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ABSTRACT 

 Electrophysiology has produced a wealth of information concerning characteristic 

patterns of neural activity underlying movement control in non-human primates.  Such 

patterns differentiate functional classes of neurons and illuminate neural computations 

underlying different stages of motor planning and execution.  The scarcity of high-

resolution electrophysiological recordings in humans has hindered such descriptions of 

brain activity during uniquely human acts such as speech production.   

 The goal of this dissertation was to identify and quantitatively characterize 

canonical temporal profiles of neural activity measured using surface and depth 

electrocorticography electrodes while pre-surgical epilepsy patients read aloud 

monosyllabic utterances.  An unsupervised iterative clustering procedure was combined 

with a novel Kalman filter-based trend analysis to identify characteristic activity time 

courses that occurred across multiple subjects.  A nonlinear distance measure was used to 

emphasize similarity at key portions of the activity profiles, including signal peaks.  Eight 

canonical activity patterns were identified.  These activity profiles fell broadly into two 
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classes: symmetric profiles in which activity rises and falls at approximately the same 

rate, and ramp profiles in which activity rises relatively quickly and falls off gradually.  

Distinct characteristic time courses were found during four different task stages: early 

processing of the orthographic stimulus, phonological-to-motor processing, motor 

execution, and auditory processing of self-produced speech, with activity offset ramps in 

earlier stages approximately matching activity onset rates in later stages.  The addition of 

an anatomical constraint to the distance measure to encourage clusters to form within 

local brain regions did not significantly change results.  The anatomically constrained 

results showed a further subdivision of the eight canonical activity patterns, with the 

subdivisions primarily stemming from sub-clusters that are anatomically distinct across 

different brain regions, but maintained the base activity pattern of their parent cluster 

from the analysis without the anatomically constrained distance measure.  The analysis 

tools developed herein provide a powerful means for identifying and quantitatively 

characterizing the neural computations underlying human speech production and may 

apply to other cognitive and behavioral domains. 
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CHAPTER I: INTRODUCTION 

I.1 Motivation 

 Scientific discovery has trended from a reliance on observations to data analysis 

(Hey Tansley et al., 2009).  The current rate of data discovery is modulated in a large part 

by the data available, which in turn is a function of the recording methods and the 

analysis methods, amongst many other things.  Neuroscience is no exception.  Early 

studies relied on behavioral observations.  Slowly over time the data recording methods 

have become more sophisticated, allowing for recordings down at the single electrode 

level.  The construction of new analysis methods follows the development and 

implementation of new recording methods.  Together, the back-and-forth interaction of 

gathering new types of data and the new analyses to understand the data have continued 

to shed new insights into how the brain function. 

 Electrophysiological recording methods have greatly accelerated the pace of 

discovery throughout the 20th and 21st century, with many sub-fields of neuroscience 

turning to animal models to gain insights, i.e., memory (O’Keefe and Dostrovsky, 1971) 

and vision (Hubel and Wiesel, 1959).  Complex functions that are unique to humans, i.e., 

language, have enjoyed some of this accelerated rate of discovery, but have lacked the 

gains made in other, not human specific functions.  The primary reason for this lag has 

been the limited ability to collect large quantities of different types of data from human 

subjects, and to do so in invasive ways, i.e., electrodes on the surface of the brain. 

 Electrocorticography (ECoG), or intracranial electroencephalography (iEEG), has 

begun to become a mainstay in clinical evaluation of patients undergoing surgery, 
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providing a research opportunity for high temporal resolution data to be collected from 

awake subjects performing tasks.  ECoG primarily uses electrodes placed on the surface 

of the brain, i.e. surface electrodes, but is seeing an emergence of depth electrode for 

their clinical benefits.  While the basis of ECoG recordings is not new, its clinical use, 

and use in research experiments, in awake human patients is recently becoming more 

widespread with the potential to provide new discoveries.   

 This data recording method has allowed for new datasets for language, and in 

particular speech production, to be collected.  This new type of data, in turn, is 

motivating the construction of new analysis methods.  The work of this thesis heeds this 

motivation and joins the scientific discovery cycle by developing new analysis methods 

for analyzing ECoG during a speech production task.  This helps to provide new insights 

and discoveries to a relatively new data collection method utilized in human clinical 

settings. 

 In particular, this work adds two novel forms of analysis to our investigation of 

speech as captured by ECoG.  We pose our approach as an unsupervised and data-driven 

discovery of the underlying canonical neural activity during speech production.  In doing 

so, we add to an emerging field of ECoG functional clustering analysis (i.e., Hamilton et 

al., 2018; Leonard et al., 2019).  First, we develop a novel contribution to the 

methodology for discovering canonical activity through the use clustering analysis.  In 

particular, we add a nonlinear distance measure to assess similarity between individual 

activity patterns, allowing emphasis to be put on the important parts of the activity, such 

as the peak.  Second, we develop a structured framework to quantitatively characterizing 
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the discovered activity patterns.  We do so by learning the underlying trend in the activity 

using a Kalman filter and detect when activity no longer fits the trend and there is a 

discrete change to a new trend.  The combination of these two analysis methods enables 

us to gain new insights into neural processing of speech production, and, more 

importantly, sets us down a new analysis path that allows us to ask new types of 

questions to unlock more of the secrets of how the brain processes speech.   

 A brief discussion of speech follows, along with a focused discussion of machine 

learning and some of the insights that lead to the development of our methodology.  This 

chapter then concludes with a summary of this dissertation.  

 

I.2 Speech 

 Speech, and more generally language, is one of the most complex functions that 

humans perform.  It is also one of the functions that help to set them apart from most 

other species.  Speech plays a critical role in our everyday life and has helped to build 

civilizations and social constructs that informally define how we live our lives and 

interact with others.  With such as central role in our lives, speech has the power to 

enable individuals to accomplish great things.  This can be witnessed by the progression 

of human history, which has largely been driven by society becoming more 

interconnected with language being the primary connecting factor.   

 However, speech also has the power to isolate individuals who suffer from 

aphasias, other disorders affecting language and speech, or other limiting conditions.  

Understanding how the brain processes speech has many benefits, including the potential 
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to provide these individuals who struggle with speech, or cannot speak at all, the ability 

to speak. 

 Lots of knowledge has been gained about speech through behavioral studies (from 

both normal and abnormal functioning brains), neuroimaging studies (i.e., functional 

magnetic resonance imaging, fMRI), electrical recordings (i.e., electroencephalogram, 

EEG), and, in rare cases, local field potentials (e.g., refer to (Stevens, 2000) for an 

account of how these methods contribute to our understanding of speech sounds).  These 

studies have combined to provide coherent models for how speech production is 

conducted (e.g., refer to (Guenther, 2016) for a detailed model of speech motor control), 

with additional studies attempting to tie together an overarching theory of language 

(Friederici, 2017).  This collection of methods, however, typically trade off temporal 

resolution with spatial localization.  Meta and cross-study analyses attempt to pull 

together the spatial results gained from one method with the temporal results of another, 

but results from this can only go so far and often become too smoothed, or averaged, to 

provide enough detail to fully characterize the time courses of speech. 

 Electrocorticography (ECoG), both surface and depth electrodes, provides a 

unique source for generating fine temporal resolution while still providing good spatial 

resolution (Ray et al., 2008; Miller et al., 2009).  Speech is on the order of hundreds of 

milliseconds, well within the recording resolution of ECoG.  Thus, the impact that ECoG 

can have on our ability to understand speech is immense.  Emerging research in this area 

has started to help bridge the gap between prior studies with varying degrees of temporal 
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and spatial resolution, providing more detailed temporal understandings of neural 

processing during speech production.   

 In this work we add to the emerging field of ECoG speech research.  We analyze 

ECoG data collected while subjects read aloud monosyllabic utterances.  We make 

explicit use of the unique resolution (temporal and spatial) that ECoG can capture, where 

the temporal profiles of the ECoG recordings capture underlying neural activity.  We 

discover from these recordings a distinct set of canonical activity patterns that are a 

characteristic set for speech production, broken across four processing stages: early 

processing of the orthographic stimulus, phonological-to-motor processing, motor 

execution, and auditory processing of self-produced speech.  

 

I.3 Machine Learning 

 The rate of discovery is accelerating across many fields because of the shift away 

from observations to the analysis of data.  Further, many of these studies are shifting 

away from theory and explicit modeling towards data driven methods.  Many of these 

data driven methods are based on machine learning, where algorithms are constructed to 

process the data and learn the underlying trends and representations that are naturally 

present in the data.  This contrasts with theory or model-based approaches where the 

trends or representations are described by an expert in the field and explicitly built into 

the algorithm and data is typically only used to fit parameters of those models.  We make 

use of this data driven approach in this dissertation. 
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 Unsupervised machine learning is a particular data driven approach where the 

data is unlabeled and the algorithm(s) find structure that exist within the data in the 

absence of any additional details about the data.  This is opposed to supervised machine 

learning, where labels are provided with the data and are used in the training process to 

provide guidance, or supervision, for the data structure that the algorithm finds.  For 

example, natural language processing is a supervised learning task where labels, in the 

form of words, would be provided during training to annotate an acoustic signal (Jurafsky 

and Martin, 2009).  The algorithm would use this to learn the structure within the 

acoustic signal that can classify words, text, from an acoustic signal.  Then during testing 

the algorithm would predict what words are present in an unlabeled acoustic signal.  

Unsupervised methods would not have the labels present, so would not necessarily break 

up the acoustic signal by word segmentations.  Instead the acoustic signal would be 

broken up by some other measure, typically the degree of similarity that exists between 

different parts of the acoustic signal, resulting in a segmentation by naturally occurring 

patterns within the acoustic signal, which may or may not be grounded in words.   

 In this work, we will take an unsupervised learning approach that discovers 

structure that is naturally present in the ECoG data, as a surrogate for neural processing.  

In doing so, we are not trying to guide the representation in the form of labels, but by 

allowing it to group the ECoG signals based on their degree of similarity through 

clustering analysis.  We preprocess the data to time segments of speech production for 

each electrode and then let the unsupervised learning determine how to group, or cluster, 

the individual segments together.  This results in characteristic time courses, or activity 
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patterns, that are present during speech production.  This approach does not place 

requirements on how the grouping is conducted in any way.  Thus, the results are not 

guided to be broken up anatomically, functionally, or in any other way unless the 

underlying data has those break-downs naturally existing within it. 

 Data driven methods have also become more common in their use for describing 

results.  Model-based methods fit parameters of a model with the collected data and thus 

have an explicit framework in which to describe the outcome, with the parameters that 

are fit typically capable of describing important details of the model or theory.  Having an 

explicit model form allows for the model to be constructed to describe specific parts of 

the underlying data, but does not provide the flexibility to extract from the data what 

should be described.  Using a model-free approach, on the other hand, allows for the 

underlying nature of the data to dictate what should be described, but often suffers from 

interpretability (Lipton, 2016; Turner, 2016; Geffner, 2018).  

 In this work, we will use something in-between these two data driven approaches.  

We functionally construct a model class, a linear Kalman filter, to describe the trends 

present in the activity patterns.  To enable the underlying nature of the data to dictate 

where the trends change and how they should be represented, we add in an adaptive 

learning rate and change point detection that allows for the current trend models to be 

stopped and new models to be fit if the naturally present trend in the data changes such 

that the current model no longer represents the data.  The outcome of this approach is a 

data driven way of getting quantitative measures to describe the activity patterns, where a 
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model-based framework is used to guide the quantitative measures to be descriptive for 

the activity trends, overcoming challenges in interpretability.  

 Additional constraints and considerations, such as anatomical similarity, are also 

used in various parts of this work, but not discussed here.  These additions will be 

covered in detail in their respective locations, or relegated to an appendix.  The 

unsupervised clustering approach and the Kalman filter-based change point detection are 

the two novel parts of our methodology that enable the findings that will be presented in 

this work and provide a new data driven analysis approach to understanding speech 

production from ECoG. 

 

I.4 Summary of Dissertation 

 The goal of this research was to identify the characteristic time courses of neural 

processing during speech production.  Electrocorticographic recordings were used to 

measure neural activity within and on the surface of the brain.  We use these recordings 

to discover the set of characteristic time courses that are naturally present during speech 

production and use novel methods to quantitatively describe the characterizations.  First, 

in CHAPTER II, we review the prior art and background in this area of research and 

situate the work of this dissertation amongst this body of work.  Next, in CHAPTER III 

we lay out the methods that we use for our analysis, including a set of novel additions to 

the analysis of speech from ECoG.  CHAPTER III also presents the results of these 

methods and discusses the findings.  The bulk of the work of this dissertation is contained 

within CHAPTER III.  CHAPTER IV builds on CHAPTER III, relooking at what 
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happens to the findings if anatomical constraints are placed on the analysis to encourage 

resulting groupings to be locally clustered within the brain.  Finally, CHAPTER V lays 

out future directions of this line of research.  A set of appendices are included to provide 

additional details, motivation, and alternatives for the methods and results that are not 

covered in detail within the chapters.   

 Taken together, this collection of work lays out a new way to analyze speech 

production from ECoG, which itself is an emerging method, and a framework for 

quantitatively characterizing activity patterns that are found within the ECoG signals.  

The rest of this section provides a brief summary of each chapter. 

I.4.i Chapter II: Background 

 CHAPTER II provides a survey of the background for this research area.  It is laid 

out to provide a loose pedigree of the line of research that the current work builds on, 

provides results from similar studies, motivates the need for this work, and situates this 

work amongst the prior art.   

 The chapter starts off with a discussion on speech, quickly covering the early 

work in the field, such as the discovery of Broca’s and Wernicke’s area (Broca, 1861; 

Wernicke, 1874), and building to current models of speech, such as those laid out in 

(Guenther, 2016).  Much of the prior work covered here is from behavioral and 

neuroimaging studies, both of which added significant understanding to the field.  

However, these types of studies are limited in their temporal resolution, and are not able 

to accurately capture neural processing at the same rate of speech, which is on the order 

of a hundred milliseconds.  
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 Electrocorticography (ECoG) is then covered next.  ECoG is the recording 

method used for this dissertation and supplements other recording methods by providing 

high temporal resolution for a sampling rate that can accurately capture speech (Ojemann 

et al., 2013).  This section of the chapter walks through the early work on ECoG, laying 

out the properties of the recordings that will be used in the later chapters, such as the 

important finding that ECoG high gamma power captures a similar effect as local field 

potentials (Ray et al., 2008).  Additional details on some of the early findings and 

properties of ECoG analysis are discussed.  This is followed by a discussion on a group 

of studies we refer to as first order analyses.  These studies begin to explore questions of 

neural processing of speech by asking if activity changes during a speech task, but do not 

explore how activity might be changing.  In particular, many of these studies look at if 

there is a statistically significant change in high gamma ECoG power during speech 

production, such as the organization of speech articulators and phonetic features within 

the sensorimotor cortex (Chang et al., 2010; Bouchard et al., 2013).  Next, a set of second 

order analysis studies are reviewed.  This set of research differs from first order analyses 

in that the questions start to look at how activity is being modulated during a task.  The 

methods used here heavily rely on prior knowledge and theory to set the approach, often 

resorting to model-based approaches that capture the temporal nature of the signal, but 

are still limited by the priors that are built into the system, such as (Ozker et al., 2017) 

who looked at the differences in the posterior superior temporal gyrus to speech and non-

speech sounds using linear mixed effects models.  Some work here has started to turn to 

machine learning, such as (Lotte et al., 2015) who used machine learning to derive the 
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features to feed into their model, but the methods within this grouping of studies still 

relies heavily on prior knowledge built-in to multiple parts of the methodology.  

 This led to an emerging area of research that relies on a class of unsupervised 

machine learning methods: clustering.  Cluster analysis finds groupings in data given 

some measure of similarity.  Few studies have ventured into this method for ECoG 

analysis, with the primary group looking at this line of research being the Edward Chang 

lab at the University of California San Francisco.  Several studies utilize clustering, but 

do not delve into the exploration of the characteristic activity patterns.  One study from 

the Chang lab, (Leonard et al., 2019), is the closest to the work of this dissertation and 

begins to look at characteristic activity patterns without a quantitative description.  In 

Leonard et al., a soft clustering approach – convex non-negative matrix factorization 

(cNMF) – is used to find groups that break up the spatiotemporal dynamics of speech 

during a word repetition task.  This approach has several limitations that the current work 

looks to overcome. 

 Next, we return to speech, briefly bringing everything full circle with a more 

general discussion of speech.  We use this section to help motivate the continued use of 

ECoG for studying speech and adding to our current theories and models.  We discuss the 

need for the new analysis methods, such as those that are developed in this work, to 

provide additional insights.  In particular, we aim to motivate the need in providing a 

more detailed account of the temporal nature of neural processing during speech.  We 

prompt this by looking at the gains that have been made recently with brain-computer 
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interfaces (Guenther et al., 2009; Brumberg et al., 2010), but note that the performance is 

still not yet at a level to make it useable. 

 Finally, we wrap up the chapter with a discussion where we situate the work of 

this dissertation amongst the prior art.  We summarize the motivation for the use of 

electrocorticography to record data at a sampling rate that captures the temporal 

dynamics of speech.  We also lay out the need for a data-driven methodology to discover 

the characteristic time courses without enforcing prior assumptions or knowledge.  The 

use of clustering as a source of data-driven discovery is discussed, highlighting its ability 

to find characteristic activity patterns.  Lastly, we highlight our novel additional 

contribution of a framework to quantitatively describe and compare the resulting 

characteristic activity patterns. 

I.4.ii Chapter III: Canonical Speech Clusters 

 CHAPTER III contains the bulk of the work of this dissertation and is setup to be 

a standalone section that can be read and understood on its own.  This chapter begins 

with a significance statement for the research contained within.  This is followed by an 

introduction, which is a more focused and concise version of CHAPTER II.  The methods 

are laid out next, followed by the results and discussion.  A supplementary section is also 

provided that gives some additional results supporting claims made earlier in this chapter.  

We now summarize the chapter. 

 Surface and depth electrocorticography (ECoG) electrodes collected data from 

five subjects who read aloud monosyllabic words.  The high gamma (70 – 150 Hz) power 

temporal profile was taken for each electrode.  Speech trails were then extracted from the 
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high gamma activity for each electrode and averaged across trials under two alignment 

conditions: aligned by the presentation of the orthographic stimulus and by the onset of 

voicing.  Data was then corrected by a baseline, non-speech period, i.e., data was z-

scored based on the non-speech period existing one second to half a second prior to the 

stimulus presentation.  Only electrodes showing significant deviation from the baseline 

activity levels during the trial were used for further analysis. 

 This data is passed through a hybrid clustering algorithm, which uses a data 

driven approach to group electrodes together based on the similarity in their high gamma 

power activity patterns.  To enforce similarity during important parts of the activity, i.e., 

activity peaks, a nonlinear distance measure is used.  This is different than prior studies, 

which use linear measures and therefore put equal weight in slight deviations from 

baseline activity and deviations in peak activity.   

 Eight clusters were found from this method.  These clusters make up a set of 

canonical activity patterns for speech production.  Even though the clustering method is 

unsupervised and does not incorporate priors on the speech network, the results are 

broken up by the stages of speech production: early response to the orthographic 

stimulus, motor planning, motor execution, and the auditory feedback to self-generated 

speech.  Each processing step is made up of two clusters.  

 To characterize the clusters, a new method was developed.  Characterizing the 

clusters consists of quantitatively describing the activity pattern, both in terms of activity 

activation and decay rates, as well as determining when activity trends change.  A 

Kalman filter is used to determine the trends present within the activity patterns.  Kalman 
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filters have been used extensively to track and predict time series data and provide an 

attractive framework for discovering data trends.  To enable the detection of points of 

discrete changes in the trends, we modify the Kalman filter to perform change detection.  

We do so by adding in an adaptive learning rate to the Kalman filter gain term, which 

functions to bias the Kalman filter towards its prediction step and away from its update 

step as time progresses.  This has the effect of allowing the data to determine the 

parameterization of the filter as it is being initialized, i.e., learning the naturally present 

trend, but over time relying on the filter prediction and less on the observed data, i.e., a 

shift to a more model-based representation of the current trend.  A change is declared 

when the observed data statistically deviates too much from the learned model prediction.  

This provides a means to discretely segment an activity pattern and quantitatively 

determine the trends present. 

 The resulting clusters show activity patterns that are described as symmetric, 

where activity increase and decrease rates (trends) are approximately equal, or as ramp, 

where the increase rate (trend) of activity has a larger magnitude than the decrease.  All 

processing steps exhibited both activity patterns, expect for motor execution which only 

showed symmetric activity.  The symmetric activity within the motor execution group 

was subdivided into a broad and narrow activity pattern, based on the overall duration of 

the activity, as well as the extent of the activity plateau.  The decrease in activity in one 

processing step roughly mirrors the increase in activity in the next processing step, 

hinting at a potential gradual handoff of neural processing between brain regions. 
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 Electrodes responding to the stimulus presentation are found bilaterally in 

posterior and ventral temporal regions with some frontal lobe activity, largely following 

previous work that found these regions active during object identification (Chaumon et 

al., 2014), saccadic eye movements (Zhou and Shu, 2017), and reading of non-word 

orthographic stimuli (Vigneau et al., 2005).  In the motor planning group, which we term 

phonological-to-motor processing, activity is largely limited to the left hemisphere, 

supporting prior findings of a left lateral bias to speech motor planning (Guenther et al., 

2006; Guenther, 2016).  Motor execution is found bilaterally with widespread activity.  A 

substantial percentage of motor execution electrodes are found surrounding the central 

sulcus in the ventral sensorimotor cortex, where motor and somatosensory 

representations of speech articulators are found (Penfield and Roberts, 1959; Takai et al., 

2010; Bouchard et al., 2013; Guenther, 2016).  Finally, auditory processing electrodes are 

found primarily within the auditory cortex. 

I.4.iii Chapter IV: Anatomically Constrained Clusters 

 CHAPTER IV builds on CHAPTER III, utilizing the same methodology with one 

change.  The focus of this chapter is to see what happens when anatomical constraints are 

placed on the clusters that the electrodes can form.  Many prior studies localize specific 

functions to distinct regions of the brain, and speech is no different (i.e., Broca et al., 

1861; Broca, 1865; Wernicke, 1874).  Therefore, this study looks to see if characteristic 

time courses exist within local areas of the brain and, if so, how they compare to the 

results found without the constraint added in, as covered in CHAPTER III. 



 

 

16 

 The anatomical constraint is added as a modification of to the distance measure 

used for clustering.  The distance measure in CHAPTER III is a nonlinear measure of the 

similarity in the time courses of different electrodes’ activity patterns, which we refer to 

as the temporal difference.  The anatomical constraint is added as a weighted mixing term 

to this temporal distance measure, adding an anatomical similarity component to the 

distance measure.  To assess anatomical similarity, a radial basis function, similar to the 

Gaussian kernel in (Kubanek and Schalk, 2015), is used on the Montreal neurological 

institute (MNI) coordinates of the electrodes.  This places more weight on nearby 

electrodes and less on far away electrodes.  To allow for bilateral clusters, the absolute 

value of the lateral MNI component is taken.  

 A larger set of resulting clusters stem from this, as compared to CHAPTER III.  

The resulting characteristic time courses (clusters) generally subdivide into the eight 

canonical time courses found in CHAPTER III.  The resulting clusters of this analysis are 

also separated by the same four processing stages and two activity shapes, symmetric and 

ramp.  The characteristic time courses here, however, show further subdivisions, breaking 

up individual time courses from CHAPTER III into multiple clusters that are divisible 

primarily by the brain region that they cover.  For example, the phonological-to-motor 

ramp temporal profile is separated into four clusters in this analysis: one in ventral 

temporal and occipital regions, one localized to the frontal lobe, one surrounding the 

ventral portion of the central sulcus, and the final one more diffuse, covering 

sensorimotor, somatosensory, and auditory areas.  
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 Some minor differences in activity patterns did emerge.  For example, in the 

phonological-to-motor ramp group just described, one of the clusters shows a symmetric 

shape for most of its activity pattern, but during its decay it transitions into a long slow 

decay pattern, more representative of the ramp pattern.  In the motor execution group, 

two new activity patterns are seen.  One pattern is an inverse ramp, showing a slow rise 

in activity levels and then a quick decay.  This is the inverse of the ramp shapes that we 

have seen previously, but aligns with nonhuman single unit motor cortex recordings 

(Cheney and Fetz, 1980).  We refer to the other new activity pattern as the suppressed 

narrow symmetric activity pattern.  This cluster shows the activity of the motor execution 

symmetric narrow group, but has a brief period before activity onset where high gamma 

power is suppressed below baseline activity levels occurring just after stimulus 

presentation, hence the inclusion of suppression in its naming.   

 In conclusion, some differences do exist between the anatomically constrained 

(CHAPTER IV) and non-constrained (CHAPTER III) analyses.  However, where there 

are differences, the supporting number of electrodes in the clusters of the constrained 

analyses is less than the number of electrodes in other clusters, putting less confidence in 

the results from these clusters.  For example, one of the new activity shapes just 

described only has two electrodes in its cluster.  There is a large overlap in the findings 

across the two analyses between clusters that have more electrodes, with the only 

differences being a subdivision of clusters in the analysis of this chapter by anatomical 

boundaries.  Therefore, the findings of this chapter are found to be largely in support of 

the findings of CHAPTER III.  
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I.4.iv Chapter V: Future Directions 

 Finally, CHAPTER V provides concluding thoughts in the form of a future 

roadmap.  It is our hope that others will continue with this line of research.  In this 

chapter we lay out the directions that we believe could be taken, both in the near term and 

further down the road.  In doing so, we take a narrow view on the next research steps that 

naturally follows our work presented herein and also provide implications for broader 

impacts outside the specific focus of this work.  

I.4.v Appendices 

 Additionally, we provide a set of appendices that provide more details on the 

methods, motivations, and results.  The majority of these appendices are in support of the 

work done in CHAPTER III.  We provide a brief summary of each appendix.  

 APPENDIX A provides more details on the Kalman filter-based change point 

detection method used for the quantitative characterization of the canonical activity 

patterns.  It provides motivation for the design choices and discusses the alternatives that 

were considered.   

 APPENDIX B provides more details on clustering, which played a central role in 

the work of this dissertation.  It loosely follows a similar structure as APPENDIX A, 

providing more detail on the method, motivation for the design choices, and discussion 

on alternatives.  Many options exist for clustering.  This appendix helps navigate these 

choices and also put the current work in the context of what others have done.  Several 

key areas discussed are the choice of a distance measure, the type of preprocessing 

conducted prior to clustering, determining how many clusters should be used, and how 
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electrodes are assigned to clusters, i.e., hard versus soft clustering.  This section provides 

many additional details that will help navigate prior research and better understand the 

contributions of this work amongst them. 

 APPENDIX C provides more general details about the methods used, covering all 

aspects of the methods more broadly than the narrow focus of APPENDIX A and 

APPENDIX B or concise descriptions in CHAPTER III.  The focus, again, is on 

providing additional details, motivation, and a discussion of alternatives.  Particular focus 

is devoted to the choice of filtering. 

 Lastly, APPENDIX D provides some additional results that are not covered in 

detail elsewhere.  CHAPTER III presents cluster results that exist across multiple 

subjects.  In this appendix, we present the clusters that are left out of CHAPTER III since 

they only exist within a single subject.  This set of clusters that each only come from one 

subject is mostly limited to one or a few electrodes.  One cluster, however, has over 25 

electrodes in it, coming from one subject and showing high gamma power suppression 

during the speech production task.  Additionally, this appendix presents results when the 

analysis of CHAPTER III is rerun with only the surface electrodes, i.e., the depth 

electrodes are dropped.  The results of this analysis have a very high overlap with the 

analysis that uses all of the electrodes (CHAPTER III), further supporting the claim that 

canonical activity patterns are found.  The focus of CHAPTER III and CHAPTER IV is 

on high gamma power, but it is noted in CHAPTER II that other frequency bands have 

been found to also play a role in the neural processing of a task.  The last part of this 

appendix presents results for one of these other frequency bands, beta (15 – 30 Hz), 
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which has been found to show a suppression in local activity during a task (Pfurtscheller 

and Lopes da Silva, 1999), amongst other things.  
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CHAPTER II: Background 

II.1 Speech 

 Our understanding of speech has evolved as we have invented and utilized new 

methods for recording and analyzing brain activity during speech production and 

perception.  Initial high level understanding was gained through behavioral, lesion, and 

aphasia studies, i.e., (Broca, 1861; Wernicke, 1874).  A more detailed understanding of 

speech followed with the advent of neuroimaging and electrophysiology recording 

methods, such as functional magnetic resonance imaging (fMRI).  Findings from these 

methods have led to current knowledge of the human language cortex widely distributed 

over large-scale networks in the temporal, parietal, and frontal lobes (Ojemann et al., 

1989; Indefrey and Levelt, 2000, 2004; Hickok and Poeppel, 2004).  This has brought 

about language theory postulating that neural responses to speech exist throughout the 

brain, tying together low-level auditory and motor processing with higher-level language 

features from phonemes to phrases (Giraud and Poeppel, 2012; Hagoort and Indefrey, 

2014; Ding et al., 2016).   

 The combined use of functional imaging, electrophysiological recording, and 

detailed behavioral, lesion, and aphasia studies has allowed for the study of various 

components of speech, providing detail about both individual brain regions and 

functional connectivity.  A network of key language processing regions has been found.  

