used to search the parameter space efficiently
by model checking. The proposed approach is conservative: if
a parameter set is found, it is guaranteed to be valid. However,
not all valid parameter sets are guaranteed to be found. Second,
we propose a method to rule out time-converging behaviors.
These behaviors along which time does not progress are intro-
duced in the discrete abstractions by the abstraction process,
and cause the verification of liveness properties to fail. We in-
troduce the notion of transient regions as subsets of the state
space that are eventually left by every solution trajectory, and es-
tablished a simple relation between time-converging executions
and regions corresponding to strongly connected components
of the discrete abstractions: executions that remain in a tran-
sient SCC are necessarily time-converging. Then, we provide
sufficient conditions for the identification of transient regions in
uncertain PMA systems. These two methods are integrated in
a unique algorithm, implemented in the publicly available tool
for robust verification of gene networks, RoVerGeNe.

Other approaches have been proposed for the verification
of continuous or hybrid systems with parameter uncertainty in
the hybrid systems community. In most approaches, unknown
parameters are represented as symbolic constants, and symbolic
operations are used to manipulate sets of states and compute
(approximations of) sets of predecessors or successors [30],
[46]–[49]. A major limitation is that the computational tech-
niques supporting these symbolic operations currently apply
only to systems having rather simple continuous dynamics,
such as timed automata [46], [47], linear hybrid automata
[48], piecewise-affine systems [17], [30] (see also [50], [51]
for related, purely discrete approaches), or affine hybrid au-
tomata [49]. In particular, these methods cannot deal with the

multiaffine nonlinearities that appear when modeling com-
plex genetic regulations with graded response, as we do in
the transcriptional cascade example. Alternatively, numerical
approaches have been proposed in which parameter uncer-
tainties are captured by means of differential inclusions (e.g.,

) [52]. For large parameter sets,
these approaches can be very conservative. In this paper, we
propose an approach which is successively symbolic (synthesis
of parameter constraints) and numerical (computation of transi-
tion systems). The results of the first step are used to refine the
parameter sets considered in the second step, in order to limit
(though not eliminate) overconservatism, while preserving
efficiency.

In comparison with the amount of work done for the verifica-
tion of safety properties of continuous or hybrid systems having
dense-time semantics, not much work has been done for live-
ness properties [31]. It has been proposed that the difficulty to
enforce progress of time in dense-time systems makes liveness
properties comparatively more difficult to analyze [31]. Tools
supporting the verification of true (i.e., unbounded) liveness
properties of dense-time systems are Uppaal [53], TReX [33]
and RED [31]. However, the applicability of existing methods
is again limited to systems that have very restricted continuous
dynamics, namely timed automata. In contrast, our approach
applies to any discrete abstraction provided that transient
regions can be characterized. As mentioned in Section V-A, a
similar problem arise in untimed systems for the verification
of liveness properties when abstractions are used [33], [34].
Progress of the abstract system is then enforced by the addition
of fairness constraints, expressing that the system can not al-
ways remain in a given set of states. Because (“transient”)
( “transient” , Section V.A) is a fairness constraint,
our approach precisely amounts to deduce fairness constraints
from the computation of transient regions. Consequently, our
work can be regarded as an extension of an approach previously
proposed for untimed systems and as a first step in the direction
of the verification of liveness properties for general classes of
continuous or hybrid systems. We envision that the notion of
transient set can play for liveness properties a role symmetrical
to the well-established role of positive invariant sets for safety
properties.
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