
HAQAST High-Resolution Tiger Team: Imperial Valley (Investigation topics)

- 1. MAIAC AOD spatial patterns for high-wind, high PM cases (F. Freedman)
- 2. Assessing particulate sources using IVAN w dispersion models (A. Venkatram)
- 3. Contribution of IVAN monitors to Random Forest PM2.5 prediction model (Yang Liu)

Study Design

- PM2.5 fields from random forest modeling constructed w/ and w/out IVAN PM2.5 measurements as input.
- MAIAC AOD utilized as random forest input variable. Gap-filling procedure applied to ensure spatiotemporally continuous AOD inputs.
- Other independent predictors: 1) land-use variables, 2) meteorological variables, 3)
 PM2.5-ancillary variables.

Study domain

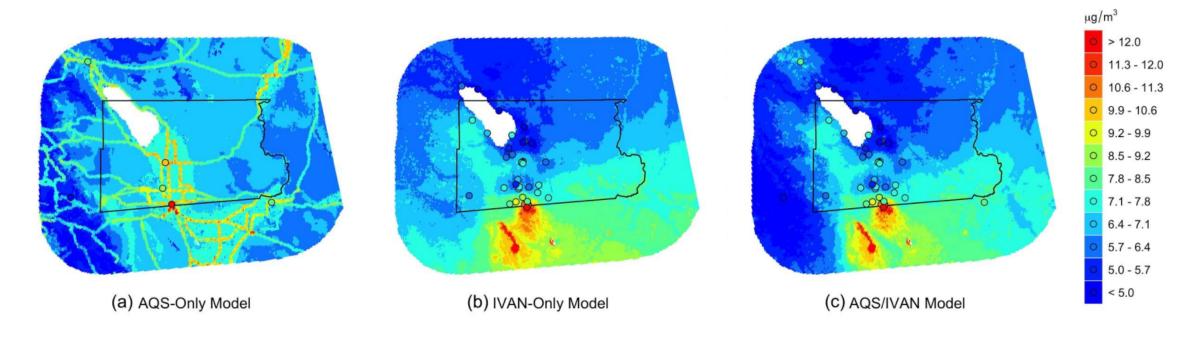
- Imperial County, CA with a 50-km buffer
- 6 EPA AQS stations
- 39 IVAN sensors

Study period

o 09/01/2016 - 11/30/2017

Random Forest PM2.5 Prediction Models

Independent variables


MAIAC AOD	Gap-filled AOD	PM2.5-ancillary variables	PM2.5 convolutional layer	
Land-use variables	DEM		PM10-PM2.5 ratio	
	Population	Meteorological variables	2-meter temperature	
	NDVI		2-meter specific humidity	
	Nearest road distance		Planetary boundary layer height	
	0 - 10 cm soil moisture		Sensible heat net flux	
	Land surface temperature		Frictional velocity	
	Percentage of grassland		10-meter wind direction	
	Percentage of water body		10-meter wind speed	

Model Performance

Model	N	Overall CV R ²	Spatial CV R ²	Temporal CV R ²	RMSE
AQS Only	1617	0.53	0.25	0.55	3.77 µg/m ³
IVAN Only	11965	0.75	0.64	0.70	3.71 µg/m ³
AQS/IVAN	12902	0.73	0.63	0.70	3.72 µg/m ³

- Limited PM2.5 measurements from AQS can't fully train our random forest model.
- IVAN had a significantly larger sample to train the machine learning model.
- The combined model prediction accuracy is reduced slightly, indicating that the uncertainties between two types of observations had a negative effect.

Contribution of IVAN Measurements

- Road networks and land-use types were significantly emphasized in AQS-only model.
- The PM2.5 distribution derived from IVAN measurements showed a more reasonable pattern.
- PM2.5 predictions from the IVAN-only and AQS/IVAN model had a similar distribution since the IVAN measurements dominated the training sample.
- Compared to IVAN-only model, the additional AQS measurements in AQS/IVAN model led to obvious changes in PM2.5 distribution.