This network is widespread involving the temporal, parietal, and frontal lobes, including 

posterior auditory cortex (pAC), ventral premotor cortex (vPMC), ventral motor cortex 

(vMC), ventral somatosensory cortex (vSC), and supplementary motor area (SMA), to 
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name a few (Turkeltaub et al., 2002; Guenther et al., 2006; Hickok and Poeppel, 2007; 

Ghosh et al., 2008; Friederici, 2012; Hagoort, 2013).  This network has been analyzed 

and teased apart through many studies involving subjects verbally responding to acoustic 

or visual stimuli, confirming and providing updates to aspects of the speech network with 

much of the work focused on perisylvian regions (Price et al., 1996; Warburton et al., 

1996; Vallar et al., 1997; Anderson et al., 1999; Baldo et al., 2008; Pei et al., 2011b; 

Herman et al., 2013; Majerus, 2013; Moritz-Gasser and Duffau, 2013; Hope et al., 2014; 

Parker Jones et al., 2014).  Additional work has extended out to include multisensory 

speech perception (Magnotti and Beauchamp, 2017), but is beyond the scope of this 

dissertation. 

 We use an example of a speech task to illustrate how individual studies and 

different methods contribute to our collective knowledge about the speech network.  

What follows is a brief walkthrough of the speech production processing steps from 

results in a set of studies where a subject repeats acoustic word stimuli.  First, auditory 

processing of the stimulus is conducted within the superior temporal gyrus (STG) as 

frequency and temporal features of the acoustic stimulus are processed (Mesgarani et al., 

2014), with distinct regions showing differential preference for low-level acoustic 

features and higher order phonetic features (Chang et al., 2010).  Working memory is 

then invoked to maintaining the phonological sequences, involving inferior frontal and 

posterior regions spanning temporal and parietal cortices (Paulesu et al., 1993; 

Buchsbaum et al., 2005).  Next, motor planning and articulation of the stimulus is 

performed in the prefrontal and ventral sensorimotor cortices (Bouchard et al., 2013).  
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Lastly, auditory feedback is processed to modulate articulation (Houde and Jordan, 1998; 

Hickok et al., 2011; Chang et al., 2013).  Refer to (Guenther et al., 2006) for a full 

account of pulling this all together. 

 Modern methods and studies, like those laid out in the preceding paragraph, have 

confirmed, added to, or modified theories on how the brain processes speech.  Current 

theories have used these findings from more recent techniques to build upon and replace 

earlier theories based on understanding gained from more limited methods and analyses 

(Lichtheim, 1885; Geschwind, 1979).  Recent studies support leading theories of speech 

processing, both perception and production, having a dispersed functional flow across 

multiple brain areas, e.g., (Guenther, 2006).  They also help to support higher level 

language models, e.g., a dual stream theory of language processing (Rauschecker, 1998; 

Hickok and Poeppel, 2004), where there is still many unanswered questions and unknown 

aspects and are out of the scope of this dissertation.     

 These theories have led to speech models.  Current speech models have built on 

older theories and models, collecting, aggregating, and fusing research from a large 

number of studies utilizing diverse techniques, tasks, and analyses.  In this work, we will 

utilize the speech network described in the Directions Into Velocities of Articulators 

(DIVA) model (see (Guenther et al., 2006; Guenther, 2016) for a review) to position our 

findings within the speech network.  The DIVA model has been extensively analyzed 

against the findings of prior studies, including a large body of fMRI analyses (e.g., refer 

to (Bohland and Guenther, 2006; Guenther et al., 2006)).  This extensive validation has 

led to the model containing some of the leading theories of the speech network 
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(Guenther, 2016), including speech production (Guenther et al., 2015), which is the focus 

of this work. 

 

II.2 Electrocorticography 

 Electrocorticography (ECoG) is a relative newcomer to the analysis of speech 

processing, but it possesses particular benefits compared to some other methods – 

primarily its good spatial resolution and excellent temporal resolution (Ojemann et al., 

2013).  This excellent temporal resolution has allowed for new questions to be asked and 

has led to learning new things about how the brain processes speech in the various 

processing stages.  ECoG activity have been connected directly to local field potentials, 

with ECoG high-gamma frequency (60 – 200 Hz) oscillations showing similar effects as 

local field potentials (Ray et al., 2008).  ECoG has also been shown to closely correlated 

with fMRI blood-oxygenation-level-dependent (BOLD) responses (Lachaux et al., 2007; 

Hermes et al., 2012).  These are powerful findings, allowing ECoG analyses to correlate 

with other neurophysiological recordings that have been more established in the field.   

 ECoG has shown the potential for both clinical and research applications.  

Clinically, ECoG has shown the capability to replace methods of mapping speech regions 

(Arya et al., 2015).  From a research perspective, ECoG has shown the potential to 

provide detailed spatiotemporal relationships, such as early work showing the primary 

auditory cortex and STG are organized tonotopically (Wessinger et al., 1997; Bilecen et 

al., 1998; Formisano et al., 2003) and modulated by various spectral and temporal 

properties of sound (Giraud et al., 2000; Joris et al., 2004; Altmann et al., 2010; Leaver 
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and Rauschecker, 2010).  Cortical evoked responses to spoken sentences have been 

demonstrated to be robust and selective to phonetic features over time periods extending 

out to 18 months (Rao et al., 2017).  These findings showing ECoG signals maintaining 

stability over long periods of time contribute to validate that ECoG signals are capturing 

general aspects of speech and not just specific conditions during an experiment session.  

This helps build the case for ECoG’s use in studying and understanding the human 

speech network.  Thus, ECoG is a powerful tool to add to our research repertoire to aid in 

our on-going determination to unlock the secrets of neural processing of speech. 

II.2.i Early Electrocorticography 

 The properties of ECoG drove early research towards developing a more refined 

spatiotemporal understandings of speech neural processing.  ECoG research initially 

focused on summary, high-level spatiotemporal ECoG analyses to map speech regions of 

the brain for clinical applications, such as for surgery (Crone et al., 2001b, 2001a, 2006; 

Towle et al., 2008).  Research then shifted to understanding speech with improving 

methods, including a focus on spatiotemporal representations, to enable better use of the 

spatiotemporal resolution that ECoG provides (Chang et al., 2010; Edwards et al., 2010; 

Pei et al., 2011b).   

 Findings from early work with ECoG set the ground work for the development of 

new methods, including the following important findings.  ECoG signals were found to 

follow a power law scaling with broadband amplitude changes directly indicating neural 

activity (Miller et al., 2009) and broadband power in the motor cortex predictive of task 

performance (Miller et al., 2012).  An important ECoG frequency band, high gamma, was 
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shown to have power level phase-locked to theta oscillations (Canolty et al., 2006), track 

the speech acoustic envelops in auditory cortex (Kubanek et al., 2013), and exhibit 

suppression in auditory cortex during self-generated speech (Flinker et al., 2010). 

 These early findings set the foundations for later studies.  The findings of band 

specific responses correlating with different types of neural activity has turned out to be a 

key early finding.  In particular, high gamma frequency band correlating with local neural 

activity (e.g. (Miller et al., 2009)) has been the core preprocessing step of many following 

studies, including this one, as it has provided a way to discuss results in terms of neural 

activity levels within local brain regions.  Neural properties of ECoG recordings are still 

being discovered as research progresses.  For example, a recent study found that larger 

high gamma frequency activity is observed for higher cognitive demands when 

performing tasks with a higher speech working memory load (Kambara et al., 2017).  

This highlights that we still have more method development to do to extract properties 

present within the data of this recording technique. 

II.2.ii First Order Analyses 

 Several general classes of studies followed the discovery of key ECoG properties.  

We break them up into what we term first and second order analyses, with this 

subsection covering first order analyses and §II.2.iii covering second order analyses.  We 

distinguish first and second order analyses by the level of information that is used from 

ECoG.  First order analyses use high level, or summary information, from the data.  

Second order analyses aim to utilize more information about the underlying structure of 

the neural activity in the data.  In this way, first order analyses are largely centered 
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around methods utilizing statistical significance tests to determine if there was a change 

in neural activity, while second order analyses utilize more complex methods to 

determine how there was a change in neural activity.  The research conducted under this 

study focuses on second order analyses, but first we visit pertinent findings from first 

order analyses. 

 As mentioned, first order analyses are primarily concerned with using statistical 

significance tests to compare ECoG signals from stimuli or task periods to a baseline 

period to answer important questions about speech processing (e.g., see (Leuthardt et al., 

2012; Brumberg et al., 2016)).  Some questions explored and insights gained under this 

form of testing includes feedback control of vocal pitch (Chang et al., 2013), the 

organization of speech articulator and phonetic features within sensorimotor cortex 

(Chang et al., 2010; Bouchard et al., 2013), and differences from speaking versus 

listening (Cheung et al., 2016).  Review (Martin et al., 2019) for a more complete review. 

 These comparative analyses are either between a baseline, typically non-speech 

period, and a task specific period or between different task specific states and are 

normally constrained to the power within a specific frequency band, such high gamma.  

The comparisons take the form of finding times of statistically significance difference 

between the comparison.  These lower order analyses typically focus on some discrete 

aspect of speech that is already considered a feature of speech, including understanding 

the difference between vowels and consonants (Pei et al., 2011a), phonemes (Brumberg 

et al., 2011; Mugler et al., 2014), syllables (Blakely et al., 2008; Steinschneider et al., 

2011), words (Kellis et al., 2010), and sentences (Zhang et al., 2012).   
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 Studies on dynamics and functional networks followed suit, adding to our 

understanding of the interdependencies of the human speech network (Stephen et al., 

2014; Stephen, 2015).  Findings from these types of studies start to give insight into 

speech dynamics, getting closer to a better temporal accounting of neural activity.  For 

example, high gamma task-evoked responses in Broca’s area are constrained to the pre-

articulation period (Flinker et al., 2015). Other studies have explored how context plays a 

role in speech, such as gestures (Mugler et al., 2018) and neighboring phonemes 

(Bouchard and Chang, 2014; Mugler et al., 2014), and how higher level goals, such as 

semantics and tasks, affect how information is processed specifically for speech 

(Mesgarani et al., 2014; Nourski et al., 2017).   

 This prior work has helped build a more detailed temporal understanding of 

speech, but has relied heavily on first order characterizations of ECoG activity, namely 

changes in average power levels, and has yet to uncover some of the higher order 

elements that may provide additional insight into human speech.  Thus, they come up 

short in providing a detailed temporal profile of neural processing, which is one of the 

promises that ECoG enables.  This body of work defines a spatiotemporal understanding 

of if cortical activity is present during a specific task, but it has not provided enough 

insight to begin to ask how activity is modulated during the task. 

II.2.iii Second Order Analyses 

 Task related changing dynamics have been found in the ECoG signals, such as 

reduced variability during stimulus onset (Dichter et al., 2016) and increased variance 

with increasing activity amplitudes (Tolhurst et al., 1983; Ma et al., 2006).  These 
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changing dynamics hint at higher order aspects existing in ECoG signals, motivating the 

need for non-static analysis methods and second order analyses to understand how these 

dynamics manifest.  Outside of speech, research in different brain regions and functions 

have shown the benefit of higher order analysis on characterizing neural activity, often 

turning to machine learning.  For example, there is a structural hierarchical ordering of 

neurons in macaque inferior temporal cortex when presented visual object (refer to 

(Haxby et al., 2014) for further review on this example and others). 

 Machine learning has been one of the driving factors in moving from first order to 

second order analyses.  The move has allowed methods to relax many of the assumptions 

and priors previously built into the models, enabling the ability to model dynamics and 

structure of ECoG signals that were not previously possible.  Some limited focal areas 

within speech have started to use machine learning.  For example, in (Lotte et al., 2015), 

machine learning was used to derive speech features, as opposed to being pre-specified 

during the model design process.  Another area of focus has been to decode continuous 

speech directly from ECoG, borrowing techniques from similar fields, such as automatic 

speech recognition (Herff et al., 2015) or by using non-linear transforms (Pasley et al., 

2012), with a recent influx of deep learning (Angrick et al., 2019; Anumanchipalli et al., 

2019).  While machine learning is just getting its foothold in speech, it has been used 

more widely in other neuroscience fields (see (Varoquaux and Thirion, 2014) for a 

neuroimaging review).  This early work applying machine learning to speech has helped 

to confirm or add extra knowledge to our understanding of speech, but unfortunately still 

loses a lot of the important temporal information in the way they transform the ECoG 
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signals or suffers from interpretability.  However, it should be noted that there is a 

growing trend in moving towards leveraging nonlinear functions.  This trend is 

something that we will leverage in our methods. 

 Some work has been done to maintain the temporal nature of the signals.  

Maintaining the temporal characteristics of ECoG while still allowing for higher order 

structure has helped to confirm STG anatomically break-up of acoustic signal processing, 

with anterior STG showing greater neural activity to clear speech and posterior STG 

showing similar or greater activity when the input is replaced with speech-like noise 

(Ozker et al., 2017).  This study used linear mixed effects and Bayesian models to 

understand the spatial and temporal dynamics of the ECoG signals as a function of the 

type of input signal.  A different study looked at auditory phoneme blockage by adding 

noise to block a phoneme in the acoustic signal stimuli (Leonard et al., 2016).  Auditory 

phoneme restoration was observed in the ECoG signals, with left frontal cortex seeing an 

increase in activity prior to auditory cortex restoration.  This study used principal 

component analysis (PCA) and support vector machines (SVM) to model the ECoG 

signal in a representation that could maintain both the spatial and temporal dynamics 

while providing classification. 

 

II.3 Clustering 

 The spatiotemporal aspects of ECoG has enabled a more detailed dynamical 

model of neural activity in different brain regions, how it is modulated during speech, and 

how the different regions interact with one another.  An emerging analysis method to 
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exploit the spatiotemporal aspects is clustering analysis.  This unsupervised method is 

data-driven, and hence, has allowed for analysis with a larger set of parameters and less 

assumptions.  This has further pushed us away from simple questions of if significant 

changes are observed and closer to gaining additional insight into how.   

 Similar to the research trend presented in §II.2, the focus within ECoG clustering 

studies involving speech have focused on the high gamma frequency band.  In what 

follows, we will dive deeper into the studies that are most closely related to our work.  

We will begin by looking at studies that generally fall within this methodology and then 

will dive into two types of studies that are the closest related to our work, namely those 

involving spectrotemporal clustering and those that utilize convex non-negative matrix 

factorizations (cNMF). 

II.3.i Speech Clustering Studies 

 This first subsection dives into two speech clustering studies that more heavily 

utilizes priors and assumptions in their models.  These priors and assumptions put the 

studies a little closer to what we called first order analyses, i.e., §II.2.ii, as their 

preprocessing removes some of the key temporal structure of the signals.  They utilize a 

data-driven clustering approach, however, which aids in showing the promise in the 

potential of this method, while still capable of producing some key insights and findings.  

 First we will look at the work of (Berezutskaya et al., 2017).  This work extends 

prior research that showed propagation of low-level acoustic features of speech from 

posterior STG to anterior STG by exploring what happens to neural activity next, past the 

STG, and how higher-level language processing areas, such as inferior frontal gyrus 
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(IFG), get involved.  Their key finding was a propagation of temporal features of speech 

sounds (getting increasing coarse) along the ventral pathway of language processing.   

 Movie stimuli were encoded into a pre-defined 4D feature set consisting of 

spectral modulations, temporal modulations, frequency bins, and time points.  Kernel 

ridge regression was used to model how these features estimate ECoG high gamma 

signals across 15 subjects.  This model provided more accurate predictions in posterior 

STG for low-level speech encodings, with a gradient of prediction accuracy moving 

toward IFG, confirming earlier works, such as that by (Chang et al., 2010; Bouchard et 

al., 2013) as discussed in §II.2.ii.  The regression coefficients found for each electrode 

were then fed into affinity propagation clustering (Frey and Dueck, 2007) to group the 

electrodes based on the similarity in regression coefficients.  A Euclidean distance 

measure, i.e., linear, was used to measure similarity.  Resulting clusters had the most 

variance along the temporal dimension, with clusters primarily separated by their activity 

time to the stimulus.  Three clusters were located primarily within posterior STG, while 

the other three clusters primarily comprised of electrodes in IFG and anterior STG.  This 

was compared to clusters constructed directly from anatomical parcellations.  The 

anatomical clustering produced more variance in all feature dimensions, providing less 

accuracy, something we will find as well in CHAPTER IV.   

 This study dives into the spatiotemporal dynamics of ECoG high gamma activity 

during a speech task, but the feature space across the different dimensions are pre-

defined, discretized, and then further reduced to a level that a lot of the fine temporal 

dynamics are averaged out.  We are left with interesting results and insights, but are still 
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left with findings that are still fairly high level and do not generate insight into how 

temporal profiles differ across brain regions outside of their temporal activations. 

 In a different study, (Collard et al., 2016) find clusters, which they term functional 

network components, that are present during word repetition and picture naming tasks 

amongst 5 subjects.  Interaction strength between pairs of electrodes were estimated with 

time-varying dynamic Bayesian network models (Song et al., 2009) constructed from 

high gamma power.  Signed principal component analysis (PCA) was used to identify 

significant electrodes pairings, and thus clusters.   

 Several task related clusters were observed in the picture naming task.  One 

cluster included interactions within ventral occipital-temporal cortex (VOTC), between 

VOTC and sensorimotor cortex (SMC) and Broca’s area.  This cluster became active just 

after stimulus presentation (50-150ms after stimuli) and peaked in activation 200-600ms 

after stimuli.  A second cluster contained interactions between pSTG or supramarginal 

gyrus (SMG) and either SMC, Broca’s area, or both.  This cluster achieved peak 

activation after the median latency of the subject’s spoken response.  Similarly, several 

clusters were found in the auditory word repetition task.  One cluster was primarily 

contained within pSTG and showed activity just after stimulus (150-500ms) and a second 

smaller significant activity just after median response latency.  A second cluster captured 

interactions between pSTG and Broca’s area and peaked after the first cluster, but before 

subject response.  Another cluster was within SMC with activity centered around the 

median response latency.  A final cluster was between SMC and Wernicke’s area with 
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two peaks, pre- and post-response, but with the post-response peak showing more 

activation.   

 The auditory word repetition task is similar to the task of our work.  Although 

there is additional preprocessing in this study that removes some of the structure of the 

neural activity, we will revisit this work in CHAPTER III as we discuss our findings in 

the context of what was found here.  One of the specific method choices that limit the 

time course information in Collard et al., includes constraining the model to have a lag of 

1 sample, or 16ms.  This represents the transfer of high gamma information between 

cortical sites, highly limiting the amount of temporal interaction that can be captured. 

Additionally, the kernel that was selected for the model was too broad and was non-

causal, which may have smeared the directionality of information flow.  Lastly, the 

signed PCAs lose orthomormality and interpretation of explained variance.  These design 

choices were done to allow the analysis to focus on the co-variance between electrodes 

and maintain interpretability, but have done so at the cost of finer timing details and 

activity structure. 

II.3.ii Spectrotemporal Clustering 

 The Edward F. Chang lab at the University of California, San Francisco has had a 

number of studies performing ECoG clustering analysis for speech.  Their work amongst 

these studies has been some of the pioneering work in understanding the higher order 

aspects of spatiotemporal analysis of speech through ECoG.  In particular, three studies 

are of note (Hullett et al., 2016; Hamilton et al., 2018; Leonard et al., 2019), with each 

looking at slightly different parts of the speech network.  The first study (Hullett et al., 
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2016), uses spectrotemporal receptive fields (STRF) and is covered in this subsection, 

while the other two use cNMF and are covered in §II.3.iii. 

   Hullett et al. use STRFs to analyze high gamma power from eight subjects 

listening to continuous speech.  The primary finding was that low-level acoustic features 

of speech propagate from pSTG toward anterior STG (aSTG), corroborating (Chang et 

al., 2010; Bouchard et al., 2013; Berezutskaya et al., 2017).  The STRFs linearly encoded 

high gamma activity as a weighted sum of stimulus features, both spectral and temporal, 

over time (Theunissen et al., 2001; Sharpee et al., 2004).  STRFs were grouped together 

using K-means clustering (McQueen, 1967; Lloyd, 1982), with the Silhouette criterion 

(Rousseeuw, 1987) used to identify the number of clusters.  Further preprocessing was 

done to get modulation transfer functions (MTFs) from the magnitude of the two-

dimensional Fourier transform of the STRFs (Singh and Theunissen, 2003).  This was 

done to reduce the empirical complexity, while still maintaining a lot of the underlying 

structure.  An anterior to posterior organization of modulation tuning was found along the 

STG, with high spectral and low temporal modulation found anteriorly and low spectral 

and high temporal modulation found posteriorly.  This shows pSTG is tuned for 

temporally fast-changing speech sounds with relatively constant energy across frequency, 

while aSTG is tuned to temporally slow-changing speech sounds with a high degree of 

frequency variation.  

II.3.iii Convex Non-negative Matrix Factorization 

 The two other studies by the Chang lab use convex non-negative matrix 

factorization (cNMF) (Ding et al., 2010) as their primary method for both preprocessing 
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and clustering.  This approach uses the fewest prior assumptions and is therefore the most 

data-driven approach of prior studies.  This allows for maintaining the temporal structure 

of neural activity and enables insights about the true activity profiles present during 

speech production. 

 In the first study discussed here, (Hamilton et al., 2018), the STG again will be 

the brain region of focus.  This study included a larger set of subjects, 27, with a 

combined total of 2,100 ECoG electrodes.  cNMF was used to correlate activity during 

the task to generate functional brain area clusters.  The primary findings of this study are 

a parallel caudal and rostral partitioning streams that detect stimulus onset and prosodic 

information, respectively.  Of these two dominant activity profiles, one was sensitive to 

sentence onsets and mainly localized to pSTG (i.e., the caudal stream), while the other 

had more sustained activity and was localized to anterior and middle STG (i.e., the rostral 

stream).  The silhouette index was used to show the clusters were both functionally and 

anatomically significant, with the clusters represented 14.5% of the explained variance in 

the data.   

 MTFs, similar to (Hullett et al., 2016), were also generated, with similar results 

supporting the cNMF findings.  The caudal cluster had higher temporal and lower 

spectral modulation selectivity with a preference for long silences, i.e., those found 

before a sentence, with the inverse in the rostral cluster.  The authors postulated that this 

additional context likely explains the caudal cluster as onset selective, rather than 

selective for high temporal modulations as found in (Hullett et al., 2016).  When looking 
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at activity latencies, the caudal cluster was also shown to be significantly quicker and 

shorter than the rostral cluster for onset, peak, offset, and duration.   

 Electrodes that significantly responded to sentence start were located exclusively 

in pSTG.  In four of the subjects, ECoG electrodes were also placed in the superior 

temporal plane and lateral surface, including Heschl’s gyrus (HG), planum temporale 

(PT), and planum polare (PP).  Activity in the temporal plane were similar to the STG, 

showing a caudal/rostral distinction, with HG and PT mostly being onset selective and PP 

having sustained activity.  HG differed from the rest of the caudal cluster, however.  In 

addition to sentence onset activity, HG also responded to features throughout the 

sentence. 

 The final clustering study, (Leonard et al., 2019), is the closest to our work.  This 

study, again by the Chang lab, built on their prior two studies just discussed.  The work 

by Leonard et al. develops a more detailed view of the spatiotemporal dynamics of 

speech perception and production.   

 ECoG high gamma power was computed from 8 subjects performing an acoustic 

word repetition task.  The task progressed through several structured stages: auditory 

stimulus cue, acoustic stimulus, 2 second pause, another auditory cue, and then subject 

response.  Two unsupervised clustering methods were used to determine functional 

groupings: 1) cNMF similar to (Hamilton et al., 2018), and 2) k-means.  Cluster size was 

chosen using percent variance explained, with ~90% of the variance determined by 5 

clusters.  cNMF and k-means produced similar cluster results.   
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 The 5 clusters were separable in their temporal profiles and spatial locations.  The 

5 clusters are broken up with the following cluster descriptions: 

1) This cluster was located in posterior and middle STG, with a small presence in 

middle temporal gyrus (MTG) and SMG.  Activity showed significant responses 

to listening and production cues and the auditory word (stimulus), but not to the 

subject’s production of target word.  The authors comment that this cluster 

represents short-latency responses to acoustic input. 

2) This cluster was located throughout the STG, extending into posterior MTG and 

SMG and also IFG and dorsal vSMC.  Activity displayed significant responses 

only to speech sounds, both externally and self-generated.  The authors comment 

that this grouping represents short-latency responses to hearing speech (both 

external and self-produced). 

3) The third cluster had a diffuse network across the STG, posterior MTG, inferior 

posterior parietal cortex, IFG, and vSMC.  Significant sustained activity existed 

during the delay period.  The authors comment that this grouping represents 

phonological working memory. 

4) The fourth cluster had similar anatomical coverage as the third cluster, with 

activity located in STG, posterior MTG, IFG, and vSMC.  However, activity was 

similar to the second cluster.  The duration of activity was longer than the second 

cluster and some activity was present during the delay period.  The authors 

comment that this grouping represents activity evoked by hearing speech and also 

some contribution to working memory. 
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5) The final cluster was located primarily within vSMC with a small number of 

electrodes in posterior STG, MTG, and SMG.  Significant activity was consistent 

with speech production, with activity during the speaking phase, peaking just after 

onset.  The authors comment that this grouping represents motor planning and 

speech production. 

This study is the closest to our work, both in its methods and task.  In this study acoustic 

word stimuli are presented, while ours utilizes visual stimuli.  The structure of the task is 

more prescribed in this study then ours, including auditory cues, which potentially 

confound some results but provide tighter temporal similarity across trials.  Both of our 

methods aim to limit preprocessing to pull out the structure of the activity.  The clustering 

methods are different, however, with Leonard et al. using cNMF which utilizes a linear 

similarity distance measure and is a soft clustering technique, while we use a nonlinear 

similarity measure and enforce hard clustering to generate unique partitions, refer to 

APPENDIX B for more details on the trade-offs between the approaches.  We also go 

further than this work by quantitatively formalizing a way to describe the activity patterns 

and compare them.  We will return to this work by Leonard et al. in CHAPTER III. 

 

II.4 Return to Speech 

 We now return back to a more general discussion of speech to help place ECoG 

research within the larger field, giving particular attention to several areas: speech 

modeling, speech timing and propagation, and brain computer interfaces.  The goal of 

this dissertation is to provide additional insights that add new knowledge to our 
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understanding of the speech network.  In doing so, we hope to update our understanding 

of neural timing and propagation during speech and provide the inputs to enable updating 

speech networks to get closer to true neural representations.  Lastly, we hope our work 

motivates further research and development in better brain computer interfaces to allow 

speech to be easier to perform for all. 

II.4.i Speech Modeling 

 The knowledge that has been gained about the speech network through lesion, 

behavioral, imaging, and electrophysiology studies has been used to craft models of the 

speech network.  Early models relied more heavily on lesion studies, such as the 

establishment of Broca’s area (Broca, 1861, 1865) and Wernicke’s area (Wernicke, 

1874).  Models by Lichtheim (Lichtheim, 1885), (Goodglass, 1993) and Geschwind 

(Geschwind, 1965, 1979) built on the more simplistic early models to greatly expand the 

speech network to be more anatomically and functionally widespread.  As computers 

became more readily available, they became useful tools for modeling and simulating the 

speech network.  This allowed for augmented data analyses to go along with data 

collected in studies to add valuable insight to our understanding of speech, reducing 

reliance on human subject testing.  Some of the notable computer models include (Henke, 

1966; Rubin et al., 1981; Dell, 1986; Saltzman and Munhall, 1989; Horwitz et al., 2000; 

Garagnani and Pulvermüller, 2013).  

 The Guenther lab at Boston University has an extensive history of studying and 

modeling speech.  A main component of this research has been the development, 

validation, and maintenance of the DIVA (Directions Into Velocities of Articulators) 
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neural network model of speech acquisition and production (Guenther, 1994, 1995, 2016; 

Guenther et al., 1998, 2006; Guenther and Brumberg, 2011; Tourville and Guenther, 

2011).  This model is a peer reviewed, state-of-the-art representation of neural activity 

during speech that has been validated to align with findings from human subject tests.  

For example, the progression and connectivity of activity in premotor, motor, 

somatosensory, and auditory brain areas of the model have been found to align with prior 

studies, refer to (Tourville and Guenther, 2011) for a review.  Amongst other things, it 

provides a means test and understand components of speech at a scale and in a controlled 

manner that cannot be done with human subjects.  

 Models are an extremely useful tool, as they provide a way to quickly study and 

perturb a speech network to analyze and gain insights on what is happening without the 

need, and high cost, of doing so with human subjects.  Human subjects are far preferred, 

but access to subjects for electrocorticography or other invasive studies is strictly limited 

to those that are undergoing medical procedures who agree to participate in the study.  

Therefore, models help provide some of the gaps as a useful tool that has unlimited 

access, but does not fully represent the underlying neural dynamics.  This allows for the 

testing of many different experimental paradigms to see which ones show the greatest 

potential for new insights before selecting a specific experiment to run on human 

subjects.  

 At the same time, caution and care needs to be taken when constructing and 

updating models based on findings from human subject studies.  Utilizing a standard 

brain representation poses challenges as it is difficult to utilize spatial averaging as 
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cortical evoked response patterns have been found to be relatively heterogeneous across 

individuals (Flinker et al., 2011; Leuthardt et al., 2011; Cogan et al., 2014).  Thus, we are 

left with an extremely valuable tool with speech models, as they provide non-invasive 

ways to invasively explore speech, but the complexity and heterogeneity amongst 

different individuals creates questions of generality that cannot fully be addressed 

without more subject data. 

II.4.ii Timing and Propagation 

 Lots of prior work has been conducted to understand the fine timings of the 

different stages of speech.  This prior work provides detailed analyses of the temporal 

properties of speech.  For example, it has yielded understanding of the temporal 

properties of the STG that includes the onset, offset, peak, and duration of the neural 

activity (Lerner et al., 2011; Honey et al., 2012; Nourski et al., 2014), how the auditory 

cortex tracks the envelope of speech (Kubanek et al., 2013), and how higher level 

semantics, such as sentence structure, are temporally encoded (Halgren et al., 2002; 

Brennan and Pylkkänen, 2012; Fontolan et al., 2014).  Much attention has been given to 

timing analyses for speech and will not be covered in detail here.  Much of this prior 

work falls within first order analyses, including from ECoG recordings (refer to §II.2.ii).  

Relevant timing studies will be discussed in the context of the results of this study in their 

appropriate chapters.   
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II.4.iii Brain Computer Interfaces 

 Brain-Computer Interfaces (BCIs) for speech have been improving with better 

temporal and spatial decoding of neural activity (Guenther et al., 2009; Brumberg et al., 

2010), but still lack the performance needed to fully enable an individual to comfortably 

communicate.  ECoG has started to be incorporated into BCIs, but to date has still relied 

on first order analysis, i.e., §II.2.ii, and thus is temporally bounded in the performance 

that can be reached.  Recent work in ECoG-based BCIs include using high gamma power 

for auditory attention (Brunner et al., 2017) and phoneme recognition and prediction 

(Moses et al., 2016).  We hope that moving to higher order analyses, such as in our work 

amongst others, will help provide some inspiration and lead to some of the needed gains 

of BCIs to improve their accuracy and enable them to be life changing technologies for 

many individuals. 

 

II.5 Situating this Research 

 Much of our current understanding of speech comes from lesion or behavioral 

studies, which lack insight into the neural underpinnings driving the observations, or 

from imaging studies that rely on methods with time courses slower than that of speech.  

For example, fMRI has temporal measurement accuracies around a second, while speech 

time courses are closer to 100 ms.  This results in the fine temporal details and the 

propagation of neural activations across brain areas to get smoothed out, losing some of 

the important temporal details.  This is an area that ECoG has helped to fill.  However, 

much of the current ECoG work has been limited to lower order understandings, such as 
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finding electrodes that have activity statistically different from a baseline period and only 

performing simple characterizations, e.g., onset, peak, and duration.  This type of analysis 

loses the detail of activity between these discrete points, such as how activity builds from 

the onset to the peak of activity.  This additional information that is not currently being 

characterized has the potential to provide insights into the underpinnings of speech and 

provide a means to better understand how different brain regions respond similarly or 

differently to a task. 

 The last few years have seen new methods starting to emerge that do not remove 

this important temporal information.  These methods have been primarily centered 

around clustering analysis studies, with (Leonard et al., 2019) leading the way with the 

use of cNMF.  In this work, we aim to further the developments within this emerging 

research area, while building on the lessons learned from the studies highlighted in §II.2 

and §II.3.  We take a unique approach to clustering that is designed with the properties of 

ECoG in mind.  Specifically, the clustering method utilizes a nonlinear distance measure 

to emphasize similarity between important activity time points, i.e., activity peaks, and 

performs hard clustering to create unique group assignments.  Further we are the first to 

formalize a method to quantitatively explain activity patterns, providing a powerful 

framework to not only describe our findings, but also to open up new avenues of 

research.   
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CHAPTER III: Canonical Speech Clusters 

III.1 Significance 

 The identification of characteristic time courses of neuronal activity during 

movement planning and execution has provided critical insights into the brain 

mechanisms underlying motor control in non-human primates. Due to the relative lack of 

electrical recordings from the human brain, little is known about the temporal profiles of 

neuronal populations involved in uniquely human acts such as speech. In this study we 

identify and quantitatively characterize eight canonical time courses of neural activity 

recorded using electrocorticography during production of simple speech utterances. The 

resulting time courses provide unprecedented detail regarding the nature and timing of 

neural computations underlying the translation of phonological information into motor 

and acoustic output. 

 

III.2 Introduction 

 Intracranial electrophysiology has resulted in a wealth of information concerning 

the time course of neural computations underlying the control of movements in non-

human primates. The activity patterns of neurons involved in arm movement control have 

been shown to fall into classes that exhibit characteristic temporal profiles, including 

phasic responses that quickly rise and then return to baseline immediately preceding 

movement onset or coincident with movement execution, tonic responses that change 

relatively abruptly from one activity level to another near the time of movement onset, 

and ramp responses that gradually increase over the course of a movement (Cheney and 
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Fetz, 1980; Kalaska et al., 1989). These characteristic time courses differentiate 

functional classes of neurons involved in different stages of movement planning and 

execution, and they illuminate the neural computations performed during these stages. 

The scarcity of high-resolution intracranial recordings in humans has thus far precluded 

such a description of brain activity during human movement execution. The vast majority 

of studies of neural activity during human movements have involved non-invasive 

technologies such as functional magnetic resonance imaging (fMRI) and positron 

emission tomography (PET) that lack the temporal resolution necessary to characterize 

the time course of electrical activity underlying the various stages of movement planning 

and execution; the temporal resolution of blood flow responses measured by PET and 

fMRI are on the order of seconds, while the production of a phoneme is on the order of 

100 ms. Against this background, the primary purpose of the current study was to identify 

and quantitatively describe characteristic time courses of electrical activity in the brain 

during the production of simple speech movements using recordings from surface and 

depth electrocorticography (ECoG) electrodes implanted for pre-surgical mapping in 

individuals with intractable epilepsy. Although ECoG does not capture activity at a single 

neuron level like primate electrophysiology, it affords the highest combination of spatial 

and temporal resolution of any relatively widely used human neural recording 

technology. Furthermore, high gamma power (broadly interpreted as some portion of the 

60-500 Hz range) in the ECoG signal correlates with local neural activity (Ray et al., 

2008; Miller et al., 2009) as well as motor behavior (Bouchard et al., 2013) and auditory 
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processing (Kubanek et al., 2013; Hullett et al., 2016; Berezutskaya et al., 2017), making 

it an excellent source for studying local time courses of speech-related neural activity. 

 A number of prior ECoG studies have investigated neural activity (usually in the 

form of high gamma power) during speech motor control, revealing many novel insights. 

For example, several studies (Bouchard et al., 2013; Lotte et al., 2015; Conant et al., 

2018) described time courses and spatial distributions of articulator-specific activations 

during speech.  (Martin et al., 2014; Angrick et al., 2019; Anumanchipalli et al., 2019) 

applied signal decoding techniques to reconstruct acoustic signals recorded during spoken 

utterances from ECoG recordings.  (Mugler et al., 2018) identified distinct articulatory 

and phonemic representations in the motor cortex and inferior frontal gyrus, respectively. 

(Brumberg et al., 2016) examined cortical activity during sentence repetition to identify a 

global trend in which frontal-motor activations precede auditory cortical activations, with 

the former beginning approximately 440 ms prior to vocal onset and the latter extending 

440 ms beyond vocal onset (see also (Leuthardt et al., 2012)). In one of the first attempts 

to identify characteristic time courses during speech that are common across subjects, 

(Leonard et al., 2019) used a soft clustering procedure on ECoG data from the left 

hemisphere collected during a cued word repetition task involving auditory stimuli and 

identified five characteristic clusters: one that responded only to the auditory stimulus, 

two that responded to both the auditory stimulus and the production period, and one that 

responded only during production.  

 The current study extends this prior work in several ways. First, we employ a 

novel Kalman filter-based trend analysis with an unsupervised clustering approach to 
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identify change points between high gamma activity trends (for example, between the flat 

baseline trend and the onset of task-related activity, or between an activity plateau and 

the return to baseline) and to quantitatively characterize these trends, thereby providing a 

significantly more detailed account of the characteristic shapes of activity time courses. 

Second, we utilize recordings from both cerebral hemispheres, allowing us to investigate 

hemispheric differences in word production (most evident in premotor and prefrontal 

cortical regions). Third, we utilize orthographically presented monosyllabic stimuli rather 

than auditory stimuli or sentence stimuli, thereby extending the study of characteristic 

time courses during speech to the commonly used experimental paradigm of single word 

reading.  

 

III.3 Materials and Methods 

III.3.i Participants 

 Data were obtained from five neurosurgical patients (4 males, 1 female) 

undergoing surgical treatment of medically intractable epilepsy; refer to Table 1 for more 

details.  Written informed consent was obtained from all subjects, and all research 

protocols were approved by the appropriate institutional review board.  
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Table 1: Subject Information 

 

III.3.ii Experimental Design 

 Subjects read aloud orthographic stimuli projected onto a video screen. The 

stimulus set used in this study consisted of consonant-vowel-consonant (CVC) 

pseudowords constructed from the combinations of four consonants (/b/, /d/, /g/, and /ʤ/) 

and 3 vowels (/æ/, /i/, and /u/) to generate 12 CVCs: /bæg/, /big/, /bug/, /dæʤ/, /diʤ/, 

/duʤ/, /gæb/, /gib/, /gub/, /ʤæd/, /ʤib/, and /ʤud/. A brief practice session was used to 

familiarize subjects to the orthographic representation of each stimulus. Each collection 

period (run) consisted of 72 CVCs grouped into 36 pairs. For each pair, the first CVC 

was presented on the screen for 1 second, followed by a gap of 1.5 seconds before the 

second CVC was presented for 1 second. The time between word pairs was randomly 

drawn between 3, 4, or 5 seconds.  Subjects were instructed to say each stimulus as soon 

as it was presented, i.e., there was no “go signal” between the reading portion and the 
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speaking component.  The analyses in the current study utilized data from only the first 

word in each pair to minimize potential residual effects from prior productions on the 

ECoG signal. After an introductory period to familiarize the subject with the 

experimental protocol, each subject participated in 3 or 4 36-pair runs.   

III.3.iii Instrumentation 

 A condenser microphone (Beta 87C, Shure, Niles, IL) captured each subjects’ 

speech, which was amplified (MK3, Mark-of-the-Unicorn, Cambridge, MA) and passed 

into a multi-channel data acquisition system (DAS; System3, Tucker Davis Technologies, 

Alachua, FL, or Atlas, Neuralynx, Bozeman, MT) that also simultaneously collected TTL 

signals denoting presented visual stimuli and ECoG signals (see §III.3.iv).  We utilized 

an online sampling rate of >12kHz for voice signals but resampled to 12kHz offline in 

MATLAB (MathWorks, Natick, MA).  

III.3.iv Electrocorticography Acquisition 

 Research recordings were initiated after the subjects had fully recovered from 

electrode implantation surgery.  Subjects were awake and sitting comfortably in bed 

during all experimental recordings.  Subdural implantation of the electrode arrays 

allowed for ECoG signals to be directly recorded from the cortical surface. The ECoG 

signals were filtered (1.6–1000 Hz anti-aliasing filter), digitized with a sampling 

frequency of >2000 Hz and then resampled offline in MATLAB.   
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III.3.v Electrode Implantation and Localization 

 The devices used to record electrical activity of the brain were a combination of 

surface (i.e., subdural) and penetrating depth multi-contact electrode arrays1.  Each 

surface array consisted of platinum-iridium disc electrodes arranged within a silicone 

sheet (Ad-Tech, Racine, WI or PMT, Chanhassen, MN).  The distance from the center of 

one electrode to the center of an adjacent electrode measured 5 or 10 mm, while each 

individual electrode had a contact diameter of 3 mm.  Depth electrodes were utilized in 

all subjects with placement locations dictated by clinical needs of each subject. The 

extent of the array coverage varied between subjects due to the different clinical 

considerations specific to each subject.  After surgical implantation, subjects were 

continuously monitored via video-EEG during a fourteen day hospitalization to correlate 

seizure activity with brain activity for purposes of epilepsy treatment. During this period, 

high resolution monitoring verified that cortical areas relevant to this study did not show 

abnormal inter-ictal activity.  Once this two week monitoring period was complete, the 

electrodes were surgically removed and the localized seizure focus was resected.   

 High-resolution digital photographs were taken intra-operatively during electrode 

placement and removal.  In addition, pre- and post-implantation MR (0.78×0.78×1.0 mm 

voxel size) and CT (0.45×0.45×1.0 mm voxel size) scans were conducted.  This 

information was combined to localize the exact position of the recording electrodes in 

                                                        
1 Results presented come from both surface and depth electrodes, with roughly a third of the 
electrodes being from depth arrays.  The analysis was rerun only using the surface electrodes, 
which is similar to prior studies, to confirm that the same results are obtained.  These results are 
presented in APPENDIX D. 
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each subject. FMRIB’s Linear Image Registration Tool was utilized to apply a three 

dimensional rigid fusion algorithm that successfully allowed pre- and post- implantation 

CT and MRIs to be co-registered (Jenkinson et al., 2002).  The coordinates for each 

electrode from post-implantation MRI volumes were transferred to pre-implantation MRI 

volumes, allowing the relative location of each individual electrode contact in relation to 

surrounding distinguishable brain structures to be compared in both the pre- and post-

implantation MRI volumes.  This comparison is helpful for improving the accuracy of 

electrode localization since implantation causes medial displacement of the cerebral 

hemisphere, which leads to greater deviation of the superficial cortex compared to deeper 

structures.  The resultant electrode positioning was then mapped onto a three dimensional 

surface rendering of the lateral surface that was specific to the architecture of each 

subject’s brain. The estimated spatial error rate when localizing these electrodes is less 

than 2 mm. 

 Electrode locations are provided in Figure 1, with all electrodes across all subjects 

plotted on the FreeSurfer (Fischl, 2012) common reference brain (panel b) and individual 

subject electrode locations plotted on the subject’s own magnetic resonance imaging 

(MRI) scan (panel c).  A total of 1036 electrodes were analyzed across the 5 subjects. 
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Figure 1: Electrocorticographic Recording Locations on Inflated Cortical Surfaces 

(a) Reference brain template with lobular labels. Central sulcus (cs) and Sylvian fissure (sf) denoted. (b) 

Electrodes from all subjects plotted together on common brain. (c) Individual subject electrode locations. 

III.3.vi Audio Preprocessing 

 Speech onset was measured using a semi-automated method. A 20 ms rectangular 

kernel was convolved with the absolute value of the recorded audio signal.  Resulting 

values that were above an empirically determined threshold were marked as periods of 

voicing.  Coarse onset estimates were determined to be at the beginning of any 

contiguous period that exceeded the threshold and with a gap greater than 300 ms from 
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the previous onset.  Manual verification and correction was performed using the Praat 

software suite (www.fon.hum.uva.nl/praat/) to determine onset validity and refine the 

location of voicing onset.  Average audio signals were computed to get sound envelopes 

by taking the root mean squared (RMS) value of the raw audio over 50 ms time windows 

(Kubanek et al., 2013). 

III.3.vii Neural Signal Processing 

 The recorded data were downsampled to 1 kHz for further processing with a 

polyphase anti-aliasing filter using the resample function in MATLAB.  After 

downsampling, the DC component was independently removed for each channel 

(electrode) by subtracting the average value for the channel over the entire collection 

period.  Line noise was removed using notch filters at 60 Hz and harmonics.  This was 

done using the tmullen_cleanline function in EEGLAB (Bigdely-Shamlo et al., 2015), 

which builds on the Chronux toolbox. 

 Next, bad channels were identified and removed from further analyses. Bad 

channels consisted of two types: a) those that were clinically or experimentally 

determined to be invalid, and b) those that were labeled invalid during preprocessing. For 

the latter, a kurtosis analysis was performed to remove channels that were corrupted by 

noise or were unexpectedly peaky, such as with eye blink artifacts (Mognon et al., 2011; 

Tuyisenge et al., 2018).  Channels identified for removal were manually verified.  Signals 

were then re-referenced according to a Common Average Reference (CAR) scheme 

(Crone et al., 2001a), with electrodes averaged across each grid of electrodes to remove 

non-neural noise artifacts from the shared collection hardware. 

http://www.fon.hum.uva.nl/praat/
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 Following numerous prior ECoG studies (e.g., (Edwards et al., 2009; Chang et al., 

2011)), we focused our analyses on the time course of signal power in the high gamma 

frequency range2. Specifically, the log-analytic amplitude of the Hilbert transform was 

used to bandpass filter the ECoG recordings into 8 logarithmically spaced bands spanning 

70 – 150 Hz (cf. (Moses et al., 2016)). The analytic signal was computed for each band 

and the absolute value was taken as the analytic amplitude, which represents the envelope 

of the bandpass filtered signal.  These amplitudes were then averaged together to get a 

log-analytic amplitude representation.   

 After filtering, trials were extracted and re-referenced to a baseline. Trial 

extraction was performed under two alignment conditions: 1) visual presentation of the 

stimulus and 2) voice onset of the speech response. These alignment segmentations are 

referred to as stimulus presentation and voice onset, respectively. The stimulus 

presentation epochs had a trial duration of 3 seconds, starting 1 second prior to stimulus 

presentation and lasting 2 seconds after (average voice onset started 916 ms after 

stimulus presentation, with a 208 ms standard deviation). The voice onset epoch also had 

a 3 second trial duration, starting 2 seconds prior to voice onset and ending 1 second after 

(with average stimulus presentation 916 ms prior to onset). A baseline period before 

stimulus presentation was used to re-reference the signal. The baseline period was taken 

to be the first 500 ms prior to stimulus presentation, and the high gamma signal at each 

time point in the trial was re-referenced as a z-score relative to the trial’s baseline period 

                                                        
2 Additional analysis was performed looking at the beta frequency band.  The results of this 
analysis can be found in APPENDIX D. 
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(Edwards et al., 2010). All trials within an alignment condition were averaged to create 

an event-related spectral perturbation (ERSP) (Makeig, 1993) that captures the average 

response of high gamma power for the alignment condition.  

 Next, electrodes that had a significant ERSP response were identified and kept for 

further analysis. First, electrodes that did not deviate beyond a 95% confidence interval 

of baseline activity were marked as non-significant and removed from further analysis. 

Remaining electrodes were then subjected to a Kalman filter-based trend analysis 

(described further in §III.3.ix below); only electrodes that deviated from the data-driven 

baseline trend identified by the Kalman filter were kept for further analysis. The 1036 

total electrodes from the five subjects were reduced to 319 significant electrodes for the 

stimulus presentation alignment case and 334 for the voice onset case. 

 More details about the general methods, including motivation and alternatives 

considered can be found in APPENDIX C. 

III.3.viii Statistical Analysis 

 Clustering was performed to generate electrode groupings using pairwise 

distances measured for each alignment case.  Pairwise comparisons of ERSP responses 

(after normalizing each ESRP response to range from 0 to 1) were computed using a 

distance measure that emphasized activity differences further away from the non-task 

baseline. Specifically, an exponential difference between signal values was computed 

using Equation 1:  
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Equation 1: Pair-wise Electrode Exponential Distance Function 

𝐷𝐼𝑆𝑇 =  √
1

𝑁
∑ (𝑒𝑝𝑖 − 𝑒𝑞𝑖)2

𝑁

𝑖=1
 

where pi and qi are the signals on electrodes p and q at time point i out of N total samples.  

For simplicity, we drop the 1/N common normalization term.  This distance measure 

emphasizes significant activity time points and hence puts more weight on the similarities 

or differences of these time points. This differs from most prior studies, which 

characterized electrode signal similarity using linear measures (correlations) that put 

equal weight on non-significant time points rather than focusing on similarities or 

differences during key time points of the activity such as peaks or plateaus. 

 A hybrid clustering method that combines partitioning and hierarchical clustering 

was used to identify electrodes that displayed similar time courses according to the 

distance measure just described (Warren Liao, 2005; Aghabozorgi et al., 2015). This 

approach initially assigns each electrode to its own cluster, as in hierarchical 

agglomerative clustering. At each iteration step the pairwise distance between each 

cluster is computed.  The two clusters with the closest match are then merged. Merging 

consists of re-computing an average for all electrodes that are members of the cluster, 

which results in a new cluster centroid. This hierarchical approach by itself creates a non-

monotonic cluster tree.  To ensure a monotonic cluster tree, a partitioning refinement step 

is taken to look at any cluster that has a closer distance measure in the new cluster 

representations compared to the distance measure of the clusters just merged. The 

partitioning step reallocates electrodes between the two merged clusters and any clusters 
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breaking the monotonic relationship, generating clusters that maintain a monotonic 

cluster tree. This process repeats for each step of the iterative clustering until all 

electrodes are merged into a single cluster.  This clustering method combines the strength 

of cluster tree generation through hierarchical clustering methods with the ability to 

maintain a monotonic cluster tree to enable the selection of the number of clusters.  The 

partitioning refinement step functions similar to k-means over a subset of the electrodes.   

 After this clustering procedure, the number of clusters that best capture the true 

nature of the underlying data was selected. A distance threshold can be set to select the 

number of clusters from the cluster tree.  Since there is no clear method for choosing a 

threshold, two different methods were employed to choose the most informative number 

of clusters. First, the “elbow” method (Thorndike, 1953) was used to select the number of 

clusters based on the elbow in the cluster tree, which looks at the distances between 

clusters at each branch of the tree.  More precisely, we selected the elbow from the 

derivative of this function, which was far more pronounced. This elbow, where the 

derivate shows a very noticeable slowing rate of change in the reduction in distance that 

additional clusters would add, occurred at six clusters for both alignment cases. In the 

second method, the percent variance explained using a comparison of the sum of squares 

of within-cluster variance to total variance was calculated (Goutte et al., 1999).  This 

method also indicated that six clusters in each alignment case provided the best account 

of the data.  This choice of clusters explains 73% of the variance for the stimulus 
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presentation case and 69% for the speech onset case, with additional clusters only 

marginally adding to the explained variance3. 

 In addition to clustering the data separately for the stimulus onset and voicing 

onset alignment cases, the clustering procedure was also employed to identify clusters 

that appeared in both alignment cases. The average offset between stimulus presentation 

and speech onset (916 ms, with a standard deviation of 208 ms), was used to align the 

two cases. Using this combined dataset, the 12 clusters found from the two alignment 

cases (6 from each) were found to reduce to an aggregate set of 8 clusters.  Four of these 

clusters were seen in both alignment cases and four were only seen in one of the 

alignment cases. The results of this analysis were used only to identify clusters that 

appeared in both alignment cases; the clusters described in the results section, §III.4, are 

from the individual alignment cases rather than from this combined clustering analysis.  

 More information about the clustering analysis, including motivation and 

alternatives considered can be found in APPENDIX B. 

III.3.ix Trend Analysis 

 A novel data-driven statistical method was used to identify trends and change 

points in high gamma traces for two purposes: (1) to identify electrodes in which activity 

changed significantly from the baseline (refer to §III.3.iv and §III.3.vii), and (2) to 

quantitatively describe the shapes of the characteristic time courses resulting from the 

cluster analysis. Past studies have utilized functional representations to capture changes 

                                                        
3 Only clusters that existed across multiple subjects are discussed in the results.  All results 
presented had electrodes present in at least 3 of the 5 subjects.  Results from the clusters that 
constrained to only one subject are presented in APPENDIX D.  
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in neural temporal dynamics, such as splines (e.g., (Brumberg et al., 2015)) which 

provide piecewise linear breakdowns for trend analysis.  We instead utilized a dynamic 

method that detects trend changes in the data with fewer priors on the form the changes 

can take.  The method is based on detecting change points (Page, 1963; Aminikhanghahi 

and Cook, 2017) with a Kalman filter (Kalman and Bucy, 1961). A Kalman filter is a 

statistical method that estimates the internal state of a linear dynamic system from a 

series of measurements that include process noise (in our case, error inherent to the 

neural signal model) and observation noise (noise inherent to the ECoG recording 

process). 

 For our trend analyses, the Kalman filter estimates high gamma power (g) and its 

time derivative (or trend, ġ) to model the 2-dimensional state vector X = [g, ġ]T, where T 

is the transpose function. The state transition matrix, A, captures the relationship between 

these states4 at each time point i.  The Kalman prediction, 𝑿̂(:, i), is based on this state 

transition matrix and the filter’s value at the prior time point.  The model of the system, 

X(:, i+1), is similarly modeled, with the inclusion of the realized noise term, w.  These 

equations are collected in Equation 2: 

Equation 2: State Transition Matrix, System Model, and Kalman State Prediction 

𝑨 =  [
1 1
0 1

] 

𝑿(: , 𝑖 + 1) = 𝑨 𝑿(: , 𝑖) + 𝑤 

𝑿̂(: , 𝑖) = 𝑨 𝑿̂𝑿(: , 𝑖 − 1) 

                                                        
4 Here we use a simple linear estimation procedure. More complex filters were tested, but the 
linear state transition matrix performed best and was the most parsimonious. 
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 The covariance (or uncertainty) of the estimate, termed P, is calculated using 

Equation 3: 

Equation 3: Prediction Covariance Estimate 

𝑷 = 𝑨 𝑷 𝑨𝑇 + 𝑸 

where Q is the covariance of the process noise, i.e., the noise present in the underlying 

neural activity. For the first time step of the baseline period, 𝑿̂ is initialized to [0 0]T, Q is 

initialized to difference-stationary whitened variance during the baseline period, and P is 

initialized to Q. Together the calculations above are called the prediction step. 

 After predicting the state of the system based on its prior estimated state in the 

prediction step, 𝑿̂(: , 𝑖), the Kalman filter then updates this estimate based on the 

observation Z(i), which is the high gamma power measured by the electrode at the current 

time point.  The rate of change of the measured power is also estimated as the difference 

between the power at the current time point and the power at the last initialization point 

divided by Δ, which is the number of time steps since the last initialization point. The 

update step is governed by Equation 4: 

Equation 4: Kalman Filter Update Step 

𝑿̂(: , 𝑖) = 𝑿̂(: , 𝑖) + 𝐾 (𝑍(𝑖) − 𝑯 𝑿̂(: , 𝑖)) 

where K is the Kalman gain that determines the relative weight to put in new 

observations versus the prediction, and H is the measurement model that maps the model 

state space 𝑿̂ into the observation space Z. In our case H is set to [1 0]T since only the 

power is observed. The Kalman gain is calculated as follows:  



 

 

62 

Equation 5: Kalman Gain Term 

𝐾 = 𝛼 𝑷 𝑯𝑇(𝑯 𝑷 𝑯𝑇 + 𝑅)−1 

where R is the covariance of the observation noise, which is initialized to be the overall 

variance in the power of the baseline period, and α is a decay factor that gives less weight 

to new observations as time persists and evidence is gained for a given trend according to 

Equation 6: 

Equation 6: Learning Rate as Decay Factor 

𝛼 =  𝑒−∆ (𝛿 𝐹𝑠)⁄  

where FS is the sampling rate and δ is a time constant set to 100 ms. The parameter α 

functions to “freeze” trends as evidence for the trend accumulates, which in turn allows 

deviations from the trend (change points) to be identified before the model is corrupted 

by data that does not fit the trend.  

 To identify change points, a threshold is set for how far away a new observation, 

Z(i), can be from its estimate, 𝑿̂(1, 𝑖).  The threshold is set based on the empirical 

variance across the electrode’s z-scored baseline period and only takes into account the 

power term.  An inverse Q-function is used to get the 95% confidence value for the 

variance in the baseline power for each electrode.  This results in a beta distribution 

across all electrode confidence values, which are all z-scored to have the same statistical 

representation.  A more stringent 99% confidence value is used to select the threshold to 

use from this distribution, resulting in a threshold that is representative across all 

electrodes and not electrode-specific, and thus correcting for multiple comparisons.  If a 
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significant change in trend is detected at any point after the baseline period, the electrode 

is deemed to be responsive to the task and is included in the cluster analysis. 

 Each time a change point is detected, a new Kalman filter is initialized similar to 

the original one started on the baseline period, but now the data used to initialize the filter 

is from the time of the change.  Values are re-initialized from priors or what was found in 

the baseline period, as discussed above, with two exceptions.  First, the estimate 

covariance, P, is recalculated using the current values at the time point of the signal, as 

prior studies have found that there are changing dynamics during an ECoG task that are 

dependent on the activity being captured, such as a reduction in variability during 

stimulus onset (Dichter et al., 2016) and an increased variance with increasing response 

amplitudes (Tolhurst et al., 1983; Ma et al., 2006).  Second, the empirical trend is 

recalculated using 100 ms of data around the change, with 10% of points in the past and 

90% in the future of the change.  The decay rate is reset to allow the Kalman filter time to 

re-learn the new trend before it becomes “frozen”. 

 Using this approach, two trend patterns were identified in the characteristic 

clusters, referred to as symmetric and ramp shapes. These characterizations come from 

two specific trends within a high gamma power trace. The first is the onset trend, which 

is the initial upward trend starting from the first change point after the baseline period. 

The second is the offset trend, which captures the corresponding decrease in high gamma 

power to return back to baseline values.  This return to baseline occurred either 

immediately after the onset trend or following a period of sustained activity characterized 

by a separate trend that captured a plateau in high gamma activity. Traces in which the 
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rate of increase in the onset trend was within 10% of the rate of decrease of the offset 

trend were characterized as symmetric. If the onset and offset rates varied by greater than 

10%, they were considered asymmetric.  Assessment of the asymmetric traces revealed 

that, in all cases, the onset trend was significantly faster than the offset trend, a pattern 

characterized herein as a ramp activity pattern.   

 More details on the Kalman filter change point detection used for trend analysis, 

including motivation and alternatives considered, can be found in APPENDIX A. 

 

III.4 Results  

Participants read aloud CVC words as they appeared on a video display. Two time points 

were used to align high gamma power traces across trials: (1) onset of the visual 

orthographic stimulus, and (2) onset of the vocal response. A hybrid clustering algorithm 

was then used to identify characteristic time courses (clusters) that were common to at 

least 3 of the 5 participants.  For each alignment point, high gamma traces fell into six 

characteristic time courses (clusters), with additional clusters adding only a small amount 

of explained variance.  The resulting clusters are shown in Figure 2 for (a) stimulus and 

(b) vocal onset alignments. Summaries of activation onset times and peak activation 

times for these clusters are provided in Table 2. An aggregate clustering step across the 2 

alignment cases was run to identify clusters that were common to the two time alignment 

points, reducing the 12 clusters from the two alignments to a set of 8 canonical time 

courses, 4 of which occur in both time alignment cases.  These canonical time courses 

fell into 4 groupings that approximately align with speech production processing stages, 
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although this knowledge of the speech network was not built into the analysis methods.  

The following subsections describe the identified clusters in further detail, organized by 

speech processing stage: (i) early stimulus processing, (ii) phonological-to-motor 

processing, (iii) motor execution, and (iv) auditory processing.  

 

Figure 2: Characteristic Time Courses During Speech 

High gamma power (normalized power (np)) time courses (time (t) in seconds) across two alignment 

conditions. Average audio signal amplitude indicated by gray shaded region. (a) Six characteristic time 

courses from stimulus presentation aligned case: Early Stimulus Processing – symmetric (ESP-s), Early 

Stimulus Processing – ramp (ESP-r), Phonological-to-Motor – ramp (PtM-r), Motor Execution – 

symmetric broad (ME-sb), Motor Execution – symmetric narrow (ME-sn), and Auditory Processing – 

symmetric (AP-s).  Stimulus presentation occurred at t=0, shown with vertical solid black line.  Average 

voicing onset per cluster shown in fainter vertical black lines (different lines since not all subjects 

showed a response for all clusters). (b) Six characteristic time courses from voicing onset aligned cases: 

Phonological-to-Motor – symmetric (PtM-s), Phonological-to-Motor – ramp (PtM-r), Motor Execution – 

symmetric narrow (ME-sn), Motor Execution – symmetric broad (ME-sb), Auditory Processing – ramp 

(AP-r), and Auditory Processing – symmetric (AP-s).  Time axis reference to voicing onset (t=0) with a 

solid vertical line for the time of voicing onset.  Fainter vertical lines for average stimulus presentation 

time per cluster.  
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Table 2: Cluster timing landmarks (start, peak, and end times, in ms) and onset/offset ramp slopes 

(in units of normalized power rate) for the 8 canonical activity patterns by alignment case. 

 

III.4.i Early Stimulus Processing 

 The first grouping consisted of two canonical time courses that showed brief 

activity immediately following the onset of the visual orthographic stimulus, as shown in 

Figure 3. Both time courses were found only in the stimulus-aligned analysis. In the first 

cluster (Figure 3a), activity starts 10 ms after stimulus onset and peaks at 150 ms, falling 

back to near baseline by 310 ms. The activity onset and offset rates (as characterized by 

the Kalman filter trend analysis) showed a symmetric pattern; this canonical response is 

thus referred to as Early Stimulus Processing – Symmetric (ESP-s). Interestingly, activity 

remains slightly above baseline after the offset trend for the duration of the trial. 

Electrodes in this cluster were found near the anterior junction of the temporal and frontal 

lobes in the left hemisphere and in right posterior middle and inferior temporal cortex 

(see Figure 3). 

 In the second cluster (Figure 3b), activity rapidly increases approximately 40 ms 

after stimulus presentation and decays more slowly back to the baseline before speech 

vocalization starts.  Activity is slightly broader in duration then the symmetric cluster and 
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peaks later, at 210 ms. Because high gamma power shows an asymmetric activity pattern 

with a faster activity increase than activity decrease, this canonical time course is termed 

Early Stimulus Processing – Ramp (ESP-r).  Electrodes in the ESP-r cluster were found 

in posterior middle and inferior temporal cortex bilaterally and in left frontal cortex near 

the junction of the precentral sulcus and the inferior frontal sulcus. 

 

Figure 3: Early Stimulus Processing Clusters 

Two characteristic time courses included: (a) symmetric and (b) ramp. High gamma cluster activity 

patterns are shown on the left (normalized power (np) over time (t), in seconds), electrode locations for 

clusters on the right.  Solid vertical lines indicate alignment condition in which the cluster was 

identified, and fainter vertical lines show average location of other alignment condition.  Average audio 

signal amplitude indicated by gray shaded region. 

III.4.ii Phonological-to-Motor Processing 

 Three clusters, falling into two canonical time courses, had activity peaks that 

were located approximately halfway between stimulus onset and voicing onset. Based on 

this timing, combined with the observation that the large majority of the electrodes 

exhibiting these time courses were in the left frontal cortex (heavily associated with 
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language production and speech planning processes; e.g., (Broca, 1861, 1865; Guenther, 

2016; Friederici, 2017)) and posterior inferior temporal cortex (a site associated with 

word and nonword reading; (Vigneau et al., 2005)), these canonical time courses are 

called Phonological-to-Motor Processing – Symmetric (PtM-s) and Phonological-to-

Motor Processing – Ramp (PtM-r). The PtM-s time course (Figure 4a) was found only in 

the voice-aligned analysis. In this cluster a gradual activity ramp-up starts roughly at 

stimulus presentation (1040 ms prior to voice onset) and reaches a peak 480 ms before 

voice onset, then gradually decays back to baseline approximately when production is 

ending. The activity pattern has a symmetric shape, though it is far more temporally 

broad than the ESP-s cluster.  

 The PtM-r time course was exhibited by a cluster in each of the two alignment 

cases (Figure 4b,c).  This time course starts with a relatively rapid activity increase just 

after stimulus onset and peaks 440 ms after stimulus presentation in the stimulus-aligned 

case (Figure 4b) and 340 ms before voice onset in the voice aligned case (Figure 4c), 

followed by a gradual return to baseline at 800 ms after voice onset, when production is 

complete.  

 In addition to left frontal cortex (including the supplementary motor areas on the 

medial surface, not visible in Figure 4) and bilateral posterior inferior temporal cortex, 

substantial numbers of PtM-s and PtM-r electrodes were located around the posterior 

portion of the left Sylvian fissure in inferior parietal cortex and superior temporal cortex 

and near the anterior junction of the frontal and temporal lobes.  
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Figure 4: Phonological-to-Motor Processing Clusters 

Two characteristic time courses included: (a) symmetric and (b, c) ramp. High gamma cluster activity 

patterns are shown on the left (normalized power (np) over time (t), in seconds), electrode locations for 

clusters on the right.  Solid vertical lines show trial alignment condition and fainter vertical lines show 

average location of other alignment condition. Average audio signal amplitude indicated by gray shaded 

region.  The symmetric pattern is only seen in the voicing alignment case (a), while the ramp activity is 

seen in the stimulus (b) and voicing (c) alignment cases.  

III.4.iii Motor Execution 

 Four clusters, falling into two characteristic time courses, had activity peaks 

shortly after voice onset. All four of these clusters exhibited symmetric time courses, 

with two showing a broader symmetric pattern and two a narrower pattern. Based on this 

timing and the observation that most of the electrodes exhibiting these time courses lie in 

primary sensorimotor and auditory cortical areas involved in speech articulation 
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(Guenther, 2016), these canonical time courses are termed Motor Execution – Symmetric 

Broad (ME-sb) and Motor Execution – Symmetric Narrow (ME-sn). The ME-sb 

canonical time course is shown in Figure 5a (stimulus aligned) and Figure 5b (voice 

aligned). The symmetric activity pattern shows a gradual ramp-up that initiates 80 ms 

after stimulus presentation and steadily increases until peaking 200 ms after voice onset, 

then gradually returns to baseline after production is complete. The two clusters 

exhibiting the ME-sn time course are shown in Figure 5c (stimulus alignment) and Figure 

5d (voice alignment).  Activity initializes 640 ms after stimulus presentation and peaks 

110 ms after voice onset, with a narrower plateau than the ME-b time course. Brain areas 

with substantial numbers of electrodes exhibiting the ME-sb and ME-sn time courses 

included bilateral frontal and parietal cortex surrounding the ventral central sulcus, left 

inferior frontal cortex, right anterior frontal cortex, insula, superior and middle temporal 

cortex, and, to a lesser degree, inferior temporal cortex (see Figure 5). 
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Figure 5: Motor Execution Clusters 

Two characteristic time courses included: (a,b) symmetric broad and (c,d) symmetric narrow. High 

gamma cluster activity patterns are shown on the left (normalized power (np) over time (t), in seconds), 

electrode locations for clusters on the right.  Solid vertical line show trial alignment condition and fainter 

vertical line show average location of other alignment condition.  Average audio signal amplitude 

indicated by gray shaded region. Both broad and narrow clusters are seen for both stimulus alignment (a, 

c) and voicing alignment (b, d) cases. 

III.4.iv Auditory Processing 

 The final set of clusters exhibited later initiation of activity and fall primarily in 

the superior temporal gyrus and neighboring cortical regions (Figure 6). A symmetric 

activity pattern, termed the Auditory Processing – Symmetric (AP-s) time course, was 

exhibited by one cluster in each alignment case, as shown in Figure 6a (stimulus aligned) 
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and Figure 6b (voice aligned). In these clusters, activity begins to ramp up 10 ms after 

voice onset and is approximately centered around the self-produced acoustic signal, with 

a peak 570 ms after voice onset.   A second time course, termed Auditory Processing – 

Ramp (AP-r), was exhibited by one cluster in the voice aligned analysis (Figure 6c). In 

this cluster, activity quickly ramps up just prior to voice onset (initializing 50 ms before 

voicing) and peaks 200 ms after voice onset.  This is followed by a gradual decay to 

baseline after production is complete. 

 

Figure 6: Auditory Processing Clusters 

Two characteristic time courses included: (a,b) symmetric and (c) ramp.  High gamma cluster activity 

patterns are shown on the left (normalized power (np) over time (t), in seconds), electrode locations for 

clusters on the right. Solid vertical line show trial alignment condition and fainter vertical line show 

average location of other alignment condition.  Average audio signal amplitude indicated by gray shaded 

region. The symmetric pattern is seen in the stimulus presentation (a) and voicing onset (b) alignment 

cases, while the ramp activity is only seen in the voice aligned case (c).  
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III.5 Discussion 

In this study, a Kalman filter-based trend analysis and an unsupervised hybrid clustering 

procedure that combines partitioning and hierarchical clustering were used to identify 

eight canonical time courses of neural activity (as measured by signal power in the 70-

150 Hz range) during production of simple speech utterances. Unsupervised clustering 

analysis takes a data-driven approach to segment responses into groupings with common 

representations while relaxing reliance on prior knowledge. The resulting clusters fell 

into four pairs, with each pair showing peak activity during one of four major stages of 

overt word reading: early stimulus processing, phonological-to-motor processing, motor 

execution, and auditory processing of the self-produced utterance. Furthermore, the large 

majority of electrodes displaying these canonical activity patterns were located in brain 

regions that have been associated, in prior studies, with the processing stages during 

which peak activity occurred. This pattern occurred in the absence of any prior 

knowledge of processing in the speech network, indicating that the analyses successfully 

extracted canonical time courses that reflect different functional components of the 

speech production process. 

 The identified clusters fell into two main shape classes: symmetric, in which 

activity increases from baseline at approximately the same rate it decreases back down to 

baseline, and ramp5, in which activity increases quickly but ramps down gradually over 

                                                        
5 Notably, the ramp pattern identified here is in a downward direction starting after the activity peak, 
whereas the ramp activity pattern identified by (Cheney and Fetz, 1980) from single unit motor 
cortex recordings during a manual isometric task was in an upward direction starting from baseline. 
This difference indicates that the ramp profile identified herein is not a human homolog of the ramp 
activity profile identified by (Cheney and Fetz, 1980) during primate movements. 
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the course of word production. The symmetric pattern occurred in all four processing 

stages, whereas the ramp pattern occurred in all but the motor execution stage. In terms 

of neural processing, the ramp profile indicates that the processing load for neurons in the 

region of the electrode rises quickly but only gradually decays until processing in that 

area is complete, and a symmetric activity pattern is indicative of a brain region where 

processing returns to baseline at the same rate that it arises.  

 Two of the eight canonical clusters, ESP-s and ESP-r, showed activity onsets 

within 40 ms of visual stimulus presentation and peaked within 210 ms. The ESP-s 

cluster then quickly returned to a near-baseline value within 310 ms (Figure 3a). 

Electrodes with this activity pattern were found in the left hemisphere near the junction of 

the temporal pole and lateral frontal orbital cortex. Lateral frontal orbital cortex has been 

associated with visual object identification, with higher activity for more confidently 

identified objects (Chaumon et al., 2014). In the right hemisphere, the ESP-s time course 

was found in middle and inferior posterior temporal cortex (PTC), regions which have 

been associated with saccadic eye movements (Zhou and Shu, 2017) and reading of non-

word orthographic stimuli (Vigneau et al., 2005) such as those in our protocol. Although 

ESP-s activity returned nearly to baseline well before onset of voicing, it maintained a 

small amount of activity until the end of the trial (after vocalization was complete). In the 

cued auditory word repetition study, (Leonard et al., 2019) identified an activation time 

course exhibiting a similar pattern (cluster 3 in Figure 4 of (Leonard et al., 2019)); the 

authors suggest that this cluster may be involved in holding the word in working memory 
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during the delay period. Although our protocol does not involve a delay period, it may 

still require retention of phonological information until the end of the production process.  

 In contrast to the ESP-s cluster, the ESP-r cluster shows a more gradual activity 

decrease toward baseline, reaching its baseline value at approximately the same time that 

vocal output starts (Figure 3b). Like the ESP-s cluster, the ESP-r cluster was found in 

middle/inferior PTC regions associated with reading (bilaterally in this case). 

Additionally, an electrode with the ESP-r time course was found in left inferior frontal 

cortex near the junction of the posterior inferior frontal sulcus and the precentral sulcus, a 

region associated with speech motor programming (Guenther, 2016). The activity offset 

ramp of the ESP-r cluster overlaps substantially with activity in the clusters from the next 

processing stage, phonological-to-motor processing, with the PtM-s and PtM-r clusters 

reaching peak activity during the ramp-down of activity in the ESP-r cluster. The activity 

offset rate of the ESP-r cluster is very similar to the onset rates for the PtM-r and PtM-s 

clusters (see Table 2), suggestive of a gradual transfer of processing from the ESP-r 

electrode locations to the PtM electrode locations. This interpretation receives support 

from the ECoG study of (Collard et al., 2016), who identified significant high gamma 

interactions between inferior temporal electrodes (the general location of our ESP-r 

electrodes) and left inferior frontal electrodes (where a large proportion of our PtM-r and 

PtM-s electrodes are located) during the period between stimulus onset and vocal 

production in a picture naming task (see also (Korzeniewska et al., 2011)).   

 The next group of canonical time courses, the phonological-to-motor processing 

group, show peak activity approximately 250-300 ms after the early stimulus processing 
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group and 340-480 ms before voicing onset (Figure 4). In addition to the anatomical 

locations exhibiting the ESP-r and ESP-s time courses, the PtM-s and PtM-r time courses 

are particularly prevalent in left hemisphere frontal cortex, with only a handful of 

electrodes in right frontal cortex. Particularly dense concentrations are found around left 

inferior frontal sulcus, an area associated with phonological working memory 

(Buchsbaum et al., 2005; Rottschy et al., 2012), and left ventral premotor cortex, an area 

associated with speech motor planning (Guenther et al., 2006; Guenther, 2016). Left 

lateralization of the PtM clusters is in keeping with the well-known association between 

left inferior frontal cortex and language output processing (e.g., (Broca, 1861, 1865; 

Friederici, 2017)) as well as speech motor planning (Flinker et al., 2015; Guenther, 

2016), supporting the interpretation that these clusters are involved in phonological 

processing, including translation of phonological information into speech motor 

programs. In this regard, the gradual offset of the PtM-r traces, which continues through 

the production period, may be indicative of a gradual decrease in working memory and 

speech motor programming load as each phoneme in the utterance is generated. This 

view is supported by the fact that the offset rate of the PtM-r cluster is approximately the 

same as the onset rate of the motor execution cluster ME-sb, which is suggestive of a 

gradual hand-off of processing from planning to execution mechanisms starting roughly 

350 ms before voice onset and continuing until articulation is near completion. Support 

for this view comes from (Korzeniewska et al., 2011), who found directed causal 

interactions between a site in left inferior frontal gyrus (where many PtM-r electrodes are 

found) to a number of sites in perisylvian areas and ventral sensorimotor cortex (where 
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many electrodes exhibiting canonical motor time courses are found in the current study) 

prior to spoken responses in a picture naming task and an auditory word repetition task.  

 In addition to the locations described above, PtM-s and PtM-r activity is also 

found in left hemisphere auditory and somatosensory cortical regions near the posterior 

portion of the Sylvian fissure. This activity may be related to the retrieval of phonological 

codes (Buchsbaum et al., 2001) and/or the generation of auditory and somatosensory 

expectations for upcoming speech sounds (Guenther, 2016).  

 The motor execution group consisted of broad and narrow canonical time courses 

that peaked shortly after voice onset, both with symmetrical shapes (Figure 5). A 

substantial percentage of electrodes from this group surrounded the central sulcus in the 

ventral sensorimotor cortex, where motor and somatosensory representations of the 

speech articulators are located (Penfield and Roberts, 1959; Takai et al., 2010; Bouchard 

et al., 2013; Guenther, 2016). Activity onset in the ME-sn time course begins 380 ms 

prior to voicing onset, with activity returning to baseline at approximately the same time 

or shortly after the acoustic signal ends. Given that the delay between motor cortical 

activity and movement onset is approximately 40 ms (Guenther et al., 2006) and 

articulatory movements for an isolated utterance can begin hundreds of ms prior to vocal 

onset (Conant et al., 2018), it is likely that the ME-sn time course is driven at least in part 

by motor cortical neurons initiating movements of the vocal tract musculature, along with 

corresponding somatosensory cortical responses. Notably, however, electrodes displaying 

the ME-sn activity pattern are not limited to sensorimotor cortex; a large number of ME-

sn responses were also found in superior temporal cortex and inferior frontal cortex, both 
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with a right hemisphere bias. These regions have been associated with auditory feedback 

control mechanisms in speech production that monitor auditory feedback of one’s own 

speech and generate motor commands to correct perceived deviations from the desired 

acoustic signal (Guenther et al., 2006; Guenther, 2016).   

 The ME-sb time course was found in most of the same cortical regions as the ME-

sn time course with the exception of right inferior frontal regions; instead some 

electrodes exhibiting the ME-sb pattern were found in left inferior frontal cortex. Activity 

in the ME-sb cluster begins much earlier than in the ME-sn cluster, with an onset time 

more than 700 ms prior to the onset of vocal output. This is suggestive of motor planning 

processes, consistent with the view that left inferior frontal cortex is more involved in the 

generation of speech motor programs in a feedforward fashion, whereas right inferior 

frontal cortex is more involved in sensory feedback-based control mechanisms (Guenther 

et al., 2006). Activity in the ME-sb cluster does not return to baseline until well after 

vocalization is complete. Similarly, (Leonard et al., 2019) similarly found a cluster 

throughout much of sensorimotor and auditory cortex whose activity started more than 1 

second prior to vocal output, peaked approximately 200 ms after vocal onset, and 

extended beyond the acoustic output. The late return to baseline, well after the acoustic 

signal has ended, seems, on the surface, to be inconsistent with a motor planning 

interpretation. Notably, however, articulator movements in isolated utterances can 

continue hundreds of ms beyond vocal offset (Conant et al., 2018), suggesting that 

movement may still be ongoing when the ME-sb cluster returns to baseline.  
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 The final two canonical time courses, constituting the auditory processing group 

(Figure 6), had activity onsets that occurred near voice onset and activity peaks that 

occurred after the peak of the sound envelope of the vocalized utterance. Activity in the 

AP-r cluster increased rapidly with a more gradual offset of activity. The AP-s cluster 

showed a similar activity offset rate but a more gradual onset, resulting in its symmetric 

shape. The offset rate of both AP clusters approximately follows the offset rate of the 

acoustic envelope (see Figure 6). Given that activity in these clusters lags the vocal 

output of the subject and that the corresponding electrodes are predominantly located in 

superior temporal cortex, the AP-r and AP-s clusters very likely represent auditory 

cortical responses to one’s own voice during speech.  

 In summary, our results indicate that neural activity underlying the production of 

orthographically presented syllables falls broadly into two temporal profile shape 

categories, ramped and symmetric. Furthermore, distinct characteristic time courses are 

found during four different task stages: early stimulus processing, phonological-to-motor 

processing, motor execution, and auditory processing of self-produced speech, with 

activity offset ramps in earlier stages approximately matching activity onset rates in later 

stages. Finally, the analysis tools developed in the current study, most notably the 

Kalman filter-based trend analysis, provide a powerful means for identifying and 

quantitatively characterizing the neural computations underlying human cognition and 

behavior beyond the domain of speech production.  
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III.6 Supplemental 

III.6.i Comparison Between Alignment Conditions 

 Two alignment conditions were considered in the analysis of this chapter and 

presented in the results in §III.4, alignment by the presentation of the orthographic 

stimulus and alignment by the onset of voicing.  The results and discussion, §III.4 and 

§III.5, discussed a set of canonical time courses across both alignment conditions, with a 

total of eight characteristic temporal profiles.  It was noted that four of the eight were 

present in both alignment conditions.  Here we justify using the results of the two 

alignment conditions as a combined set of characteristic time courses instead of breaking 

them up into two separate and distinct sets of results. 

 The four temporal profiles that were present in both alignment cases were 

Phonological-to-Motor ramp (PtM-r), Motor Execution symmetric broad (ME-sb), Motor 

Execution symmetric narrow (ME-sn), and Auditory Processing symmetric (AP-s).  The 

average voicing onset occurred 916 ms after stimulus presentation, as noted in §III.3.vii.  

Using this, we plot the time course of two alignment cases for each of the four cluster on 

top of each other in Figure 7, with the stimulus alignment case plotted with solid lines 

and the voicing onset plotted with dashed lines.  The figure is broken up by cluster: (a) 

PtM-r, (b) ME-sb, (c) ME-sn, and (d) AP-s.  Further, each cluster has two plots: (-i) 

aligning the time course for the two alignment conditions by the average delay in voicing 

onset, e.g., shifting the voicing onset time course by 916 ms, and (-ii) aligning the time 

course for the two conditions by the location of their peak values. 
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 It is seen that there is a high degree of similarity between the activity patterns 

collected from the two alignment conditions, giving strong evidence that the analysis was 

correct in combining results across to the conditions and further that these are indeed 

characteristic time courses.  The similarity is strong when using the average latency in 

voicing onset (Figure 7 (-i)) and is seen to only have minor fluctuations when aligned by 

the peak values (Figure 7 (-ii)). 

 

 

Figure 7: Comparison between Clusters Seen in Both Alignment Conditions 

The four clusters seen in both the stimulus presentation (solid lines) and voicing onset (dashed lines) 

alignment conditions are plotted together for an illustration of the visual similarity: (a) PtM-r, (b) ME-sb, 

(c) ME-sn, and (d) AP-s.  Normalized power (np) is plotted over time (t).  In (-i) t=0 represents the time 

of the stimulus presentation.  Voicing onset time courses have been shifted by 916 ms (average voicing 

onset latency) to align the responses from the two cases.  In (-ii), both time courses have been shifted to 

have their peaks located at t=0.  Cluster colors have been maintained from previous figures for 

completeness. 
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III.6.ii Gradual Transfers of Processing 

 In §III.5 it was commented that the offset of earlier processing stages overlaps 

with the activity onset in the next processing stage, with their activity rates, onset and 

offset, having a high degree of similarity.  This was attributed to a gradual transfer of 

processing from the earlier processing stage to the next stage.  Here we explore this 

observation more, highlighting the power of our methodology which allows for 

quantitative assessment of trends. 

 Clusters in all four processing stages were present in the stimulus alignment 

presentation case.  Inspecting Table 2, it can be clearly seen that there are cases where an 

earlier processing stage offset rate matches closely with the onset rate of the next 

processing stage.  To quantitatively measure rates that match closely, the same threshold 

is used as was used for defining a symmetrical shape, i.e., the absolute value of the offset 

rate needs to be within 10% of the value of the onset rate (refer to §III.3.ix).  This is 

found in three clear cases: 1) from Early Stimulus Processing ramp (ESP-r) to 

Phonological-to-Motor ramp (PtM-r), 2) PtM-r to Motor Execution symmetric broad 

(ME-sb), and 3) Motor Execution symmetric narrow (ME-sn) to Auditory Processing 

symmetric (AP-s). 

 These results are further illustrated in Figure 8, with (a) for ESP-r to PtM-r, (b) 

for PtM-r to ME-sb, and (c) for ME-sn to AP-s.  In Figure 8 each pair of processing 

stages is shown in subplot (-.i), i.e., (a.i) for ESP-r to PtM-r.  Subplots (-.ii) zoom in on 

the part of the trial period between the peak of the activity in the earlier and later 

processing stage.  Visual inspection of this figure shows that the activity of the earlier 
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processing stage is decreasing at the time that activity in the next stage is increasing, and 

at about the same absolute rate.  To make this more explicitly striking, subplot (-.iii) 

provides a view where the offset rate of the earlier processing stage is flipped to show a 

positive trend and aligned with the peak of the next processing stage.  For example, (a.iii) 

shows the onset rate for PtM-r in green, displaying the same result as in (a.ii), but ESP-r, 

the earlier processing step in the pair, has been flipped so that the negative offset rate in 

(a.ii) appears as a positive rate in (a.iii).  It is then shifted so that the peaks align.  This is 

done so that the offset and onset rates between the two stages can viewed in direct 

comparison.  Visually inspecting the results across the three pairs of results show a very 

high visual alignment between earlier stage offset rates with the next stage onset rates, 

providing further evidence of the potential for a gradual transfer of processing from one 

stage to the next, and from one cluster to another. 
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Figure 8: Gradual Transfers of Processing in Stimulus Alignment Case 

Normalized power (np) over trial time (t), in seconds, for paired processing stages: (a) Early Stimulus 

Processing ramp (ESP-r) to Phonological-to-Motor ramp (PtM-r), (b) PtM-r to Motor Execution 

symmetric broad (ME-sb), and (c) Motor Execution symmetric narrow (ME-sn) to Auditory Processing 

symmetric (AP-s).  Each processing pair contains three plots: (-.i) entire trial period, (-.ii) zoomed in to 

period between activity peaks where earlier processing stage offset rate and next processing stage onset 

rate can be seen, (-.iii) similar view to (-.ii) but flipped (over y-axis) version of earlier processing stage 

with peaks aligned.  All cluster colors maintained to match other figures in this chapter. 
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 Figure 9 shows the same layout, but for the onset alignment case.  In this 

alignment case the Early Stimulus Processing stage was not present.  Three pairs of 

processing stages exhibited this gradual transfer of processing: 1) Phonological-to-Motor 

symmetric (PtM-s) to ME-sn, 2) PtM-r to ME-sb, and 3) ME-sn to AP-s, as shown in 

Figure 9 (a), (b), and (c), respectively.  The plots are laid out similar to Figure 8, with 

numerical results presented in Table 2.   
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Figure 9: Gradual Transfers of Processing in Voicing Alignment Case 

Normalized power (np) over trial time (t), in seconds, for paired processing stages: (a) Phonological-to-

Motor symmetric (PtM-s) to Motor Execution symmetric narrow (ME-sn), (b) Phonological-to-Motor 

ramp (PtM-r) to Motor Execution symmetric broad (ME-sb), and (c) ME-sn to Auditory Processing 

symmetric (AP-s).  Each processing pair contains three plots: (-.i) entire trial period, (-.ii) zoomed in to 

period between activity peaks where earlier processing stage offset rate and next processing stage onset 

rate can be see, (-.iii) similar view to (-.ii) but flipped (over y-axis) version of earlier processing stage 

with peaks aligned.  All cluster colors maintained to match other figures in this chapter. 
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 Gradual transfers from PtM-r to ME-sb and ME-sn to AP-s were seen in both 

alignment cases, while ESP-r to PtM-r and PtM-s to ME-sb were only seen in the 

stimulus presentation and voicing onset alignment cases, respectively.  The ESP-r cluster 

was only present in the stimulus presentation alignment case, while the PtM-s cluster was 

only present in the voicing onset cluster.   

III.6.iii Shape Similarity Across Processing Stages 

 Another type of analysis that falls out of being able to quantitatively characterize 

trends is the ability to see if the same activity pattern is present in different processing 

stages.  Assessing similarity in the trends between change points allows quantitative 

measurement of activity shape similarity.  This is conducted by measuring the similarity 

in the onset rate, offset rate, and plateau duration (if it exists).  Again, a 10% threshold is 

used to define similarity, as was discussed in §III.3.ix. 

 Phonological-to-Motor symmetric (PtM-s) and Motor Execution symmetric 

narrow (ME-sn) are found to have the same activity pattern in the voicing onset 

alignment case, which was the only case that has PtM-s, as can be quantitatively seen in 

Table 2.  If the similarity threshold is relaxed from 10% to 15%, Auditory Processing 

symmetric (AP-s) is seen to have the same activity as PtM-s in the voicing onset case and 

with ME-sn in both alignment cases (stimulus presentation and voicing onset).  

 Figure 10 illustrates this finding.  Figure 10 (a) displays PtM-s, ME-sn, and AP-s 

for the voicing onset alignment condition.  Figure 10 (b) shows the three clusters when 

aligned by their peaks, illustrating the strong similarity in their processing shapes.  The 

peak of PtM-s precedes ME-n by 590 ms and AP-s by 1050 ms.  ME-n precedes AP-s by 
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460 ms.  Close inspection of Figure 10 (b) shows AP-s slightly deviating from the other 

two clusters during the onset rate, which is why it does not fit a similarity score of 10%, 

but does at 15%. 

 Additional inspection of Figure 10 (b) presents another interesting result.  The 

average audio signal amplitude, indicated by the gray shaded region, appears to show a 

relatively similar offset duration as the offset durations of the three clusters.  We did not 

dig into this further, but make this observation in the hope that others may explore 

further. 

 
Figure 10: Same Activity Across Processing Stages 

Normalized power (np) over time (t), in seconds, for clusters from voicing onset alignment case with 

same activity pattern.  (a) Phonological-to-Motor symmetric (PtM-s), Motor Execution symmetric 

narrow (ME-sn), and Auditory Processing symmetric (AP-s) clusters plotted relative to trial time.  (b) 

PtM-s, ME-sn, and AP-s plotted when aligned by their peak value.  Average audio signal amplitude 

indicated by gray shaded region.  All cluster colors are maintained throughout the chapter. 

III.6.iv Same Offset, Different Processing Stage 

 Quantitative assessment of trend comparisons can also be done in absolute terms.  

In §III.6.ii and §III.6.iii trends were compared in relative terms, i.e., by shifting the 

signals (and in §III.6.ii flipping them) to have them overlap in time.  In contrast, 

comparisons in absolute terms look for not only for the trends to be the same, but also for 



 

 

89 

the time they occur in the trial to be the same.  The same threshold of 10%, §III.3.ix, is 

used for rate similarity, but with the addition of needing to adhere to absolute temporal 

location of where the rate occurs. 

 The criteria for this additional analysis was met between a pair of clusters in the 

voicing onset alignment condition – Motor Execution symmetric narrow (ME-sn) and 

Auditory Processing ramp (AP-r).  ME-sn and AP-r were found to have the same offset 

rate and absolute timing within the trial for the entirety of their offsets, as shown in 

Figure 11 (c).  This opens up potential future areas of research to explore why activity 

from separate processing steps are deactivating at the same time and at the same rate. 

 

 
Figure 11: Identical Offset Activity from Different Processing Stages 

Normalized power (np) over time (t), in seconds, for (a) Motor Execution symmetric narrow (ME-sn) 

and (b) Auditory Processing ramp (AP-r).  (c) Clusters plotted together to illustrate same offset activity. 
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CHAPTER IV: Anatomically Constrained Clusters 

IV.1 Introduction 

 Functional mappings of the brain have resulted in distinct regions for various 

functionalities, with neighboring regions for processing similar functions, i.e. motor 

processing of the index finger is anatomically co-located and next to processing for the 

middle finger (Penfield and Boldrey, 1937; Penfield and Roberts, 1959).  This has created 

anatomical parcellations that are also functional parcellations.  The speech network has 

been previously shown to have a functional breakdown across anatomical regions of the 

brain, starting with lesion studies that identified Broca’s and Wernicke’s areas (Broca, 

1861, 1865; Wernicke, 1874) and continuing with numerous studies since, see 

(Geschwind, 1979; Guenther, 2016) for a review. 

 In CHAPTER III, characteristic time courses during speech were found in the 

absence of any assumptions or restrictions on the anatomical locations of the recording 

electrodes.  This approach let the underlying data empirically drive the findings without 

prior knowledge of the anatomical and functional brain network.  Results showed diffuse 

activity across many brain regions, with a cluster functional breakdown that matches 

speech processing flow (Guenther, 2016), namely Early Stimulus Processing, 

Phonological-to-Motor Processing, Motor Execution, and Auditory Processing.  It was 

seen, and discussed, that activity within these functionally distinct processing clusters 

also had anatomical preferences.  Several clusters had diffuse activity across brain 

regions, but were seen to have anatomical focal areas. 
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 In this chapter we explore how results change when anatomical constraints are 

included to enforce locality within brain regions.  Our goal is to tease out and separate the 

observed focal areas found in CHAPTER III and see if any different results emerge.  

Anatomical locality is enforced in the creation of clusters, biasing results towards having 

both local anatomical and functional (temporal profile) similarity.  We find that the 

results generally still hold, with sub-clusters forming in each of the clusters previously 

found that are more anatomically constrained to the observed focal areas.  We first 

discuss how the approach is updated to enforce an anatomical bias in the cluster creation.  

We then present the results and a discussion before concluding. 

 

IV.2 Methods 

 The exponentially weighted distance measure from CHAPTER III, Equation 1, is 

modified to encourage anatomical locality.  A spatial kernel (Kubanek and Schalk, 2015) 

is used to provide the constraint by setting an anatomical probabilistic distribution over 

which local anatomical regions could have similar functionality.  Spatial kernels are 

designed to give differential weight in a spatial pattern so some regions contribute more 

to the result while others contribute less.  In this application we want regions close to an 

electrode to get highly weighted as being anatomically similar, while those further away 

get less weight.  Thus, the kernel should produce a high value for two electrodes close 

together and a low value to two electrodes that are far away, such as the frontal lobe and 

occipital lobe. 
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 Unless otherwise specified, all the methods from CHAPTER III are applied to this 

analysis as well.  Additional details on the modifications to the methods beyond what is 

discussed in the following subsections can be found in APPENDIX B. 

IV.2.i Anatomical Representation 

 Anatomical space is measured using the Montreal neurological institute (MNI) 

coordinates.  Electrode locations are provided in MNI coordinates as covered in 

CHAPTER III.  Therefore, anatomical distances will be measured as differences in the 

MNI coordinates between electrodes. 

 It is desired to allow bilateral clusters to form and not unnecessarily limit 

resulting clusters to be unilateral.  Bilateral activations in similar anatomical regions have 

been found during speech processing stages, i.e. auditory reception in superior temporal 

gyrus (STG) (Guenther, 2016).  The absolute value of the MNI X-coordinate, which 

captures the lateral displacement, is taken to allow for the creation of both unilateral and 

bilateral clusters.   

 Analysis was also conducted with the raw value of the X-coordinate.  Results 

from this additional analysis were similar to those discussed later in this chapter, but the 

bilateral clusters were broken up into two clusters, one for each hemisphere.  These 

results are not shown or discussed further. 

IV.2.ii Spatial Kernel 

 The spatial kernel used in this analysis takes the form of a Gaussian radial basis 

function (RBF) with a plateau of similarity near the center and then a Gaussian roll-off.  
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This provides a high measure of similarity for electrodes that are close to one another, a 

region of roll-off for decreasing similarity as distance is increased, and near-zero values 

for electrodes are very far away.  These are desired properties, yet are manifested in a 

simple kernel allowing for minimal parameterization.   

 A radial spatial relationship, however, does not accurately capture the anatomical 

construct of the brain, as such dynamics as cortex folding, i.e. sulci and gyri, create 

spatial differences that the RBF does not take into account.  Other kernels could be used 

here (Potworowski et al., 2012; Chintaluri and Wójcik, 2015), but applying a RBF kernel 

was found to provide enough insight into the results of this analysis to allow conclusions 

to be drawn without greatly increasing complexity.  A different kernel could have been 

used if a larger population of subjects was available and tighter anatomical clusters was 

desired.  For example, a different type of kernel may be required if the desire is to 

anatomically break up different articulators for speech production.  We leave this type of 

extension to others. 

 The RBF kernel is parameterized as follows.  A locality factor, θ, controls the 

degree of spatial locality that the kernel enforces.  This locality factor is used to set the 

radius of plateau for perfect spatial similarity and also for the shape and roll-off rate for 

the kernel.  In the final implementation, θ was used for the plateau radius and both the 

mean and standard deviation of the Gaussian roll-off, as shown in Equation 7.  After 

analysis with empirical data, the locality factor was set to 20 based the anatomical 

coverage it provided.  This resulting coverage had a general spatial extent on the order of 

coarse speech regions, i.e. Wernicke’s area.  This was the goal of the spatial kernel, to 
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cover coarse anatomical regions as opposed to fine regions.  Early analysis explored 

different values for θ, providing coarser or finer spatial extent.  It was found that many 

regions lacked enough electrodes to support finer regions, while coarser regions got too 

large and resulted in similar findings to CHAPTER III.  This value was not optimized, 

and similar to the kernel used, more time could have been devoted to optimizing this 

value if this was the main focus of the research.  Future research could explore 

optimizing this value more if it is required for other purposes.   

 Equation 7 shows the RBF kernel used for enforcing spatial locality between 

electrodes, 𝑘𝑒𝑟𝑛𝑒𝑙(∆).  The Euclidean distance between the MNI coordinates of a pair of 

electrodes, A and B, is taken as the distance ∆.  The vectors A and B are the MNI 

coordinates of the two electrodes that are being compared, with the absolute value of the 

X-coordinate being used to enable bilateral clusters, as described in §IV.2.i.  The kernel 

then operates on ∆ to compute spatially similarity.  The kernel is scaled by the locality 

factor just described, θ.  The scale factor, 𝛽, is grouped with the mixing factor for 

convenience, as described in §IV.2.iii.  The maximum in the exponent serves to create a 

plateau with radius θ where there is no difference in spatial distance. 

Equation 7: Spatial Kernel 

𝑘𝑒𝑟𝑛𝑒𝑙(∆) = 𝛽 𝑒
−

(max (∆,   𝜃)−𝜃)2

2𝜃2 , 𝑤ℎ𝑒𝑟𝑒 ∆ =  √∑(𝐴 − 𝐵)2 

IV.2.iii Distance Measure 

 The weighted spatial similarity of two electrodes from Equation 7 is then 

combined with the temporal difference between the electrodes’ high gamma power to 
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form the distance measure for clustering.  The temporal difference is the distance 

measure as described in Equation 1 of CHAPTER III (§III.3.viii), here referred to as 

TempDiff.  To ensure the two distances (the spatial and temporal) are scaled similarly, the 

logarithm of the temporal distance is taken.  Doing so requires adding one to TempDiff to 

enforce all values to be finite.  Several different ways to combine the two distances were 

researched, but the best performance was found when using a mixing term6.  Best 

performance was measured empirically through trial and error by comparing resulting 

temporal and spatial similarities for different mixing factors.  The combined distance 

measure is provided in Equation 8.  The mixing term, i.e. the product of the two distance 

measures, is scaled by a factor, α, and added to the expression for the temporal difference 

term, TempDiff.  The scaling factor α subsumes β (Equation 7) for convenience and was 

set experimentally. 

Equation 8: Distance Measure with Anatomical Constraint 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵) =  ln(𝑇𝑒𝑚𝑝𝐷𝑖𝑓𝑓 + 1) ∗ (1 +  𝛼 𝑘𝑒𝑟𝑛𝑒𝑙(∆)) 

 All other methods are the same as in CHAPTER III.  The distance measure of 

Equation 8 replaces Equation 1, with the rest of the steps following those described in 

CHAPTER III.   

 

                                                        
6 Alternative was to combine the temporal and spatial distance measures were explored and are 
discussed in APPENDIX B.   
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IV.3 Results and Discussion 

 This analysis creates a degree of variability in the results and thus the discussion 

on the results will be limited.  Results generally support the findings of CHAPTER III, 

primarily the breakdown by characteristic activity patterns, i.e. ramp and symmetric, and 

functional segmentation into four processing groupings: Early Stimulus Processing, 

Phonological-to-Motor processing, Motor Execution, and Auditory Processing.   

 The variability is primarily driven by the small number of electrodes that fall into 

several of the resulting clusters, stemming from the small subject sample size, and the 

mixing factor, α, in Equation 8.  This mixing factor tries to balance temporal similarity 

with spatial locality of the electrodes.  If it weights too much in favor of the spatial 

location, resulting clusters become tight anatomical parcellations with time courses that 

have large standard deviations and do not accurately capture the temporal profiles of 

individual electrodes in the cluster.  Going too far the other way results in the temporal 

similarity dominating the resulting clusters, with clusters very similar to CHAPTER III.  

Finding the right balance between these two is complicated by the limited number of 

electrodes.  The spatial kernel cannot be reduced too small with the limited number of 

clusters, as the resulting clusters will each have very few electrodes in them.  Thus 

clusters must represent more coarse spatial regions, i.e. on the order of Wernicke’s area.  

This enabled the creation of clusters with enough supporting electrodes in them.  Future 

research with more subjects should revisit the work of this section to explore the finer 

anatomical localization that can result if there are more supporting electrodes.   
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  With these limitations, this section will be narrow in its scope.  It will primarily 

serve to highlight and motivate the approach and potential benefit of this type of analysis, 

but to not put too much weight in the results.  It shows promise, however, that results 

followed those of CHAPTER III, with the results of this chapter largely being an 

anatomical sub-division of CHAPTER III.  This gives more support to the canonical 

temporal profiles found in the purely data-driven approach of CHAPTER III, and also 

helps support the characterizations found, the symmetric and ramp activity patterns. 

 For this discussion, we will only focus on the stimulus presentation alignment 

case.  A total of 12 clusters were found using the change in distance measure to include 

spatial similarity, Equation 8.  Results will be provided first, followed by a discussion 

connecting the results back to the findings generated without the additional anatomical 

constraint.  Results naturally fell into the same four groupings as CHAPTER III: Early 

Stimulus Processing (ESP), Phonological-to-Motor (PtM) processing, Motor Execution 

(ME), and Auditory Processing (AP).  Results will be presented in this order.  Colors will 

be used to differentiate clusters within a group, i.e. within ESP, but are reused from group 

to group.  We will refer to the results from this chapter as being anatomically constrained 

(AC) and will refer to the results from CHAPTER III as unconstrained or simply without 

the addition of AC in the prefix.  

 Anatomically constrained results from the voicing onset alignment case were the 

corollary of the onset alignment results of CHAPTER III and will not be discussed.   
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IV.3.i Early Stimulus Processing 

 Two clusters were found in the early stimulus processing (ESP) grouping that 

showed activity that is consistent with processing the visual orthographic stimulus, as 

shown in Figure 12.  Both clusters have a similar activity increase rate following stimulus 

presentation, followed by a decay back to baseline activity after a short duration of peak 

activity.  The green cluster shows some prolonged activity just above baseline levels for 

the duration of the task.  Both clusters show a slight increase in activity just after the peak 

of the acoustic response, which is only significant for the green cluster.  Anatomically, 

both clusters are located in the posterior and ventral regions of the temporal lobe.  

 

Figure 12: Anatomically Constrained Early Stimulus Processing Clusters 

Left – Characteristic high gamma power (normalized power (np)) time courses (time (t) in seconds).  

Solid vertical line indicates stimulus presentation and fainter vertical line shows average location of 

voicing onset.  Average audio signal amplitude indicated by gray shaded region.  Right –  electrode 

locations for clusters on the left.    

 

 Individual cluster results are broken out in Figure 13 (a) & (b).  In Figure 13 (a), 

the green cluster has a symmetric shape until just prior to reaching baseline activity, 

where there is an activity tail as the power remains variable and just above baseline 

levels.  We call this cluster Anatomically Constrained ESP symmetric (AC ESP-s).  An 

additional significant, but small symmetrical peak in activity starts just after voicing 
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onset and ends as voicing concludes.  Activity in this cluster is localized to middle 

posterior temporal cortex (PTC) in the right hemisphere.  This region has been associated 

with saccadic eye movements (Zhou and Shu, 2017) and reading of non-word 

orthographic stimuli (Vigneau et al., 2005).  The small elevated levels of activity 

throughout the duration of the task is similar to what (Leonard et al., 2019) found and 

attributed to working memory.   

 The orange cluster in Figure 13 (b) has a ramp activity pattern, with a quick ramp 

up to peak activity immediately following stimulus presentation and then a slower decay 

back to baseline activity.  We call this cluster Anatomically Constrained ESP ramp (AC 

ESP-r).  Larger variance is seen in the decay versus the ramp up.  Bilateral activity was 

found in the inferior temporal cortex, with additional middle PTC activity in the left 

hemisphere and superior PTC activity in the right hemisphere, regions also found to be 

involved in saccadic eye movements (Zhou and Shu, 2017) and reading of non-word 

orthographic stimuli (Vigneau et al., 2005) and visual stimuli (Iacoboni and Dapretto, 

2006; Buchweitz et al., 2009). 
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Figure 13: Anatomically Constrained Early Stimulus Processing Individual Clusters 

Anatomically Constrained Early Stimulus Processing (AC ESP) results are broken into two characteristic 

time courses: (a) symmetric and (b) ramp.  High gamma cluster activity patterns are shown on the left 

(normalized power (np) over time (t), in seconds), electrode locations for clusters on the right.  Solid 

vertical lines indicate stimulus presentation and fainter vertical lines show average location of voicing 

onset.  Average audio signal amplitude indicated by gray shaded region. 

 The anatomical constraint in this analysis resulted in two ESP clusters, each with 

limited number of electrodes present and constrained to the temporal lobe.  Both 

symmetric and ramp activity patterns were seen, but higher variance in the activity 

patterns is also seen due to the limited number of electrodes. 

IV.3.ii Phonological-to-Motor Processing 

 Four clusters fit the functional profile of phonological-to-motor (PtM) processing, 

with activity largely in premotor and word form areas as shown in Figure 14.  This 

grouping is primarily localized to the left hemisphere, with bilateral activity only present 

in one of the clusters and constrained to ventral regions, see orange electrodes in Figure 

14.  It is well known that the left hemisphere is involved with language processing 
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(Broca, 1861, 1865; Friederici, 2017).  In particular, it has been found to be specific for 

speech motor planning (Flinker et al., 2015; Guenther, 2016).  This lateralization, along 

with the timing discussed next, help support this group being given the name 

phonological-to-motor processing. 

 The activity in this grouping was similar across the four clusters, showing a ramp 

activity pattern.  The clusters were primarily broken up anatomically.  In all clusters, 

activity starts just after stimulus presentation and peaks around half a second before 

voicing onset.  Decay patterns showed large tails in most of the clusters, with activity not 

returning to pre-task baseline levels until after voicing is complete.  Activity in the tails 

of the activity patterns is where the clusters differ the most, as seen in Figure 14.  A large 

slowly decaying tail in the blue cluster separates that cluster from the rest, along with a 

slightly delayed peak.  The red cluster is also distinct in its initial symmetric shape that 

turns into a slow decaying tail.  The red, orange, and green clusters all have the same 

activity rise patterns, with the blue cluster lagging.  Each cluster will now be discussed in 

a little more detail, with individual cluster break out results shown in Figure 15. 

 

Figure 14: Anatomically Constrained Phonological-to-Motor Processing Clusters 

Left – Characteristic high gamma power (normalized power (np)) time courses (time (t) in seconds).  

Solid vertical line indicates stimulus presentation and fainter vertical line shows average location of 

voicing onset.  Average audio signal amplitude indicated by gray shaded region.  Right –  electrode 

locations for clusters on the left.  
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 The first Anatomically Constrained Phonological-to-Motor (AC PtM) processing 

cluster discussed is shown in green in Figure 15 (a).  Activity ramps up quickly after 

stimulus onset and initially has a brief faster decay for 100ms after the peak.  After this 

the decay pattern slows down to a more gradual decay and has higher variance, returning 

to baseline levels after voicing completes.  This AC PtM cluster is the most anatomically 

widespread, covering frontal, temporal, and parietal lobes in the left hemisphere.  This 

results from the strength in the temporal similarity between the electrodes which is able 

to overcome the spatial distance measure which discourages this behavior.  We name this 

cluster AC PtM diffuse ramp (AC PtM-dr).  While activity is anatomically widespread, 

the majority of the electrodes fall in the frontal cortex.  This area has been found to be 

heavily associated with language production and speech planning processes, including 

phonological working memory (Buchsbaum et al., 2005; Rottschy et al., 2012) in the left 

inferior frontal sulcus.  The left premotor cortex is also seen to have a large number of 

electrodes present.  This area has been associated with speech motor planning (Guenther 

et al., 2006; Guenther, 2016).  Inferior somatosensory and posterior superior temporal 

gyrus conclude areas outside of the frontal cortex included in this cluster, regions that 

have also been found to be active during motor planning (Flinker et al., 2015; Collard et 

al., 2016; Guenther, 2016). 

 The second cluster of the AC PtM group, shown in orange in Figure 15 (b), is the 

only one that displayed bilateral activations.  This cluster is constrained to ventral regions 

of the brain in both the temporal and occipital lobes.  We call this cluster AC PtM ventral 

ramp (AC PtM-vr).  Both hemispheres had activity in the posterior interior temporal 
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cortex, an area found to be associated with word and nonword readings (Vigneau et al., 

2005).  Active occipital regions have been described as visual word form areas, with 

activity in occipital and fusiform gyrus being found to correlate with reading 

comprehension and speech planning (Moore and Price, 1999).  Activity in this cluster has 

the fastest activation and returns to baseline activity slightly quicker than the other 

clusters, which keeps it in line with visual reading comprehension. 

 The third cluster in the AC PtM grouping is shown in blue in Figure 15 (c).  The 

activity pattern of this clusters is similar to AC PtM-dr and AC PtM-vr, but maintains a 

fairly constant and slower decay, as opposed to an initial quicker decay just after peak 

activation.  This is seen as better fit as a linear decay as opposed to the slightly 

exponential decays of the previous clusters.  Activity persists at a higher activity level 

than the previous cluster and lasts longer.  Further, the cluster has a slight delay in 

activation compared to the other clusters in this group.  Electrodes active in this cluster 

are localized to inferior regions boarding the frontal and parietal lobes, similar to the first 

cluster, but with more inferior coverage.  This region includes the sensorimotor cortical 

areas, which are well known and traditionally associated with motor planning and motor 

execution (Guenther, 2016).  A single electrode is also seen in the posterior middle 

temporal gyrus.  Since the bulk of the electrodes are in or near sensorimotor cortical areas 

we name this cluster AC PtM sensorimotor ramp (AC PtM-sr).  

 The final AC PtM cluster is shown in red in Figure 15 (d).  This cluster is the 

most dissimilar from the other clusters.  Activity in this cluster initially displays a 

symmetric pattern, ramping up just after stimulus presentation and decaying at the same 
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rate, before exhibiting a slowly decaying and highly variable tail.  We name this final 

cluster of the group AC PtM symmetric (AC PtM-s) due to this initial shape.  The tail of 

this cluster is more similar with the ramp pattern and similar to the rest of the clusters in 

this group.  This cluster has only a few electrodes in it, with all electrodes in anterior 

regions of the frontal lobe, an area active with reading comprehension (Buchweitz et al., 

2009).  This may help to explain the short duration and primary symmetric shape that 

ends well before voicing starts.  The tail activity may be involved in phonological 

working memory, similar to electrodes in the first cluster that are in the vicinity of the 

inferior frontal sulcus (Buchsbaum et al., 2005; Rottschy et al., 2012). 
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Figure 15: Anatomically Constrained Phonological-to-Motor Individual Clusters 

Anatomically Constrained Phonological-to-Motor (AC PtM) results are broken into two characteristic 

time courses: (a-c) ramp and (d) symmetric.  The ramp clusters are subdivided to three clusters: (a) 

diffuse, (b) ventral, and (c) sensorimotor.  High gamma cluster activity patterns are shown on the left 

(normalized power (np) over time (t), in seconds), electrode locations for clusters on the right.  Solid 

vertical lines indicate stimulus presentation and fainter vertical lines show average location of voicing 

onset.  Average audio signal amplitude indicated by gray shaded region.   

IV.3.iii Motor Execution 

 The next grouping also is made up of four clusters, but all clusters in this group 

have bilateral activity.  Further, all clusters are active during speech production, with 

activity starting prior to voicing and ending as voicing concludes, hence the group will be 

called Anatomically Constrained Motor Execution (AC ME).  Results for this group are 

shown in Figure 16.  Two of the clusters in this group, green and orange, are separated by 
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anatomical location with slight differences in the temporal activity duration, or 

broadness.  The other two clusters show more distinctive shapes.  The blue cluster shows 

a modification to the ramp shape, while the red cluster shows an initial period of 

suppression, both shapes that were not seen in CHAPTER III.  A detailed description of 

each cluster is now provided, with the individual cluster results shown in Figure 16. 

 

Figure 16: Anatomically Constrained Motor Execution Clusters 

Left – Characteristic high gamma power (normalized power (np)) time courses (time (t) in seconds).  

Solid vertical line indicates stimulus presentation and fainter vertical line shows average location of 

voicing onset.  Average audio signal amplitude indicated by gray shaded region.  Right –  electrode 

locations for clusters on the left.  

 The first AC ME cluster discussed is the green cluster in Figure 17 (a).  The 

temporal profile of this cluster displays wide activation, with activity increasing above 

baseline immediately following stimuli presentation, peaking during voicing onset with a 

broad plateau, and then a symmetrical ramp down back to baseline levels after voicing 

has completed.  We call this cluster AC ME symmetric broad (AC ME-sb) due to the 

broad activity duration.  Anatomically, electrodes are located bilaterally within anterior 

temporal regions, with many electrodes falling on the ventral surface.  Left hemisphere 

activity also shows some activity in anterior frontal regions.   

 The second cluster in the AC ME group is shown in orange in Figure 17 (b).  This 

cluster shows a similar temporal activity pattern as AC ME-sb, but is more temporally 

constrained.  This cluster is also centered over voicing and shows the symmetric pattern.  
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We name this cluster AC ME symmetric narrow (AC ME-sn).  Electrodes in this cluster 

are located bilaterally within primary sensorimotor and auditory cortical areas.  

Electrodes surrounding the central sulcus are where motor and somatosensory 

representations of speech articulators are located (Penfield and Roberts, 1959; Guenther, 

2016).  Electrodes present in superior temporal cortex and inferior frontal cortex are 

located in regions found to be associated with auditory feedback for speech control 

(Guenther et al., 2006; Guenther, 2016)   Additional activity is found in depth electrodes 

near Heschl’s gyrus and planum polare, which have also been found active for speech 

production (Schönwiesner and Zatorre, 2009). 

 The third AC ME cluster is in blue in Figure 17 (c).  This cluster shows an 

activity pattern that is a modification of the ramp shape, where slowly increases after 

stimulus presentation and quickly decreases after voicing.  This is the inverse of the ramp 

activity pattern we has seen thus far.  Hence, we name this cluster AC ME inverse ramp 

(AC ME-ir).  Electrodes in this cluster are also located bilaterally within primary 

sensorimotor and auditory cortical areas, similar to AC ME-sn.  Activity lasts longer in 

this cluster, with activity near the end being more consistent with the Anatomically 

Constrained Auditory Processing group, §IV.3.iv.  The activity from may be involved in 

auditory feedback elements of speech production (Guenther, 2016). 

 The final cluster in the AC ME group, red in Figure 17 (d), is only seen in two 

electrodes.  These electrodes are constrained to the anterior side of the central sulcus, 

with one electrode on each hemisphere.  The shape of this cluster is very similar to AC 

ME-sn, as seen in Figure 16.  The primary difference between the two is the brief dip in 
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high gamma activity 200 ms after stimulus presentation.  This brief suppression in 

activity is another novel activity element not seen in any previous multi-subject clusters.  

We therefore name this cluster AC ME suppressed narrow symmetric (AC ME-sns).  

This cluster gets combined with the AC ME-sn without the anatomical constraint, but 

since the AC ME-sn center of anatomical mass is more inferior then this cluster these two 

electrodes get broken out into their own cluster. 

  

Figure 17: Anatomically Constrained Motor Execution Individual Clusters 

Anatomically Constrained Motor Execution (AC ME) results are broken into two characteristic time 

courses: (a,b,d) symmetric and (c) inverse ramp.  The symmetric shapes are subdivided to three clusters: 

(a) broad, (b) narrow, and (d) suppressed narrow.  High gamma cluster activity patterns are shown on the 

left (normalized power (np) over time (t), in seconds), electrode locations for clusters on the right.  Solid 

vertical lines indicate stimulus presentation and fainter vertical lines show average location of voicing 

onset.  Average audio signal amplitude indicated by gray shaded region   
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IV.3.iv Auditory Processing 

 The final Anatomically Constrained (AC) group consists of two clusters that fit 

the auditory processing stage.  Hence we call this group AC Auditory Processing (AC 

AP).  These clusters show activity that initializes with voicing onset.  Activity peaks 

during voicing and ramps down after voicing has completed.  Activity in these clusters 

differ primarily in their duration, with the green cluster lasting longer than the orange, as 

shown in Figure 18.  Both clusters are primarily present in the auditory cortex.  The 

orange cluster demonstrates bilateral activity, while the green cluster is limited to the left 

hemisphere.  We will now detail the individual clusters, as summarized in Figure 19. 

 

Figure 18: Anatomically Constrained Auditory Processing Clusters 

Left – Characteristic high gamma power (normalized power (np)) time courses (time (t) in seconds).  

Solid vertical line indicates stimulus presentation and fainter vertical line shows average location of 

other alignment condition.  Average audio signal amplitude indicated by gray shaded region.  Right –  

electrode locations for clusters on the left.  

 Activity in the green AC AP cluster, Figure 19 (a), is only seen in the left 

hemisphere.  The orange cluster, Figure 19 (b), has activity that is bilaterally seen in the 

temporal cortex.  Activity in both is primarily localized to the superior temporal gyrus 

and bordering areas.  Activity starts around the time of voicing onset and peaks just after 

the acoustic envelope peak.  Both clusters have symmetric activity patterns.  The orange 
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cluster peaks slightly before the green, and hence we name the orange clusters AC AP 

symmetric early (AC AP-se) and the green cluster AC AP symmetric late (AC AP-sl).  

 

Figure 19: Anatomically Constrained Auditory Processing Individual Clusters 

Anatomically Constrained Auditory Processing (AC AP) results come from a single characteristic time 

courses: (a,b) symmetric.  The clusters primarily differ in their duration and peak locations, with (b) 

occurring earlier and (a) occurring later.  High gamma cluster activity patterns are shown on the left 

(normalized power (np) over time (t), in seconds), electrode locations for clusters on the right.  Solid 

vertical lines indicate stimulus presentation and fainter vertical lines show average location of voicing 

onset.  Average audio signal amplitude indicated by gray shaded region. 

IV.3.v Comparison to Unconstrained Findings 

 In this subsection we will briefly compare the results of the anatomically 

constrained study back to those from CHAPTER III.  Results from this study will be 

named Anatomically Constrained (AC) to distinguish them, and their temporal profiles 

will be shown in solid lines.  We will refer to the results from CHAPTER III as 

anatomically-free and without the AC prefix, with the temporal profiles shown with 

dashed lines.  This will be followed by a general discussion of the differences.  This 

chapter only presents results for the stimulus aligned case, while the previous chapter 
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looked at both stimulus and voice alignments.  For this comparison, we will focus only 

on the stimulus aligned case. 

 The Early Stimulus Processing (ESP) group is present in both analyses, each 

presenting the symmetric and ramp canonical temporal profiles, Figure 20 (a) with 

dashed lines for the anatomically-free analysis and solid for AC analysis.  The symmetric 

activity patterns, green (AC ESP-s) and dark blue (ESP-s), align fairly in the first half 

second after stimulus presentation.  The ramp activity patterns, orange (AC ESP-r) and 

blue (ESP-r), also align well.  Interestingly, the tails of the time courses align better with 

the opposite shape, e.g., ESP-r (dashed blue) has raised activity for the duration of the 

task similar to AC ESP-s (green), while both ESP-s (dashed dark blue) and AC ESP-r 

(orange) do not have long tails.  There are some slight differences in electrodes, primarily 

due to the AC analyses, Figure 20 (c), only having activity present in the temporal lobe, 

while the anatomically-free case has some frontal activity as well, Figure 20 (b).  Since 

this group consists of a limited number of electrodes, it is hard to draw hard conclusions 

about the comparison without more data.   
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Figure 20: Early Stimulus Processing Cluster Comparison 

Comparison of Anatomically Constrained (AC) and anatomically-free analyses shown with solid lines 

and dashed lines, respectively.  (a) Time courses (normalized power, np, over time, t) from both analyses 

plotted together, retaining colors from their respective analyses – green (AC ESP-s), orange (AC ESP-r), 

dark blue (ESP-s), blue (ESP-r). (b) Electrode locations from anatomically-free analysis. (c) Electrode 

locations from anatomically constrained analysis. 

 In the phonological-to-motor (PtM) processing group, only a single cluster was 

found for the anatomically-free analysis for the stimulus aligned case.  This cluster, PtM-

r, has a ramp activity pattern, shown in dashed dark green in Figure 21 (a).  The AC 

analysis had three ramp cluster.  PtM-r is most closely related to AC PtM-dr (solid green) 

and AC PtM-vr (orange), as can be seen by the PtM-r having its temporal profile fit 

between these two, Figure 21 (a), and overlap in electrode coverage by comparing Figure 

21 (b) and (c).  There is limited overlap between PtM-r and AC PtM-sr, which has a more 

delayed activation and slower decay.  The anatomical constraint in the AC analysis 

appears to separated AC PtM-sr from the Motor Execution (ME) group.  ME grouping 

fits with the duration of AC PtM-sr activation, but previously a ramp shape was not found 

within ME.  Due to its activity pattern similarity with the PtM group it has been included 
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here, but the temporal extent and active regions do hint at this cluster having some motor 

production functionality.  The symmetric shape was only seen in the AC analysis, AC 

PtM-s (red), and only in two anterior prefrontal cortex electrodes.  In the anatomically-

free analysis a PtM symmetric (PtM-s) activity pattern was seen in electrodes also in the 

anterior prefrontal cortex. 

 

Figure 21: Phonological-to-Motor Processing Cluster Comparison 

Comparison of Anatomically Constrained (AC) and anatomically-free analyses shown with solid lines 

and dashed lines, respectively.  (a) Time courses (normalized power, np, over time, t) from both analyses 

plotted together, retaining colors from their respective analyses – dark green (PtM-r), green (AC PtM-

dr), orange (AC PtM-vr), blue (AC PtM-sr), red (AC PtM-s). (b) Electrode locations from anatomically-

free analysis. (c) Electrode locations from anatomically constrained analysis. 

 

 Figure 22 shows motor execution (ME) comparisons.  ME-sn (dashed red) 

subdivides into two AC clusters, one showing the symmetric narrow pattern, AC ME-sn 

(orange), and the other showing a suppression in power before this pattern, AC ME-sns 

(solid red).  AC ME-sns aligns very closely with ME-sn after the suppression, Figure 22 

(a).  AC ME-sn also aligns well, but with slightly broader activity tails.  Anatomically 

AC ME-sn overlaps with ME-sn inferior regions surrounding the central sulcus and 
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superior and posterior temporal cortex, Figure 22 (b) and (c).  ME-sn has additional 

activity in right anterior prefrontal cortex not seen in the AC analyses.  The temporal 

profiles of the broad activity patterns, ME-sb (dashed pink) and AC ME-sb (green), 

almost line up exactly, Figure 22 (a).  Anatomically, ME-sb is spread out to cover 

multiple brain regions, while AC ME-sb is constrained to anterior and ventral temporal 

cortex with some left anterior prefrontal cortex activity.  Some of the missing activity 

from the ME-sb cluster in the AC analysis can be accounted for by the AC PtM-sr 

cluster, as discussed in the preceding paragraph.  Other parts of the ME-sb activity seem 

to have fallen into the AC ME-ir cluster (blue).  This cluster is located in traditional 

motor execution regions along the central sulcus and superior temporal gyrus.  Averaging 

AC ME-ir and AC PtM-sr together produces a broad symmetric shape which is similar to 

AC ME-sb.  The separation in the AC analysis of AC ME-ir and AC PtM-sr hint at motor 

execution elements that also functionally overlap with planning (AC PtM-sr) and 

auditory and somatosensory feedback (AC ME-ir).  These feedforward and feedback 

speech production command pathways match theory (Guenther, 2016). 
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Figure 22: Motor Execution Cluster Comparison 

Comparison of Anatomically Constrained (AC) and anatomically-free analyses shown with solid lines 

and dashed lines, respectively.  (a) Time courses (normalized power, np, over time, t) from both analyses 

plotted together, retaining colors from their respective analyses – dashed red (ME-sn), dashed pink (ME-

sb), green (AC ME-sb), orange (AC ME-sn), blue (AC ME-ir), solid red (AC ME-sns). (b) Electrode 

locations from anatomically-free analysis. (c) Electrode locations from anatomically constrained 

analysis. 

 

 Both analyses only had symmetric activity patterns for auditory processing in the 

stimulus aligned case.  Activity is primarily located within the auditory cortex, Figure 23 

(b) and (c).  The two clusters in the AC analysis (AC AP-se, solid orange, and AC AP-sl, 

green) are primarily separated by temporal extent of the activity pattern, Figure 23 (a).  

AC AP-sl temporally and anatomically aligns closely with AP-s in the left hemisphere.  

AC AP-se shows a similar temporal profile as AP-s, but ends earlier.  AC AP-se has 

bilateral activations, similar to AP-s.   
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Figure 23: Auditory Processing Cluster Comparison 

Comparison of Anatomically Constrained (AC) and anatomically-free analyses shown with solid lines 

and dashed lines, respectively.  (a) Time courses (normalized power, np, over time, t) from both analyses 

plotted together, retaining colors from their respective analyses – dashed orange (AP-s), solid orange 

(AC AP-se), green (AC AP-sl). (b) Electrode locations from anatomically-free analysis. (c) Electrode 

locations from anatomically constrained analysis. 

 

 A couple observations are noted when comparing the results from the 

anatomically free and AC analyses.  First, AC produces more clusters.  This is due to 

stricter requirements placed on the clustering process that breaks up clusters that would 

otherwise be joined.  Second, the additional component of the distance measure in the AC 

analyses also allows clusters to form with less similar time courses.  This results in larger 

variances in the AC clusters compared to the anatomically-free clusters, especially in 

clusters with less than 10 electrodes.  This also results in the generation of new 

characteristic time courses that are not in the anatomically-free analysis.  Additionally, 

this causes some of the electrodes that were included in the anatomically-free analysis to 

not get clustered or get clustered in a different processing steps.  Lastly, the AC analysis 
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sub-clusters reveal some slight timing differences between similar activity levels in 

different brain regions.  Overall, there is a high degree of overlap in results between the 

two analyses, providing supporting evidence for the canonical activity patterns of 

CHAPTER III. 

 
IV.4 Conclusions 

Overall, results from the analysis of this chapter follow those of CHAPTER III, which 

did not encourage spatial similarity between electrodes.  The general canonical shapes of 

CHAPTER III, namely a symmetrical and ramp activity pattern, are also present within 

the constrained anatomical regions of this chapter.  Further, the same four processing 

stages emerged from both analyses.  There is a large degree of anatomical overlap 

between the two analyses as well, with the anatomical constrained analysis of this chapter 

largely being cortical subdivision of the anatomically-free analysis. 

 There were some differences in results in this analysis compared to those of 

CHAPTER III.  Some new activity patterns were discovered and some of the electrodes 

did shift in what type of activity pattern, and in one case the processing step, they were 

involved in.  This was primarily due to the smaller cluster sizes and electrodes per cluster 

in this chapter compared to the last, which also generated larger variances in the temporal 

profiles.  Clusters were only restricted to consist of electrodes from multiple subjects, but 

did not have a restriction on the number of electrodes within a cluster.  Thus, several 

clusters had very few electrodes in them.  A larger subject sample size is needed to build 

enough evidence in the individual clusters and reduce the temporal variance.  This would 

allow for better support of the results found in this chapter and check if they still hold.  
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The clusters that were most similar to those of the previous chapter had large number of 

electrodes, giving support to those findings, but additional research will need to be 

conducted to see if the more unique findings truly exist, like the inverse ramp and 

suppressed narrow activity patterns in the motor execution group.  

 This chapter presented results only for the stimulus presentation alignment case.  

This was done to show the validity of the method and not to intentionally mask any 

results from the voicing onset alignment case.  As just mentioned, this analysis allows for 

breaking down clusters into smaller units, constrained to more confined anatomical 

regions, and hence creates more clusters with fewer electrodes in them.  Data from more 

subjects is needed to dive into this type of more detailed analysis.  In general, the voicing 

onset aligned analysis under with the additional anatomical constraint of this chapter 

produced the same findings as the stimulus presentation aligned case, namely it largely 

supported the findings of CHAPTER III with the primary difference being cortical 

subdivisions of the canonical temporal profiles.  Some deviations were also witnessed in 

this alignment condition, but were contained within clusters with limited number of 

electrodes. 

 We hope the work of this chapter motivates others to continue this work and 

explore the functional and anatomical break outs that result from this type of analysis 

during speech and non-speech tasks.  The findings that we present here hint at some fine 

timing and activation differences that exist between similar functioning clusters when 

they are analyzed with anatomical constraints.  This could potentially help to reveal new 

findings, such as the propagation of activity across different brain regions, such as 
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differences in “what” and “where” pathways (Ahveninen et al., 2006).  However, others 

who have looked at anatomical constraints have also noted an increase in variability 

compared to when the constraints are not place on the analysis (Berezutskaya et al., 

2017).  Therefore, it is perhaps appropriate to allow functional representations to be 

diffuse if that is what the data tells us, as in CHAPTER III.  We encourage others to 

continue looking at both types of analyses, ideally with large subject sample sizes, to 

determine the correct spatial resolution to capture the canonical set of speech temporal 

profiles.  
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CHAPTER V: Future Directions 

 This dissertation explored a new way to analyze electrocorticographic (ECoG) 

data recorded during speech, providing new insights into how the brain processes speech 

during various stages.  A set of high gamma power canonical activity patterns, which 

capture local neural activity, were found across four processing stages: early processing 

of an orthographic stimulus, motor planning, motor execution, and auditory feedback to 

self-generated speech.  This was done without any prior knowledge built into the methods 

on the speech network.  Two types of activity patterns emerged: one taking a symmetric 

shape, where activity increases and decreases at the same rate, and the other taking a 

ramp shape, where activity decays at a slower rate than it activates.  Additional, 

constrained analysis that limited the amount of anatomical spread a grouping of activity 

patterns could have supported the findings of the unconstrained analysis, supporting the 

set of canonical activity patterns, or time courses, found. 

 This resulting set of temporal profiles provide unprecedented detail regarding the 

nature and timing of neural computations underlying the translation of phonological 

information into motor and acoustic output.  The identification of characteristic time 

courses of neuronal activity during movement planning and execution has been more well 

studied for functions outside of speech and in non-human primates.  These findings have 

provided critical insights into the brain mechanisms underlying motor control.  Due to the 

relative lack of electrical recordings from the human brain, little is known about the 

temporal profiles of neuronal populations involved in uniquely human acts such as 

speech.  This work utilizes electrical recordings form the human brain to provide some 
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new insight into the neural temporal profiles present during speech.  Further, the analysis 

tools developed for this work provide a powerful means for identifying and quantitatively 

characterizing the neural computations underlying human speech production, with the 

potential to apply to other cognitive and behavioral domains. 

 This work branched into new areas, with some simplifications taken to provide 

this initial set of findings with some limitations present.  A limited set of subjects, five, 

were used in this body of work.  All of the subjects completed a single type of speech 

task, reading aloud monosyllabic utterances.  The methods implemented novel elements, 

making some simplifying assumptions to build credibility in the method, but potentially 

limiting additional insights that could be gained.  Conservative measures were used for 

electrode inclusion.  Trends were simplified to linear models, via a Kalman filter, 

providing new insights, but not fully characterizing the activity patterns.  Future research 

can build on the work of this study to provide additional insights and understanding of 

human speech and beyond.  In the remainder of this chapter we present a few future 

directions. 

V.1 Large Dataset 

 One of the limiting factors of electrophysiology research, including speech, is 

getting access to human subjects to conduct tests.  Speech, and in general language, are 

unique to humans and therefore necessitate the use of human subjects and limit the 

insights that can be gained from animal models.  Further, intracranial electrophysiology is 

limited to patients undergoing clinical procedures who volunteer for research studies, 

with speech being one amongst many types of studies trying to be conducted on a small 
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subject population.  Those who do volunteer are undergoing stressful procedures and are 

conducting the research experiment within a constrained amount of time and amongst a 

set of clinical evaluations, which may limit the quality of the data.  Few alternatives exist, 

however, to capture the temporal resolution needed for detailed time analyses of speech 

without a new recording technique being invented. 

 In the current study five subjects were used.  This was due to the small sample 

size of subjects who performed the speech task of the study.  There were a total of six 

subjects who completed the task, but the seizure focal area of one of the was centered in 

speech critical brain regions and was therefore not used.  This sample size is in line with 

other similar studies (Collard et al., 2016; Hullett et al., 2016; Leonard et al., 2019), but is 

too small to draw firm conclusions.  It is our hope that others will continue this, or 

similar, research.  With more subjects, stronger conclusions could be drawn.  As time 

progresses it will be possible for meta-analyses to combine results across multiple studies 

to overcome the small subject sample sizes. 

 Along with a limited set of subjects, the current study also only utilized a single 

speech task, reading aloud monosyllabic utterances.  This is another area for potential 

future work, to extend this type of study to other tasks involving speech production.  

There is a growing body of work in ECoG analysis of speech production and we hope 

that others venture into clustering-based research approaches such as that of this 

dissertation and (Leonard et al., 2019).  We further hope others will use the methods 

developed within this work to look at other speech production and perception tasks, with 

the potential to uncover new knowledge on neural time courses that exist under different 
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conditions.  For example, (Hamilton et al., 2018) found onset activated and sustained 

activity clusters present during continuous speech.  The work of this dissertation may 

allow for additional insight into the temporal breakdown during continuous speech along 

with providing a means to quantitatively characterize it.  Other recording methods, such 

as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), 

have provided many insights into speech production through the collection of diverse 

experiments.  We believe ECoG is on the brink of providing something similar, but is 

limited by the availability of subjects so will take some time.  However, it is not a 

recording holy grail, as limitations such as not recording in the sulci, inability to record or 

identify single neurons, and its use only in presurgical settings with limited and subject-

specific coverage.  Thus, the cycle of scientific discovery needs to continue to explore 

and develop new and emerging recording methods as well. 

V.2 Additional Analysis Focal Areas 

 The research of this dissertation focused on the discovery of characteristic time 

courses from ECoG high gamma power during speech production of orthographically 

presented monosyllabic utterances.  There are numerous future directions that this line of 

research could go.  This includes expanding to other frequency bands, such as using the 

power from the beta frequency band, with initial beta activity pattern results shown in 

APPENDIX D.  Other frequency bands and time series representations have been shown 

to have functional components to speech, motor control, and human cognition in general.  

The methodology of this dissertation opens up opportunities to apply similar techniques 

to reveal time courses present in other data representations. 
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 CHAPTER IV begins to add some constraints to the analysis of time courses, by 

encouraging individual groupings to be cortically co-localized.  Numerous prior studies, 

both within speech and in a broader context, have found local brain areas to process a 

task similarly, giving credence to adding anatomical constraints.  Previous research has 

also found more variability when anatomical constraints are added versus not 

(Berezutskaya et al., 2017).  The limitations of the number of subjects, as covered in 

§V.1, prohibit the resolution of the anatomical analysis from getting too fine, but this is 

an area that future research could further explore.  As noted in CHAPTER IV, a simple 

radial basis function kernel was used to encourage locality within the clusters.  Future 

work could focus on the more cortical-aware spatial kernels to exploit cortical 

representations such as anatomical differences in cellular structure or underlying cellular 

orientation to ECoG electrode placements.  Hard limits, such as regions of interest, could 

also be enforced, but this approach would limit the ability to extract activity patterns that 

are naturally present as opposed to artificially created due to a boundary that may or may 

not line up with the underlying neural processing.   

 Finally, future research directions should branch out into other ways of looking at 

the data and task.  This study only looked at trial data aligned by the presentation of the 

orthographic stimuli and aligning to voicing onset.  There are many other ways that a 

speech production task can, and should, be broken down.  This includes by analyzing the 

type of stimuli presented and spoken (i.e. by phoneme, etc.), the location of articulation, 

and the familiarity or novelty of the stimuli, amongst many others.  This all relies on 
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having a large enough dataset to break the data up into these smaller units with enough 

trials supporting them.   

V.3 Speech Modeling 

 Intracranial electrophysiology, and electrocorticography in particular, is not a 

class of recording techniques that are readily used for speech production research.  They 

are limited in their applicability, being used only with subjects undergoing clinical 

procedures who to volunteer to participate.  It is therefore extremely beneficial to have 

alternative means to test theories and uncover new insights when fine timing details are 

desired.  This in turn will help to guide and better use the limited ECoG subject studies.  

In the absence of animal models, speech neuroscientists have turned to models to provide 

this ability, such as the directions into velocities of articulators (DIVA) model (Guenther, 

2016).   

 Speech production models have come a long way, mirroring the developments 

within the field.  As new insights and knowledge are gained through human subject 

experiments, models are updated to reflect the findings and account for any differences 

that may exist.  Now that we have more detailed time courses of speech production, a 

next step is to incorporate these findings back into our speech models, either by 

validating that the same results can be constructed from the model or identifying how to 

update the model to account for any discrepancy.  Clustering analyses and detailed 

temporal studies can then commence with data collected from models to explore different 

research avenues.  This can then guide the development of future research paradigms to 

run with human subjects. 
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V.4 Moving Beyond Speech 

 The focus of the current work was on speech production measured with ECoG.  

The methods developed for this research had that focus in mind, however are not 

inherently limited to applications involving speech, or even requiring ECoG data for that 

matter.  Other studies that utilize ECoG could benefit from the analyses developed for 

this work, with the methodological similarity amongst studies related to other motor 

modalities.  In particular, the implementation of an exponential distance measure for the 

temporal clustering analysis and the Kalman filter change point detection have potential 

to make strides in other ECoG applications.  Moving beyond ECoG, the methods could 

be applied to other recording methods that have time series nature to them as well, with 

some rework on parameterizing the methods for the tolerances of the recording method.  

Moving beyond neuroscience, there also exists wider applicability as well. 
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APPENDIX A: Kalman Filter 

 In this appendix, more details will be provided about the Kalman filter (Kalman 

and Bucy, 1961) and how it was adapted for the purposes of analyzing 

electrocorticographic (ECoG) data.  The Kalman filter is a powerful tool for tracking 

time-series data and is typically used for prediction.  It is not new to neuroscience, or 

even to ECoG research.  It has been used extensively in ECoG BCI applications, 

including motor applications to predict movement trajectories (Gunduz et al., 2009; Li et 

al., 2009; Eliseyev and Aksenova, 2016) and as a means to provide task related frequency 

estimates (Gruenwald et al., 2017).  Outside of BCI, its use is more rare.  It has been used 

in limiting settings to help with modeling and prediction of ECoG signals, such as being 

paired with adaptive autoregressive modeling to predict seizure onset (Lie and van 

Mierlo, 2017).  In speech modeling outside of ECoG, Kalman filters have been used to 

perform prediction and smooth parameter estimates over time to provide continuous 

synthesizer control (Guenther et al., 2009).  In more general speech processing, Kalman 

filters have been used extensively for speech enhancement in the presence of noise 

(Grancharov et al., 2005; Mathe et al., 2012; Xia and Wang, 2015). 

 The Kalman filter is used heavily in statistics and control problems.  It is based on 

the notion of tracking states of system by using a combination of observations and prior 

knowledge of the system, while accounting for several sources of noise, or uncertainty, in 

the model.  The filter process is broken up into two primary steps, a prediction and update 

step.  The prediction step uses a model to predict what the next state of the system will 

be.  Then in the update step, this prediction is compared to the observation from the 
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system.  Noise sources within the model include the uncertainty in the measurement of 

the observed state, the measurement variance, and model noise, which accounts for 

unknown or un-modeled dynamics of the system.  The Kalman filter is an iterative 

algorithm that performs the prediction and update steps at each iteration to estimate the 

state of the system.  Many references are available to more fully detail this algorithm that 

was first introduced in the early 1960s (Kalman and Bucy, 1961).  In our application, we 

apply a novel application of the Kalman filter to ECoG time series data, as described in 

CHAPTER III (§III.3.ix).  In particular, we use Kalman filters to track the time course of 

ECoG high gamma power during a speech task.     

 In our application, the Kalman filter is initialized during the trial baseline activity, 

which is the non-speech period prior to each trial.  Thus, the initialized Kalman filter is 

set to represent neural activity during non-speech functionality.  The filter parameters are 

then adaptive updated as time goes on, one of our novel contributions.  This is done using 

a learning rate, which relies more on the model estimates, i.e. the prediction, and less on 

the observation, i.e. the update, as time progresses.  The inclusion of the learning rate 

enables the filter to detect changes in activity trends, as opposed to trying to track through 

them.  It has been shown that reduced variability in ECoG signals is present during 

stimulus onsets (Dichter et al., 2016), and thus we apply the learning rate to the Kalman 

filter gain, locking in both the activity trend and model variance to detect changes. 

Our rationale for this change is that as the model more accurately captures baseline 

activity we can rely more on the empirical data of the past to predict the future.   
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 Unlike most applications of Kalman filters, we are not interested in creating a 

track that is capable of modeling the entire time-series representation, but instead we 

wish to model the several discrete trends that appear throughout the duration of the 

signal.  This requires two additions to the Kalman filter model: 1) the ability to detect 

when a trend has changed and 2) the ability to start a new Kalman filter at the point of 

change to model the new trend.  In the preceding paragraph, we described how we 

modify the Kalman filter with a learning rate.  The learning rate allows us to accomplish 

our first addition by putting more emphasis in the prediction step as time goes on, which 

allows the estimated signal to deviate from the observed signal as the trend changes.  

Next, a threshold is added to detect that the difference between the prediction and 

observation is too large, resulting in a change.  After a change is detected, a new Kalman 

filter is started, consisting of our second addition to the Kalman filter model.  The new 

filter is started with a modified version of the initialization procedure, as described in 

§III.3.ix.  We provide some additional details and rationale in this appendix. 

 Several others have looked at Kalman filter change detectors with varying degrees 

of similarity to our approach.  In (Lee and Roberts, 2008), extreme value theory is used to 

set the change criteria for the Kalman filter.  Lee and Roberts track the run length of the 

filter and apply a one-sided test to determine change.  Results showed promise, but the 

method fails to detect changes that are closely spaced or when the trend returns to a 

baseline period.  In (Soule et al., 2005), a Kalman filter is first used to capture normal 

traffic for an internet service provider (ISP) traffic pattern.  Anomaly detection is then 

performed on the residual of this prediction to identify changes.  In (Severo and Gama, 



 

 

130 

2006), a Kalman filter is used as a regression predictor.  The residuals of the Kalman 

filter prediction are compared to the observation are evaluated to determine if a change 

occurred, forming a change detection from the cumulative sum of recursive residuals.  

Finally, in (Moussakhani et al., 2014), a Bayesian framework is utilized to place prior 

knowledge on the expected nature of the change to improve change detection 

performance.  With this Bayesian criteria, Moussakhani et al. showed that their detector 

becomes a matched filter when the uncertainty in the change goes to zero and becomes an 

energy detector in opposite case, when the uncertainty in the change goes to infinity.   

 Our approach uses the residuals between the prediction and observation to detect 

change, similar to previous methods, but instead of specifying the bounds of the change 

detector or formulation of it ahead of time, we employ a learning rate that adaptively 

changes the bounds of the detector as more observations are used to update the filter.  

This slowly adapts the change detector over time to capture the trend of previously seen 

observations and evaluate how well new observations fit that trend.  Learning rates are 

not novel, and have been used on ECoG data in the past in conjunction with a Kalman 

filter (Hsieh and Shanechi, 2018).  We apply a learning rate only to the Kalman gain 

factor, for the purposes we just described, and do so in the context of a change detector.  

This approach is novel, but relates to the previous methods just mentioned. 

 The rest of this appendix is broken into two sections.  In §A.1 we provide more 

details on the methodology developed for the Kalman filter change point detection.  In 

§A.2 we discuss some of the alternative methods that were considered. 
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A.1 More Details on Methodology 

A.1.i Illustrative Example of Methodology 

 We begin first by providing an illustrative example to provide better 

understanding and intuition on our approach, refer to Figure 24.  The high gamma power 

temporal profile from one electrode is shown on the left side of the figure, with stimulus 

presentation at zero on the x-axis.  The right side shows how the Kalman filter method 

segments this time series into a discrete set of trends.  A yellow bounding box has been 

placed around the baseline, non-task period, 1 second to 500 milliseconds prior to 

stimulus presentation.  This is the activity that is used to initialize the Kalman filter.  The 

Kalman filter (red) can be seen as having a flat trend during this period.  It is just above 

zero, and not at zero, due to rescaling of the signal after z-scoring (§III.3.vii).   

 

Figure 24: Example Kalman-Filter Segmentation 

Left: High gamma signal to be segmented into discrete trends. Right: Kalman filter output of trend 

segments.  Yellow box denotes the baseline period that is used to initialize the filter.  Red line 

shows Kalman filter estimate.  Vertical green lines mark change point locations.  x-axis: time 

(seconds), y-axis: normalized power 

 The learning rate limits the amount of new information, observations, that are 

used as the filter progresses past the baseline period.  This has the effect of maintaining 
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the learned trend from the baseline period, as seen by the flatness of the filter (red) which 

does not track the high gamma activity (blue) as it starts to increase.  A green vertical 

dashed line indicating a change point is seen around 100 ms after stimulus presentation (x 

= 0).  At this point, the new activity observations (blue) falls outside the tolerable bounds 

of the model estimate (red).  A change in trend is therefore declared and a new Kalman 

filter is initialized.  This is seen by the discrete jump in the estimate (red), which has 

different trends before and after the change (flat before and positively sloped after).     

 As time progresses the new estimate adapts to represent the underlying 

observations and slowly the learning rate locks in this observed trend and prevents the 

filter from changing too much.  The filter adapts more to the update step earlier in the 

trend, i.e. the nonlinear changes in the estimate (red) around 450 ms, and less so as time 

progresses, i.e. after 500 ms.  This new trend is found to no longer fit the data at a time of 

around 650 ms and another change is detected.  A new filter is initialized and this process 

continues for the duration of the trial.   

 Four changes are detected in this example, resulting in 5 discrete trends.  The first 

trend is flat representing pre-task baseline activity.  Just after stimulus presentation 

activity is positively sloped up as more task-related neural activity starts.  This peaks 

around 650ms and is followed by a downward trend as activity start to turn off.  A new 

trend is seen from 1.5 seconds to 1.8 seconds after stimulus presentation, potentially due 

to auditory feedback to self-generated speech briefly increasing activity levels.  After 

this, activity again decreases back to baseline levels as the final trend.  Quantitative 

values for the trend in each segment are obtained from the Kalman filters. 
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 This illustrative example helps to explain the rationale of the approach and the 

strength that it provides in aiding in characterizing activity patterns.  It also illustrates the 

ability to identifying the discrete points of trend change and quantitatively model each 

trend segment.  The method provides the potential for additional insights into neural 

mechanics beyond more traditional static statistical significance analysis that are 

commonly used.  We discuss some of the algorithm elements that warrant a more 

discussion. 

A.1.ii Kalman Filter Model Choice 

 One of the big design questions is what form the Kalman filter should take.  This 

is heavily dependent on the domain and what it is that is trying to be predicted.  In our 

application, we are trying to characterize the trends and discrete changes that occur as 

neural activity respond to a task, as measured from ECoG high gamma power.   

 High gamma power is active during tasks and relatively inactive during resting 

state, refer to §II.2.  Our task baseline period can be thought of as a resting state and 

therefore should have a trend that shows a lack of activity.  A first approach to the 

Kalman filter is to have the filter track a constant value that captures this baseline period.  

While this would work for the baseline period, it will not provide any insights into what 

is happening when activity is different than baseline.  This is a shortfall of earlier 

methods, which treated all of the analysis as a comparison to baseline, which can be 

thought of as a filter tracking a constant value, refer to CHAPTER II.  This does not 

allow for assessing or characterizing non-constant activity, i.e. activity ramps.   
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 The natural next level of complexity to add is to allow for tracking of a linear 

representations, i.e. a bias and a rate of change.  This is the form of the Kalman filter that 

was used in this work.  Going beyond this, to quadratics, polynomials, or other nonlinear 

representations may have helped to better characterize some of the individual trends, but 

suffer from a loss comparison across trends and, importantly, interpretability.  Hence, 

after exploring some different functional representations we settled on having the Kalman 

filter perform linear modeling of trends, as provided in Equation 2 in CHAPTER III.  

This sets the basic form of the Kalman filter, as detailed in §III.3.ix. 

A.1.iii Learning Rate & Change Detection 

 A learning rate was used to slowly lock in learned trends and variances in the 

temporal profile and prevent adapting too much to new observations.  This also provides 

the ability to identify changes.  Over time, the learning rate shifts the expression to weigh 

the model prediction more than the observation of the high gamma power.   

 The learning rate takes the form of a decay, allowing the power rate to be learned 

from the data during filter initialization and less so as it matures.  The decay rate is set by 

single fixed parameter that was selected to be 100 ms.  This parameter sets the decay to 

be on the order of phonemic expression, which is one of the base units of speech and is 

on the order of 100 ms (Stevens, 2000).  The decay is applied to the Kalman filter gain 

factor, which sets how much the update step, or observations, contribute to the filter 

estimate.  Pseudo-code for the algorithm is provided in Table 3, illustrating this 

modification to the Kalman filter.  Refer to §III.3.ix for a more complete description of 

the terms.   
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Table 3: Kalman Filter Pseudo-Code  

# Setup 
threshold = compute_threshold() 
A = [1 1; 0 1] # State transition matrix 
H = [1, 0] # Only measuring power 
decay_param = 100 ms 
Fs = 1000 Hz 
 
# Initialization 
# X = [Power, power rate] 
X(:,1) = [mean(power(training data)); 0] 
Q = variance(training period sample differences) 
R = variance(training data) 
P = variance(power sample difference) 
r = 0 # Empirical rate: Baseline period flat 
 
For i = 1:length of trial 
 
    # Kalman Filter Prediction 
    X(:,i) = A*X(:,i-1) 
    P = A*P*A’+Q 
 
    # Change Detection Check 
    if abs(Z(i) – X(1,i)) > threshold 
        # Declare change 
        re_initialize_Kalman_filter() 
        # reset number of points in current trend 
        num_points = 1 
 
    # Kalman Filter Update 
    r = compute_empirical_trend() 
    # alpha = Learning rate (decay) 
    alpha = exp(-num_points/(decay_param*Fs) 
    K = P*H’*inv(H*P*H’+R) 
    K = alpha*K 
    X(:,i) = X(:,i) + K*(Z(i) – H*X(:,i)) 
    num_points = num_points + 1 

 
 

 The following sections describe some of the functions that are used, including 

change detection (§A.1.iv), starting a new filter after a change (§A.1.v), and 

characterizing the resulting trends (§A.1.vii). 
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A.1.iv Change Detection Threshold 

 Setting the threshold is briefly covered in CHAPTER III (§III.3.ix).  Here we 

describe it in a little more detail.   

 An inverse Q-function is used to compute the threshold (Borjesson and Sundberg, 

1979; Beaulieu, 1989; Craig, 1991; Karagiannidis and Lioumpas, 2007; Simon, 2007).  

Since the noise sources are assumed to be Gaussian, the estimate of the filter state can be 

thought of as a Gaussian random variable.  The Q-function uses this to construct a normal 

cumulative distribution function (CDF) for the Gaussian distribution of the estimate, or 

more accurately one minus this CDF.  Putting it into this representation allows us to set a 

bound on the acceptable values that would be drawn from the same distribution.  A 

threshold can also be set on the values at the tails of the distribution that do not fit the 

CDF, at which point we would declare a change in the underlying distribution that the 

data is drawn from.  The data referred to in this case is the difference in the observed 

values of the high gamma power with the estimate of the filter. 

 We explored different bounds to use, but settled on using a 95% bound.  This 

results in estimates that fall in the 2.5% tails of the distribution being determined to not 

fit the trend and a change declared.  The inverse Q-function of 95% is taken and then 

scaled back from the normal distribution to the empirical distribution of the high gamma 

power to get a threshold value in the units of the observed activity.  Scaling is done using 

the covariance estimate for high gamma power during the baseline period, which is also 

used in the Kalman filter as R.  This gives us a confidence bound for activity within a 

trend for individual electrodes, as provided in Equation 9.   
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 The desire is to have a global threshold that can be used across all electrodes to 

help mitigate confounding factors such as multiple comparisons.  Thus, a distribution of 

the confidence intervals over all electrodes is taken, resulting in a beta distribution.  From 

here, a conservative confidence interval of 99% is taken to use as the global threshold.  

This makes up the step of computing the threshold in the pseudo-code of Table 3, 

compute_threshold().  The threshold functions to determine when there is a change in the 

underlying trend, using an empirically driven bound that was determined using baseline 

activity from all electrodes that are all scaled by their respective z-scores to have a 

common distribution. 

A.1.v Re-Initialization 

 As noted, when a change is detected a new Kalman filter needs to be reinitialized 

to track the new trend.  This process is described in CHAPTER III (§III.3.ix) and 

captured in the pseudo-code of Table 3 as re_initialize_Kalman_filter ().  Section 

§III.3.ix describes using 10% of historical and 90% of future observations from the point 

of change to reinitialize a new filter.  The duration of this is again set to be that of 

phonemic expression, 100 ms, with 10 ms of prior observations and 90 ms of future 

observations.  The split between historical and future observations was experimentally 

found to be a good split, as the trends typically would start to show a pattern of change 

slightly before the change threshold was crossed and a change detected.   

Equation 9: Electrode Confidence Bound 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  √𝑅 𝑄−1 (
1 − 𝑏𝑜𝑢𝑛𝑑

2
) 
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 If there is not enough data to reinitialize the trend, it is approximated with the 

amount of data that is available within these bounds.  This creates some undesired 

behavior at the edges of the trials, but changes at the edges are likely not due to the task 

and not analyzed, hence special edge cases were not required to be handled separately. 

 The empirical trend of the data is the rate of change of the observed power for the 

current trend under analysis.  It is computed as the difference in the power from the 

current time point to the beginning of the trend divided by the elapsed number of time 

steps in the current trend.  Note that the power itself is the only measurement that is 

directly observed.  In the pseudo-code, Table 3: Kalman Filter Pseudo-Code, the 

empirical trend is calculated in compute_empirical_trend(), which is used in the update 

step for the power rate. During re-initialization of the Kalman filter, or beginning of a 

new trend, the rate is computed according to the description provided in the beginning of 

this subsection. 

A.1.vi Change Points 

 In our discussion in CHAPTER III (§III.3.ix), we describe the discrete changes as 

change points.  We do so following prior work of similar approaches used in other 

domains (Page, 1963; Lavielle, 2005; Haynes et al., 2017).  There is a class of algorithms 

called online change point detection that have provided a nice framework to detect when 

sequential data exhibits a change and are cast in a probabilistic framework (Adams and 

MacKay, 2007).  We started with a modified version of this approach, as discussed later 

in §A.2.  We migrated towards a Kalman filter as insights were gained.  Kalman filters 

have been shown in the past to provide the ability to perform change detection (Lee and 
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Roberts, 2008), and hence we are not novel in the general concept.  Instead our use is 

novel in our application and the domain, as well as the way in which we modify the 

Kalman filter to perform change detection as discussed in §A.1.iii.  

A.1.vii Characterization 

 The primary use of the Kalman filter was to characterize the time courses and 

provide a way to describe the task related activity patterns.  Two recurring activity 

patterns were discovered with ramp and symmetrical shapes, as described in CHAPTER 

III.  In CHAPTER IV some additional patterns were seen with the addition of a spatial 

cortical constraint.  Individual subject clusters also showed some new patterns, in 

particular a high gamma power suppression shape, refer to APPENDIX D. 

 These patterns were characterized and named based on the findings from the 

Kalman filter analysis.  To illustrate this, Figure 25 shows the ramp and symmetric 

shapes on the left and right, respectively.  CHAPTER III discusses the criteria for naming 

cluster shape, but with the illustration provided here we aim to help with intuition.  

Notional trends are overlaid in red to visually show the differences in the rate of change.  

The left plot shows the ramp pattern.  The rate of the ramp up (segment between the first 

two vertical orange dashed lines representing change points) is 2.8 times faster than the 

decay rate (segment between the next two change points).  This illustrates the 

asymmetrical rates that characterize the ramp shape, where the activation is faster than 

the decay.  The symmetric shape is shown on the right, where activity increase and 

decrease are about the same, with the increase rate only being 9% faster than the decay 

rate.   
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 The Kalman filter change point detector provides a novel way to provide activity 

characterizations and has the potential to shed new insights into how neural populations 

are recruited for a task as well as return to baseline activity, and the differences between 

these two.  Further, it allows for a comparative analysis between different activity 

patterns, as additional understanding may be found by looking at the differences in the 

trend rates.  Some initial comparative analysis was provided in §III.6. 

 Lastly, a final comment on the shapes characterized in this study.  We do not 

believe we are the first to see these shapes, but we do believe we are the first to describe 

them and come up with a formal way of doing so.  In CHAPTER III we commented on 

how these shapes can be seen in previous research by a visual inspection of the figures.  It 

can be seen in some of the prior work that the ramp and symmetrical shapes are present.  

They are, however, not often seen together in the same study due to the methodology 

used that smooths the temporal profiles and does not emphasize the significant portions 

of the signals, as discussed in more detail in APPENDIX B. 

 

 

Figure 25: Exemplar Shape Trends 

Detected changes indicated by vertical orange lines (i.e. change points). Red overlay lines illustrate power 

rate for activity increase and decay trends.  Left: Ramp pattern (stimulus aligned phonological-motor 

processing cluster from CHAPTER III).  Right: Symmetric pattern (stimulus aligned auditory processing 

cluster from CHAPTER III). 
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A.2 Alternatives 

 In this section we touch upon alternatives that were considered for change 

detection and trend analysis.   

 Prior to developing the Kalman filter-based change detection, we initially 

approached the problem by modifying a Bayesian change point detection algorithm as 

described in (Adams and MacKay, 2007).  This approach looks for abrupt variation in the 

generative parameters of a data sequence through its implementation as an online 

clustering algorithm.  At each time point, the current observation is evaluated to see if it 

fits the cluster of the previous observation, an inactive cluster (i.e. from historical 

observations), or an altogether new cluster, with the last two representing change points.   

 The method is parametrized by several values, most important being the expected 

cluster noise variance.  A cluster containment probability is computed to set the 

probability mass around a cluster, specifying acceptable ranges for data to fall within the 

cluster.  Similar to the Kalman method used, we use a Gaussian assumption and 

parameterize similarly.  Also similar to the Kalman method, an initial state needs to be 

setup from “training data”.  The baseline period was also used to initialize this method, 

with the design enforcing the baseline period to be clustered together. 

 This is an online method, so it is an iterative process similar to the Kalman 

method.  At each time step, the observation is evaluated to find the closest cluster.  If the 

closest cluster is the same cluster as the last observation, then the distance between the 

observation and the cluster is computed.  The distance is a statistical measure using the 

cluster mean and variance under a Gaussian assumption.  A threshold needs to be 
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specified ahead of time on what is an acceptable distance.  If the observation is within 

this limit, it is added to the cluster.  A “soft” change point is calculated based on cluster 

fit, thus providing a probabilistic representation similar to soft clustering algorithms.  The 

cluster is updated with the observation.   

 If the distance exceeds the threshold or if the observation best fits with a 

previously seen cluster, a change point is declared.  The observation is either is added to a 

previous cluster or a new cluster is initialized, depending on fit.  For our purposes, we did 

not care about matching previous clusters beyond the currently active cluster.  Thus, we 

implemented a forgetting factor to remove any previous clusters that are not active, 

creating the desired situation of being able to determine if the data point either fits within 

the current trend or if a new trend needs to be declared.  The variance and threshold were 

set using the same logic in the Kalman method, refer to §A.1.  An additional component 

was incorporated to prevent the ping-ponging between clusters.  The addition maintained 

deactivated clusters in memory for 10 ms to see if the newly activate cluster should be 

merged with it.   

 The behavior of this approach displayed what was desired, but additions were 

needed to create better “smoothness” of the resulting cluster, i.e. ensuring similar trends 

were grouped together.  The method was sensitive to steep rate changes, i.e., as seen in 

the ramp shape.  However, it set the groundwork for the eventual Kalman filter method 

and helped to motivate going in that direction, with a lot of the elements of the Kalman 

filter drawn from the preceding work done with this method. 
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 An example result from this method compared to the Kalman filter method is 

shown in Figure 26.  The top plot displays the results of the Kalman filter, where it is 

seen that the change points (vertical green lines) line up fairly well with the underlying 

activity (blue curve).  The bottom plot shows the Bayesian change point detection 

method, with change points seen lagging the actual activity trend change.  In 

experiments, this could be fixed in specific instances by modifying the threshold criteria, 

but this resulted in other activity patterns having way too many change points declared.  

Thus, a tradeoff formed between too many changes and changes that lagged the actual 

change.  The Kalman filter method produced far more stable results that fit the data and 

did not show wide variability from temporal profile to temporal profile. 

 

Figure 26: Kalman Filter vs Bayesian Change Point Detection 

Same underlying temporal profile (blue) used in both plots.  Predictions from the 

methods shown in solid red, with bounding regions for detecting changes in dashed 

red lines.  Change points are marked with vertical green lines.  Top: Kalman filter 

method. Bottom: Bayesian change point detection method. 

 Other model-based methods were attempted to fit the shapes of the activity 

patterns as a way to describe the trends.  Methods explored in this category included 

fitting splines, polynomials, and sigmoid functions to the data.  With an explicit 
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expression for the function, i.e. spline, it was thought that trends could be discussed in 

common terms, i.e. in the form of the function parameters.  This would then create a 

common language for trend description.  None of these methods produced satisfactory 

results without heavy additional preprocessing.  The preprocessing in turn removed the 

fine timing information desired in this study.   

 Many variants of the Kalman filter have been developed over the years, including 

the extended Kalman filter (EKF) and unscented Kalman filter (UKF), which are 

nonlinear variants (refer (Julier and Uhlmann, 2004) for a review).  We initially explored 

these options, however, we decided to stay with the base Kalman filter model for its 

descriptive ability.  The work of this dissertation was a new foray into how to 

characterize and describe ECoG data, so we determined that maintaining linear 

representations provided the best initial framework for describing trends and moving 

beyond simple identification of statistically significant changes.   

 The Kalman filter enables describing trends as increasing / decreasing and 

quantifying their rate of change, with the underlying tracking logic set in the same 

measurement space that we are characterizing the trends in.  Going beyond this would 

require more work to figure out how to describe the results, but would provide the ability 

to describe the nonlinear properties, i.e. transients, immediately around the change points.  

Going to nonlinear representations may allow for better insight into what is happening in 

plateaus and how trends transition, but getting to that point requires the initial research 

we have performed to set a first step in this direction.  We hope our work here motivates 

others to continue this line of research. 
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APPENDIX B: Clustering 

 In this appendix, more details are provided about the clustering methods used in 

this dissertation.  The methods described herein were applied to electrophysiology 

recordings the surface and depth locations within the brain, but can be used more 

generally for time series clustering.  This appendix does not describe any preprocessing 

steps or other elements of the methods outside of what is needed for the clustering.  For a 

review of preprocessing steps, refer to CHAPTER III and APPENDIX C.  The signals 

used for clustering are the preprocessed electrocorticographic (ECoG) high gamma power 

task-related temporal profiles that have been averaged across trial, i.e. event related 

spectral response (ERSP), z-scored using the non-speech task baseline, and down-

sampled to 100 Hz.  These steps are not necessary for this analysis, but are the core 

preprocessing steps used for most of the analysis in the chapters. 

 Clustering is a machine learning technique that segments and groups data, with 

the resulting groupings referred to as clusters.  Further, clustering is a form of 

unsupervised learning.  In unsupervised learning there are no labels for data points and 

instead the learning process identifies patterns and relationships in the data.  In the case 

of clustering, the learning process involves identifying similarity in the data and grouping 

the data based on the similarity.  Thus, the goal is to cluster the data in such a way that 

data points that fall within each cluster are similar and data points between clusters are 

different.  The measure of similarity is a critical component of clustering and will be 

discussed in detail throughout this appendix. 
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 We motivate our use of clustering for determining characteristic time courses of 

speech from ECoG due to the mechanisms of clustering, the properties of ECoG, and the 

underlying neural processes of the brain, as discussed later in this appendix and in 

CHAPTER II.  The underlying neural dynamics of speech are not understood well 

enough to know what the characteristic time courses are, hence lending the analysis and 

discovery of time courses to an unsupervised approach.  Taking a data-driven 

methodology to figure out the time courses is thus appropriate, as it does not make undue 

assumptions and instead lets the patterns and relationships naturally present within the 

data to drive the findings. 

 Clustering can be applied to various representations of the data.  In this research 

we wanted to capture the underlying neural dynamics, so we chose to work with the data 

in as close to its raw form as possible.  This means that we do not cluster over parametric 

models constructed from the data or from features extracted from the data, refer to §II.3.i 

for a discussion of studies that take this approach.  Instead, we cluster directly on the 

preprocessed signals.  We use the time domain representation of the signal, as opposed to 

the frequency domain, as we are interested in the fine temporal details and relationships 

between activity from different electrodes.   

 One important component of clustering is the measure that is used to assess the 

degree of similarity, or dissimilarity, between the data points.  This typically comes in the 

form of a distance measure.  For some applications the notion of what a distance should 

be used is fairly straightforward.  Time series analysis brings extra difficulty to 

measuring distance, however, as the distance needs to be computed over vectors of 
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ordered values instead of scalar points.  Thus, caution needs to be taken when working 

with time series representations, as there are interdependencies in the ordered list.  These 

interdependencies may or may not be important to emphasize in a distance measure and 

selecting the wrong distance measure could result in suboptimal clustering performance 

that does not capture the underlying structure of the data that is intended to be grouped.  

Preserving time (temporal position, scale, and order) is an important factor in our 

research, as we aim to understand the underlying time course of speech so do not want to 

warp time.  Our choice of distance measure will be discussed in §B.1.i. 

 Many different time series clustering approaches exist, refer to (Warren Liao, 

2005; Aghabozorgi et al., 2015) for a more comprehensive review.  We will now briefly 

situate our approach within this work, while providing rationale.  We are interested in 

using the entire time series sequence (over the trial duration) in this work.  Other time 

series clustering options include using subsequences, time points, or features of the time 

series to cluster, none of which suit the purpose of this research in getting characteristic 

time course over the entire duration and from a high gamma representation.  Further, we 

are interested in shape-based clustering approaches, where we aim to find similarity in 

the shapes of the activity patterns from the different electrodes.  We use a completely 

unsupervised approach to let the data determine what the activity patterns are and how 

they are clustered, since we do not have any strong priors on what characteristic activity 

patterns should look like.  Hierarchical clustering approaches are attractive method to 

accomplish this data-driven discovery.  A subclass of hierarchical clustering, 

agglomerative clustering, starts with every data point as their own cluster and then 
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systematically update clusters one at a time by iteratively merging clusters based on 

closest distance.  This approach uses the pairwise distances between data points to cluster 

and hence fails to adapt to evolving notions of clusters as they are formed.  Partitioning 

clustering approaches on the other hand form k groups by finding the best combination of 

the data into k clusters.  This uses the full dataset to form k clusters, versus hierarchical 

clustering which would only use two of the k+1 clusters, to update cluster definitions to 

result in k clusters.  Representative time series, or characteristic activity patterns in our 

terminology, result from the means of each cluster.  We will turn to a hybrid approach 

that combines hierarchical and partitioning approaches, leveraging the iterative structure 

of hierarchical, but using more of the dataset to update cluster definitions.  More details 

will follow in §B.1.ii. 

One of the challenges with clustering analysis is determining how many clusters 

exist in the data.  Agglomerative hierarchical clustering proceeds until all clusters are 

merged into a single cluster.  This requires a way to assess performance to know which 

step of the hierarchical clustering to use to get the number of clusters and their 

characteristic temporal profiles.  Partition clustering similarly suffers, requiring k to be 

defined.  Furthermore, multiple versions of the clustering can be run from a specified 

value of k, necessitating the need for a way to determine selecting the best version.  We 

address this challenge of selecting cluster size in §B.1.iii. 

 In the remainder of this appendix we will go through the specific details of our 

clustering approach.  In §B.1.i, we discuss the novel distance measure we develop to 

highlight aspects ECoG data that are not covered in existing measures but crucial for 
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interpretation.  We then discuss the hybrid iterative clustering approach we employ that 

uses elements from hierarchical and partitioning approaches in §B.1.ii.  We follow this 

with details on how we select the number of clusters in §B.1.iii.  After concluding our 

clustering approach in §B.1.iv, we provide a discussion on alternatives pursued and tested 

in §B.2. 

 

B.1 More Details on Methodology 

B.1.i Distance Measure 

 After surveying existing distance measures, it was determined that a custom one 

needed to be conceived for this application.  The goal of the distance measure is to 

provide a measure of similarity between the activity patterns form different electrodes, 

while preserving the temporal detail, i.e., we were not interested in methods that involved 

time warping.  Adherence to this strict time enforcement was important since the goal 

was to find the underlying canonical time courses that hint at the neural mechanisms of 

speech production and hence the detailed timing is important. 

 While we are interested in the similarity between activity patterns, not all aspects 

of the activity should be treated equal.  Small differences in activity around baseline 

levels, i.e. around z-scored values of zero, should have negligible impact on similarity 

score.  These differences in variation are not expected to be due to task processing as they 

are below measures of significance, either as measured through the Kalman filter 

(APPENDIX A) or with traditional statistical significant measures (i.e. bootstrapped t-

test).  Differences in variation when the significance threshold is crossed, on the other 
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hand, should be accounted for more within the distance measure.  Previous studies have 

supported this rationale.  In (Dichter et al., 2016) higher ECoG signal variability was 

present during non-task periods, with a reduction in signal variability during task specific 

time points, such as during stimulus onset.  This shows that high signal variability exists 

during non-task periods, which has the potential to integrate to provide large distance 

values if not properly handled.  Thus, we want to emphasize differences due to the task, 

while mitigating differences that are natural variations during the absence of activity.   

 We therefore developed a distance measure that puts less weight in differences 

during insignificant portions of the signal, around z-scored values of zero, and puts more 

weight in the significant portions of the signal.  This helps prevent integrating many 

small differences in variation when neither signal is deviating from baseline activity and 

has grounding in prior observations of ECoG data and neural recordings and 

functionality.  This also helps mitigate the need to heavily preprocess the signals to 

reduce the insignificant variation, like others have done.   

 We empirically form these properties into a measure by taking point-wise 

distances between a pairwise set of electrodes and then taking the square root of the sum 

of the squares of all the point-wise distances Equation 1.  We use an exponential distance 

measure between the point-wise samples to give more importance weighting to 

significant parts of the signal.  This measure is similar to the classical Euclidean distance, 

but the measure is in exponential space instead of linear.  In CHAPTER II it was 

discussed that there is starting to emerge a trend of a shift in neural analysis to the use of 

nonlinear measures.  We follow this trend and motivate its use over linear measures.  For 
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our application, linear measures were found to integrate insignificant portions of the 

signal and in many of our analyses hid important features such as the differences between 

ramp and symmetric shapes.  This measure is more formally presented and defined in 

CHAPTER III (§III.3.viii). 

B.1.ii Clustering 

 In this subsection, we elaborate on the hybrid clustering approach that was used.  

Our hybrid clustering approach combines elements from hierarchical and partitioning 

cluster methods.  In particular, agglomerative hierarchical clustering and a modified k-

centroid clustering hybrid algorithm is used.  The distance measure just discussed in 

§B.1.i is used to assess similarity between electrodes activity and provide the measure 

used in the link function for grouping electrodes.  The link function employs a centroid 

approach, in which the centroids (average activity from all electrodes in the current 

clusters) are compared when determining which clusters to merge.  The partitioning 

method is used as refinement at each step, as described in the following. 

 We perform our hybrid clustering with cluster refinement through an iterative 

approach.  Each electrode time course is initialized in its own cluster.  Therefore, starting 

with the number of clusters equal to the number electrodes, as is the initialization of 

agglomerative hierarchical clustering.  The distance between every cluster centroid, 

which at this point is just individual electrode time course, is computed.  The two clusters 

with the smallest distance between them are merged.  The new cluster centroid is updated 

to the mean of the member electrode time courses.  At the next iteration the process is 

repeated.  This continues until all electrodes are merged into a single cluster.   
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 The process just described is agglomerative hierarchical clustering with a centroid 

method link function and the distance measure from §B.1.i.  However, using a centroid 

method link function creates a non-monotonic cluster tree.  Monotonicity is broken when 

a new cluster is created with a centroid closer (smaller distance measure) to a cluster that 

was not involved in the merge than the distance between the two clusters that formed the 

new cluster.  To mitigate this and produce a strictly monotonic cluster tree, we employed 

a partitioning refinement step at each iteration.  This step looks to partition the data based 

on the number of clusters for the step, i.e. k is determined by the current iteration which 

provides the number of branches in the cluster tree.  The partitioning step works to refine 

the cluster assignments to ensure a monotonic cluster tree. Several algorithms were 

explored for the partitioning step, with k-centroids producing the best results.  The 

pseudo-code for this approach is provided in Table 4. 

Table 4: Hybrid Clustering Pseudo-Code  

# Initialization 
N = number of data points 
K = N 
C = compute_centroids(data points) 
D = compute_pairwise_distances(C) 
 
For iteration = 1:N-1 
 
    # Number of clusters for iteration 
    K = K - 1 
 
    # Update – Hierarchical Step 
    index = argmin(D) 
    C = merge_clusters(C, index) 
    D = compute_pairwise_distances(C) 
 
    # Refine – Partition Step 
    Ck-centroids = compute_k_centroids(C, K-1) 
    method_index = argmin(min(D), min(Dk-centroids) 
    if method_index == 2 
        C = Ck-centroids 
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 This hybrid approach ended up being similar just using agglomerative hierarchical 

clustering with a centroid link function.  The main difference between that hybrid and 

agglomerative hierarchical methods is that the hybrid approach produced a monotonic 

cluster tree, while the sole agglomerative hierarchical clustering approach had non-

monotonic points along the tree.  However, the resulting clusters presented in the earlier 

chapters resulted from both methods.  The agglomerative hierarchical method is a more 

established clustering method than our variant, but we maintain our hybrid method as our 

baseline approach since it produces a monotonic cluster tree that provides an easier way 

to determine the number of clusters. 

 Figure 27 shows an illustration of this clustering method to help with 

understanding the method.  The figure illustrates a dendrogram view of the cluster tree 

(center).  The dendrogram pictorially shows the cluster tree from left to right.  On the left 

hand side each electrode is its own cluster and on the right everything is joined into a 

single cluster, where clusters are denoted by horizontal lines.  As you move left to right, 

individual clusters get merged together.  Cluster merges occur at the locations of the 

vertical lines, where two clusters (horizontal lines) from the left get combined to form 

one cluster (horizontal line) on the right of the merge.  The distance moving left to right 

(along the x-axis) captures the distance measure between clusters that are merged.  Thus, 

merges closer to the left of the plot occur between clusters that are most similar.  This is 

illustrated by Channel A and Channel B in the figure being merged together relatively 

close to the left side of the dendrogram.  Visually it can be seen that these channels have 

a high degree of similarity.  Channel C is a bit more dissimilar from A and B and hence 
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gets merged with A and B further to the right, representing a greater distance measure 

needed for that merge.  Selecting a distance measure for determining the cutoff between 

clusters that are similar and dissimilar is the topic of the next subsection, §B.1.iii. 

 

Figure 27: Dendrogram View of Cluster Tree 

Dendrogram illustration of cluster tree (center) shows at what distance (horizontal displacement) each 

channel (vertically stacked) gets merged together.  Moving left to right, each channel starts off as its own 

cluster and iteratively gets merged until there is one cluster containing everything.  Channel A, B, and C 

temporal profiles are plotted for illustrative purposes to depict when these channels would be clustered 

together. 

B.1.iii Selecting Number of Clusters 

 The clustering methodology described in §B.1.ii creates a cluster tree where each 

step along the tree (iteration) provides the distance measure that was used to merge 

clusters at that step.  Taking these distances over the number of clusters forms the cluster 

tree.  As discussed in CHAPTER III, the goal is to find the correct step along the cluster 

tree to select the number of clusters for producing the characteristic activity patterns.  

This turns into selecting a tolerable distance for a measure of similarity, which we shall 
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refer to as the distance threshold.  Several methods were analyzed for determining the 

distance threshold, many of which yielded the same results.   

 A good starting point when performing this type of determination is the “elbow-

method”.  The elbow method looks at where there is an elbow in the cluster tree, hence 

the importance of having a monotonic result.  An elbow can be thought of as the point 

along the curve where there is a noticeable increase of the distance threshold needed to 

move to fewer clusters.  There is no golden rule for what constitutes an “elbow”, but 

visual inspection provides a coarse rule of thumb that helps to guide the selection of 

analytic measures and provide a ballpark for where a tolerable distance threshold should 

be set.  In the results contained within the chapters of this dissertation the visual elbow 

lined up with the analytic methods described next.  This was not the case with some of 

the alternative clustering methods described in §B.2 or alternative preprocessing 

discussed in APPENDIX C.  The elbow method was used to provide a sanity check and 

corroborating evidence. 

 To set our distance threshold, we looked at the percent of variance explained by 

the clusters.  This is discussed in CHAPTER III (§III.3.viii) and laid out in (Goutte et al., 

1999).  This approach looks at the measure of variance explained by the clusters within 

each step of the cluster tree, with the difference in moving from one step to the next 

providing the additional variance that is explained by adding an additional cluster.  This 

approach also requires setting a threshold, but the units are now easier to understand – 

percent variance explained.  Using this measure, we were able to see a quick flattening of 

the additional variance explained by going to additional clusters, with minimal 
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explanation resulting from moving beyond the distance threshold that was selected.  This 

approach also needs monotonicity for correct interpretation, hence our work to ensure a 

monotonic cluster tree.  So, while we cannot fully get away from using a heuristic, we are 

at least able to move towards a distance threshold decision that provides intuitive and 

interpretable understanding. 

 It was touched upon in §B.1.ii that the results of a sole agglomerative hierarchical 

clustering method with a centroid method link function produced the same results as the 

hybrid approach, despite it producing a non-monotonic cluster tree.  In that approach, 

points in the cluster tree that break monotonicity result in cluster tree locations where 

moving from more to fewer clusters decreases the distance threshold that needs to be set, 

instead of increasing it.  Likewise, it also means that adding an additional cluster would 

decrease the percent of variance explained or, conversely, using fewer clusters would 

increase the percent of variance explained.  This forms a discontinuous location within 

the cluster tree when analyzing how many clusters to select, as points in the tree would 

never be selected no matter the threshold.  Hence, these locations can be removed, or 

pruned, to create a monotonic cluster tree.  

 This cluster tree pruning was used with the sole agglomerative clustering to 

generate a monotonic cluster tree.  This gives the same result as the hybrid approach, 

with the same number of clusters and same electrode assignment to the clusters.  This 

was, however, only true at the region of the cluster tree that was the focus of the selection 

criteria.  It was not the case if the desire was to increase the percent of variance explained 

by fractions of a percent and accept more clusters.  The clustering methods diverge in 
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their results slightly in this case.  We were not interested in minute increases in percent 

variance explained and instead wanted to find a parsimonious representation that 

captured the characteristic shapes of speech.  Thus, both methods were interchangeable at 

our distance threshold. 

B.1.iv Conclusions 

 The hybrid method ended up not being necessary as the special handling of the 

agglomerative hierarchical clustering produced the same results.  We discuss the hybrid 

method here and use it as our main form of clustering due to a lot of the alternative 

distance measures tested, as the hybrid method produced far more stable results in a lot of 

those cases, but the results presented within this dissertation also were produced from the 

simpler, and more established, agglomerative hierarchical clustering method. 

 

B.2 Alternatives  

 This section contains an overview of some alternatives explored, including the 

distance measures and clustering approach.  In particular, this section serves to note the 

rationale behind looking into these alternatives and details on why they were not 

sufficient.  This section will provide brief descriptions touching on several aspects of the 

clustering process, including the distance measure (§B.2.i), preprocessing (§B.2.ii), time-

series representations (§B.2.iii), clustering method (§B.2.iv), selecting the number of 

clusters (§B.2.v), and cluster assignment (§B.2.vi).  Particular focus will be put on the 

distance measure (§B.2.i), as that was one of the novel contributions of this work. 
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B.2.i Distance Measures 

 As discussed in the introduction to this appendix, there are many different options 

for distance measure, see (Warren Liao, 2005; Serrà and Arcos, 2014; Aghabozorgi et al., 

2015) for a review.  We ultimately settled on an exponentially weighted distance measure 

to preserve time and emphasize elements of the ECoG temporal profiles that were further 

away from z-scored values of zero, i.e. significant parts of the signal.  If we relax the 

emphasis on these properties, there are several other measures that could be considered. 

 Similar to the majority of the research in this area we initially started with a linear 

distance measure before focusing in on the nonlinear exponentially weighted distance 

measure.  We initially used the Euclidean distance measure (Anton, 2010), as laid out in 

Equation 10 where x and y are time courses from separate electrodes and N is the total 

number of samples in the trail.  This distance is one of the most common, and evaluates 

distance in linear space.  It was found to be too sensitive to slight variations in differences 

around z-scored values of zero, i.e. no significant activity.  This sensitivity integrated 

over the duration of the trial to have a significant impact on the measure of distance. 

Equation 10: Euclidean Distance Measure 

𝑑(𝑥, 𝑦) =  √∑(𝑥𝑛 − 𝑦𝑛)2

𝑁

𝑛=1

 

 This brought about our motivation to de-emphasize activity close to z-score 

values of zero and its integration potential.  This integration potential is illustrated in 

Figure 28 where two time courses (blue and green) can visually be seen to be similar.  

However, the right side of the figure shows the difference between these two signals, as 
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illustrated by the shaded yellow area.  This results in a large amount of distance 

accumulating in the beginning of the signals when using a linear measure. 

 

Figure 28: Linear-Space Integration of Non-Significant Activity 

Left: Activity patterns from two different electrodes, blue and green.  Right: Distance between the 

two electrodes shaded in yellow.  In linear-space the point-wise differences in the beginning of the 

signal can be seen to have a major contribution to the overall distance measure for the two 

electrodes, constituting over 1/3 of the total distance. 

 As a contrast, Figure 29 shows a notional depiction of the difference in emphasis 

for point-wise differences between signals from the Euclidean (left) and exponential 

(right) distance measures.  The x and y scales capture the individual sample z-score 

values for the two time courses being compared, respectively.  Color represents the 

emphasis, or weighting, that the point-wise differences provide to the overall distance 

measure, with blue being low and yellow high.  In the Euclidean space (left plot), it is 

seen that equal weighting is given to the same differences no matter what the z-score 

values were.  Thus, the emphasis is indifferent to where you are in the activity pattern.  

Differences when the z-score values from both signals are close to zero (bottom left of 

figure) are given the same emphasis as similar differences when both z-score values are 

high (top right of figure).  The exponential distance measure (right plot) provides varying 

levels of emphasis dependent on where you are in the activity pattern.  When both values 
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are close to zero (bottom left) there is a broader region that expands out de-emphasizing 

these differences.  Contrast this with when both values are high (top right).  Here smaller 

differences in the activity patterns start to add more emphasis and therefore contribute 

more to the distance measure. 

 

Figure 29: Impact of Linear vs Nonlinear Distance Measures 

Plots illustrate the notional emphasis put on the distance between two electrode activity 

patterns as a function of their z-score values.  X-axis represents z-scores for one electrode, 

with a value of zero at the origin and larger values moving to the right.  Similarly, the y-axis 

represents z-scores for the other electrode, with a value of zero at the origin and larger values 

moving up the axis.  To determine the emphasis of point-wise distances, the location of the 

intersection of the z-scored values for each activity pattern is used.  Blue denotes lower relative 

emphasis and yellow represents higher emphasis.  The diagonal represents points where the z-

score for each activity pattern is equal (dark blue), and hence there is no difference.  Left: 

Euclidean distance measure. Right: Exponential distance measure. 

 Another alternative is cross-correlation (Grami, 2019).  The cross-correlation 

function measures the similarity between two signals by holding one constant and 

measuring the similarity of the other at different time lags in reference to the first.  At 

each lag, the similarity is measured as in Equation 11.  Rxy is the cross correlation 

between the two signals, x and y.  It is a function of time lag, t, and therefore can provide 

a distance measure between the two signals not just while they are aligned by the task 

time, but also with temporal shifts. 
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Equation 11: Cross-Correlation Distance Measure 

𝑅𝑥𝑦(𝑡) =  {
∑ 𝑥𝑛+𝑡𝑦𝑛, 𝑡 ≥ 0,

𝑁−𝑡−1

𝑛=0

𝑅𝑥𝑦(−𝑡), 𝑡 ≤ 0.

 

 To ensure that the distance measures across the different pair-wise comparisons of 

electrodes were the same, the cross-correlation results were normalized so that the 

distance of the autocorrelation (cross-correlation between an electrode temporal profile 

and itself) at a lag of zero was one.  This is shown in Equation 12, where Rxy is the cross-

correlation from Equation 11. 

Equation 12: Auto-Correlation Function 

𝑅𝑥𝑦(𝑡)

√𝑅𝑥𝑥(0)𝑅𝑦𝑦(0)
 

 The cross-correlation at a lag of zero, Rxy(0), provides an estimate of the similarity 

of two electrode time courses when time is preserved for both signals to be time-locked 

to the task.  This was the main measure that was evaluated.  Time lags not equal to zero, t 

≠ 0, were also evaluated to see if an electrode’s activity was similar to a shifted version of 

another electrode’s activity, i.e. the shape was the same but there was a shift in time.  

Early analysis used this approach to look for propagation of canonical characteristic 

activity through the speech network, i.e. time delay versions of the same shape at the 

various steps of processing.  However, the underlying mechanics of this method are 

rooted in linear space and thus bound and limit the insight that can be found. 

 If we go a step further in relaxing our constraint on time, dynamic time warping 

(DTW) allows for a different form of comparison (Berndt and Clifford, 1994).  DTW 
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measures temporal similarity between time series that may differ in speed, hence the 

allowance of time warping.  This temporal nonlinear warping allows for differing 

acceleration and deceleration between similar activity patterns, but mandates that the 

general shape must still be present.  Each sample from an electrode is lined up with 

corresponding sample(s) from the other electrode, potentially at different time indices.  

The overall alignment must maintain the ordered time nature - aligned indices need to be 

monotonically increasing.  This results in having points in the alignment where some 

samples from one electrode must be repeated while waiting for the other one to catch up, 

i.e. a deceleration.  At other times, multiple samples from one electrode get mapped to a 

single sample of the other to quickly get back to alignment, i.e. an acceleration.  Refer to 

(Keogh and Ratanamahatana, 2005) or others for a more detailed review. 

 Similar to cross-correlation, DTW also allows for exploring how characteristic 

activity patterns may propagate through the brain when relaxing the time requirement.  

Some earlier research of ours went down this path.  We used the Keogh lower bound 

(Keogh and Ratanamahatana, 2005) as our distance measure, rather than the actual DTW 

distance measure.  This was done for simplicity as the Keogh lower bound is a fast 

implementation for computing the DTW.  This measure was compared to DTW on 

smaller sample sizes and final results to ensure using the approximation did not generate 

unwanted behavior. 

 Taking another approach to distance, we also explored performing 

transformations of the time series data before assessing distance.  One of the common 

transformations for time series data is going to the frequency domain, which we explored 
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to see if there were findings within the frequency domain that were not readily visible in 

the time domain. 

 In particular, we transformed the time series into the frequency domain using Fast 

Fourier transforms, FFT (Cooley and Tukey, 1965).  To enable differences in timing to 

be more important than differences in amplitude, or vice versa, we set a factor, 𝜌, that 

traded weighted the magnitude component of the Fourier representation.  First, each time-

series, x, is converted to the frequency domain using the FFT and normalized by the 

number of elements in the sequence, resulting in a frequency domain representation Fx.  

This normalization term could be dropped since all sequences had the same number of 

elements, Nx, but is included for completeness in Equation 13. 

Equation 13: Frequency Domain Representation of Time Course 

𝐹𝑥 =
𝐹𝐹𝑇(𝑥)

√𝑁𝑥

 

 Next, a function, Gx, is taken to project the weighted magnitude of each Fourier 

representation of the signal, Fx and Fy, under the phase of one of the signal Fourier 

representations, i.e., Fx.  The projection is also taken with the signals swapped, Gy, where 

the x and y components in Equation 14 are switched.  The * denotes element-wise 

multiplication in Equation 14. 

Equation 14: Weighted Magnitude Projection by Phase 

𝐺𝑥 = ((0.5 + 0.5 𝜌)|𝐹𝑥| + (0.5 − 0.5 𝜌)|𝐹𝑦| ) ∗  𝑒𝑖 𝑎𝑛𝑔𝑙𝑒(𝐹𝑥) 

 The measure of similarity, or distance measure, d, is then the L2 norm, or 

Euclidean norm, of the difference between these two projections, as shown in Equation 

15. 
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Equation 15: Frequency Transformation Distance Measure 

𝑑 =  ‖𝐺𝑥 − 𝐺𝑦‖
2
 

 The factor, 𝜌, becomes important in how much weight to put into the magnitude 

difference between the two signals.  A 𝜌 value of 1 reduces this expression to become the 

norm of the difference in the x and y time series expressions.  A 𝜌 value of 0 makes the 

distance measure independent of the difference in the magnitudes of the frequency 

response, i.e. |𝐹𝑥| −  |𝐹𝑦|. 

 Several other methods were tested, but fell within similar buckets for rationale as 

those just explained: a) methods that preserved time and computed sample-wise distance 

measures (such as the Euclidean method or the used exponential distance measure), b) 

methods that allow for time shifts (such as cross-correlation), c) methods that allow for 

time warping (such as the acceleration changes allowed in DTW), or d) methods that 

explore transformations that either move the measure away from a temporal 

representation (such as the transformation to the frequency domain) or parameterize it 

through a model (not discussed here as most these methods remove too much important 

information for understanding the time course of human speech).  All of these methods 

try to estimate a similarity (or difference) between electrode activity patterns, but do so in 

slightly different ways and thus have slightly different interpretations. 

 We are not unique in applying clustering analysis to look at ECoG during speech, 

refer to  CHAPTER II for a review (§II.3).  The methods used by these other groups, 

however, rely on linear distance measures for assessing similarity between time courses.   
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 One group in particular, the Chang Lab at University of California, San Francisco, 

has been exploring clustering analysis methods, e.g. see (Leonard et al., 2019).  One of 

the techniques that this lab often uses is factor analysis.  This is a statistical technique that 

is based on the correlation matrix to identify interrelationships between many variables.  

The interrelationships are captured in the form of factors, which capture the common 

variance in the data and discards the unique variance, hence relying on the inherent 

correlation in the data to provide a reduced set of representations of the data, factors, that 

compactly describe the data.  These factors are linear combinations of the data, which in 

our type of analysis is linear combinations of the electrode temporal profiles.  In 

particular, the Chang Lab has used non-negative matrix factorization (NMF) (Lee and 

Seung, 1999) and a specialized version of this called convex NMF (Ding et al., 2010), 

which has nice properties for clustering (Ding et al., 2005).  This results in a soft 

clustering algorithm whose factors are the cluster centroids and electrode to cluster 

assignment comes from linear combinations of the factors, hence soft clustering which is 

discussed in §B.2.vi.  Further, many of these alternative methods are validated with a 

partitioning method, such as k-means which is often used by the Chang Lab.  This again 

is based on correlation and again reliant on a linear distance measure. 

 In some of our analyses we enforce additional constraints on the distance 

measure.  In particular, in CHAPTER IV we expand the distance measure to encourage 

spatial similarity between electrodes.  The distance measure is updated to be the 

combination of a temporal and spatial component.  The distances just discussed were also 

explored in this context for the temporal component.   
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 Several alternative options were also explored for the spatial component, §IV.2.ii.  

Different parameterizations of the radial basis function (RBF) kernel were explored, as 

well as other RBF forms.  This included removing the bilateral flattening, as discussed in 

CHAPTER IV (§IV.2.i), and therefore separating clusters that span hemispheres.  

Kernels not set in a radial basis were not considered due to complexity.  Similarly, 

kernels that were dependent on where they were cortically centered were not considered 

for complexity reasons.  These types of kernels would be dependent on cortical locations 

and would take into consideration the neural pathways of the brain, e.g. a kernel centered 

in a specific Brodmann area may put more weight to other locations within the same area 

versus moving to neighboring Brodmann areas.  

 How the two components, temporal and spatial, of the distance measure from 

CHAPTER IV were combined was also an active area of exploration.  The final solution 

itself had two parts, Equation 8 (§IV.2.iii).  The first component was only based on the 

temporal component, while the second was a mixing between both the temporal and 

spatial components.  It was deemed that the temporal component was the most important 

and thus made up the first part by itself.  The second part was added to this to bring in the 

influence of the spatial component.  This second part was constructed as a mixture of the 

temporal and spatial components.  The mixture was a multiplication of the temporal and 

spatial distances, scaled by a factor.  This was experimentally found to perform the best 

in terms of the correct balance between temporal and spatial importance.   

 Other things explored were direct mixing (i.e. dropping the first part of Equation 

8 and only using the second part) and a weighted linear combination (scaled addition of 
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the temporal and spatial components).  The scaling factors that balance the importance of 

the temporal versus spatial component was found to be the most sensitive parameters of 

all of these functions for generating resulting clusters.  Across the set of functions tried, it 

was found that more weight should be put in the temporal component so that the distance 

measure did not reduce down to generating anatomical brain parcellations and was able 

to generate meaningful characteristic activity patterns.  Too much weight in the spatial 

component was found to produce a set of symmetrical activity patterns that had larger 

variances and were mostly separated by their times of activation and spatial locations.  

The unique ramp shapes got washed out in these cases. 

B.2.ii Preprocessing 

 Several variations on preprocessing were tested, one of which is discussed here.  

In CHAPTER III, normalization was applied to each electrode time course so that the 

signal was scaled to be between zero and one.  This results in all electrodes having 

activity that is normalized to have the same power range, enabling characteristic activity 

patterns that are scale invariant.  This puts the focus on the temporal dynamics, i.e. the 

shape of the activity pattern, instead of the amount of power contained within the activity.  

Earlier experiments looked at what would happen without normalization by looking at 

how clusters would form from both the shape and amount of power contained within the 

activity.  Variance was found in the power ranges of the electrodes making it difficult to 

form meaningful clusters over the small subject sample size.    
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B.2.iii Time Series Representation 

 The temporal profiles used to perform the clustering in the chapters resulted from 

the minimally preprocessed high gamma representation of the ECoG data.  This was 

desired, as it reduces the number of preprocessing steps involved and hence the steps that 

potentially remove, transform, or alter the neural activity.  However, additional 

preprocessing was explored to see if there was a tradeoff between additional processing 

that potentially removes information and a better set of resulting clusters.  One of the 

goals of this additional processing was to reduce dimensionality for the clustering step, 

and hence reduce the complexity of the analysis.  Another goal was to smooth the data to 

capture the general shape, but remove minor deviations that existed in the signals.  

Smoothing helped to make shapes with fewer dynamics, but also slightly shifted the time-

course and activity pattern of the signals, so was not desired.  However, smoothing did 

help create better clusters prior to moving to an exponential distance measure as it helped 

to mitigate the integration effects of small deviations during insignificant portions of the 

activity as discussed in §B.1.i.  Once the exponential distance measure was tested it out-

performed smoothing methods. 

 Methods used to perform this complexity and dimensionality reduction by 

smoothing the data fall within a class of techniques called model-based.  In model-based 

techniques there is an explicit model for the signal and the goal of the technique is to fit 

the model’s parameters to capture and describe the signal.  Several of these techniques 

will be discussed, including principal component analysis (PCA), wavelet transform, and 

autoregressive (AR) models.  Additionally, the method from APPENDIX A will also be 
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explored as an alternative representation.  Other techniques from this class were also 

considered.  Some of them were implemented, such as splines, but they provided poor fit 

and generalization.  Their primary pitfall was their need for fine tuning that did not hold 

from one condition to the next.  Thus, they lacked the ability to generalize and became 

point solutions that lacked evidence of holding up in other tasks or subjects.  These 

techniques will not be discussed further. 

 Principal component analysis (PCA) is a commonly used technique to capture the 

underlying trends in a data set, while reducing the dimensionality (Pearson, 1901; 

Hotelling, 1933; Jolliffe, 2002).  It is a data-driven technique, in that it does not rely on 

any basis method, but instead on the data itself to generate the principal components.  

Many variants of PCA exist, but in our implementation we stuck to the multivariate 

normal (Gaussian) distribution that is used for inferential purposes.   

 PCA seeks to find a linear combination of the variables to create new signal 

representations that have fewer variables with maximum variance, with the goal of 

maximizing the variance to form a representation that best explains the original signal 

with a reduced set of variables.  These fewer variables, or principal components, are 

orthonormal.  Thus, PCA seeks to take a dataset that has potentially correlated variables 

in it and reduce it to a smaller dimensional representation with uncorrelated principal 

components.  PCA itself is a form of factor analysis, which was discussed in the context 

of distance measures in §B.2.i, where the factors in PCA are based on the total variance. 

 In our implementation, the different electrode time courses become the variables 

and PCA is used to find the combination that “clusters” these temporal profiles into a 
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smaller set of principal components that contain most of the variance across all 

electrodes.  This is a form of soft clustering, where each temporal profile can be a 

combination of multiple principal components.  However, we did not seek to use PCA for 

clustering, but rather for preprocessing.  Thus, we performed PCA to get the principal 

components and then used them to construct signal representations for each electrode 

from its linear combination of the principal components.  This results in a smoother 

version of the original time course.   

 Results varied using this method.  Many of the smoothed time courses captured 

the basic shape and time structure of the original signal, which was what was hoped for.  

However, a nontrivial subset of the smoothed temporal profiles got manipulated in a way 

that the overall shape lost much of its original structure and was not a good smoothed 

version of the original signal.   

 Many of the model-based methods, including PCA, assume that the data is 

stationary.  Speech and the neural mechanisms that produce them are dynamic in time, 

frequency, and space.  We also looked into models that were more representative of this 

non-stationarity.  Extensions have been made to stationary model based techniques, such 

as functional PCA (Jolliffe, 2002; Jolliffe and Cadima, 2016) to allow for time evolution.  

We instead sought to explore a technique that had more dynamics built natively into it, 

seeking a method that can describe the signals in time and frequency simultaneously and 

properly handle variability.  Wavelet-based methods have these features and were another 

approach we pursued for transforming the representation of the data prior to clustering.  

More information about our wavelet approach can be found in §C.2.iv, where we discuss 
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using it as a filtering step in our preprocessing stack.  Results were similar to the other 

techniques explored that did a form of smoothing.   

 Another technique that others have used is an autoregressive (AR) model.  This is 

also a technique that we explored for filtering and a brief discussion of it can be found in 

that section, §C.2.v.   

 Lastly, we also explored using the learned Kalman filter estimates from §III.3.ix 

and APPENDIX A as the representation used for clustering.  The additional 

preprocessing through the Kalman filter performs smoothing like the other alternatives 

described, but does so in a different way.  Here, the smoothing emphasizes the trends 

present in the activity.  The trends are broken up by change points and are relatively 

linear in each segment between the change points, due to the form of the Kalman filter.  

The change points create some discontinuities, which is undesirable for clustering as they 

create discrete temporal sensitivities.  However, reducing the signal into segments that 

capture cleaner versions of the underlying linear trend is attractive for clustering.  The 

segments maintain the important time points of the signal and the general structure of the 

original shape, making it easier to assess similarity between different electrodes.  The 

discrete change points make it easy to line up points of significant trend inflection when 

the same significant times exist across activity patterns, i.e. time of peak.   

 Many nice properties came out of this, but the slight timing differences at change 

points sometimes summed up to large differences in a distance measure and were 

overpowering.  This sensitivity was ultimately the limiting factor when trying to find a 

set of characteristic time courses.  The Kalman filter approach worked very well, and in 



 

 

172 

fact outperformed many of the other techniques, when large number of clusters were 

considered with limited electrodes in each one.  However, performance quickly dropped 

off when trying to get to a smaller set of representative clusters as slight time differences 

(activations, peaks, etc.) caused poor cluster merges.  To mitigate this, cluster centroids 

could have been constructed from the ECoG high gamma signals and the Kalman filter 

only used in the link function.  This mitigation was not explored as it began to add more 

steps, creating a complex model that was becoming harder to intuitively understand. 

 In addition to the model-based steps described, a second class of preprocessing 

was also tested.  This second class of preprocessing does not try to model the signal to get 

a new representation for clustering, but instead use subsets of the signal for clustering.  

All the techniques discussed thus far have used the entire trial period, with different 

techniques to emphasize different parts of the signal.  Here, instead of figuring out how to 

emphasize different parts of the signal we explicitly ignore parts of the signal and only 

use subsets of the signal that were significantly responding to the task, i.e. significantly 

deviating from the baseline period or a z-scored value of zero. 

 This was only explored briefly, as challenges arose in how to assess similarity 

between two signals when different sub-signals resulted in different parts of the trial that 

were used that only partially overlapped, with no overlap in the extreme.  One attempt set 

periods of the signal that were not significant to zero.  This has the effect of maintaining a 

signal representation throughout the whole trial period, with perfect similarity when 

neither electrode has significant activity.  However, this created differences that 

significantly integrated distance at points where one signal was significant and the other 
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was not, and therefore set to zero.  Distance measure approaches, including the 

exponential distance measure, did not fully help to mitigate this effect.  This approach 

ended up functioning to put a lot of weight on the slightly significant parts of signals and 

de-emphasized the largely significant periods of the signal, including times like peak 

activity.  This was the opposite of the intention of the approach. 

Another attempt to mitigate this was to remove non-significant periods from the 

analysis altogether so they do not contribute positively or negatively.  This created the 

challenge noted above with how to deal with computing a distance at a time sample when 

one signal is significant, and hence its value should be used, while the other is not, and 

hence its value should not.  Several attempts were made to try to address this, with 

nothing producing tolerable results and hence sub-sequencing was no longer pursued. 

B.2.iv Clustering Methods 

 A hybrid clustering approach was ultimately used for the results of this 

dissertation.  Alternatively, an agglomerative hierarchical clustering approach could have 

been used and resulted in the exact same results, as covered in §B.1.ii.  Alternatives 

pursued included variants of agglomerative hierarchical clustering with various link 

functions and combinations of distance measures.  Additionally, partitioning clustering 

methods were also explored, including k-means, similar to what others have done to 

validate their methods, i.e. (Leonard et al., 2019).  Some additional custom iterative 

clustering techniques were also tested, but as research progressed it was determined that 

most of the difference in performance was a function of the distance measure used rather 

than the clustering method employed.  Thus more time was devoted to refining the 
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distance measure, which in turn produced similar results across methods.  Thus, choice of 

clustering method does not seem to play a major role in the results found in this work. 

B.2.v Determining Number of Clusters 

 CHAPTER III describes the details on how the number of clusters was selected 

from all possibilities in the cluster tree.  Figure 30 illustrates what a cluster tree looks like 

to help build some intuition.  Here it can be seen that the distance threshold, which was 

covered in §B.1.iii, is clearly a function of the number of clusters.  Setting a low distance 

threshold results in many clusters (right side of figure).  Conversely, setting a high 

distance threshold results in fewer clusters (left side of figure).  The red marker highlights 

the point at which the percent of variance explained only gets slightly higher with the 

addition of more clusters.  This is the point at which the number of clusters to use is 

selected.  It is also visibility seen to be the location where the “knee in the curve” exists, 

showing why this general rule of thumb still holds a lot of power for selecting the number 

of clusters. 
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Figure 30: Example Cluster Tree for Selecting Number of Clusters 

Cluster tree (blue) is shown as the distance needed (y-axis) to result in a specific number of clusters (x-

axis).  The red marker denotes the location that is selected for providing the number of clusters using the 

percentage of variance explained, which sets the distance threshold for selection.  This visually aligns 

with the “knee in the curve” heuristic. 

 Many different techniques exist to choose the number of clusters, with no clear 

choice in any situation.  Two example alternatives are the Akaike information criterion 

(AIC) and Bayesian information criterion (BIC).  Both of these techniques penalize using 

more clusters than you need to in order to promote more parsimonious models.  Many 

other options exists, refer to (Warren Liao, 2005; Aghabozorgi et al., 2015) for more 

complete coverage.  Other options were not explored in detail as the “knee” ended up 

being fairly pronounced in our results, thus providing strong evidence backing the 

percent variance explained technique that we used. 

B.2.vi Cluster Assignment 

 Finally, a quick note on cluster assignment.  All of the clustering methods 

explored in this work performed hard assignment, in that electrodes are only assigned to a 

single cluster.  Soft clustering on the other hand would have allowed electrodes to be 
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assigned to multiple clusters.  This partial assignment typically comes in the form of a 

weight that determines how much electrodes fit within each cluster.   

 It was determined early on that we would only pursue a hard clustering approach 

and not soft clustering.  This was due to the desire to find canonical activity patterns that 

characterize speech.  In a hard clustering approach, an electrode time course needs to 

match a cluster centroid over the entire duration of the trial, thus capturing the underlying 

neural dynamics throughout the speech processing that is taking place.  In a soft 

clustering approach this need not be the case.  You could have an electrode time course 

that is matched to two separate clusters, where it matches one cluster in the activity ramp 

up stage and another cluster in the activity decay stage.  This breaks up the notion of a 

canonical activity pattern as the underlying dynamics of that electrode are now captured 

by multiple clusters, but neither completely captures the neural dynamics.  This would 

prevent the differentiation of ramp and symmetrical shapes, as it was found that these 

clusters often share parts of the trend, as illustrated in Figure 11 (§III.6.iv).  Additionally, 

soft clustering often produces non-unique partitions, meaning that multiple different 

activity pattern sets could be constructed that could equally describe the data. 

 Even with soft clustering you still have the burden of cluster assignment.  If an 

electrode fits 100% in a cluster, you would assign it to that cluster and can describe the 

electrode location as involved in the activity pattern of the cluster.  What if the electrode 

is only 50% assigned to the cluster?  Do you then say it is only 50% performing that part 

of the cluster activity pattern?  What about 10% or 1%?  And what does this mean in 

terms of cortical involvement?  In order to make the results interpretable in regards to the 
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task being studied some threshold needs to be set.  Electrodes could contribute to 

multiple clusters, but having them contribute to too many will not provide insight into the 

underlying dynamics.  The argument in the past is that soft clustering allows you to 

capture multiple task processing functions that an area is performing.  The argument 

extends to say that since neural data is heterogeneous we should allow for multiple 

cluster assignments to capture this heterogeneous underlying neural mechanics, e.g. 

(Leonard et al., 2019).  We agree that neural data is heterogeneous, but we argue that if 

brain areas are truly performing multiple tasks, they will form their own cluster that 

captures this and is separable from brain areas that only perform one of the tasks. 
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APPENDIX C: More on Methods 

 In this appendix, we lay out some additional information in regards to the 

methods.  In doing so, we provide additional context, rationale, motivation, and 

methodology beyond what was discussed in the earlier chapters, with a primary focus on 

the content of CHAPTER III, which lays out the core methodology used in this research.  

In motivating the directions taken and providing rationale, we will also discuss some of 

the alternatives considered and the earlier approaches tried in this research.  This 

appendix is not intended to lay out the full cohesive processing flow, but instead to hit 

upon some of the more critical elements. 

 Much of the preprocessing steps we used are common in electrocorticography 

research, with many researchers converging around a few common methods.  In 

CHAPTER III we tie our methods back to those used by others.  These common methods 

will not be discussed in detail here.  Further, this appendix will not cover material 

involving the Kalman filter or clustering.  More detail on those two aspects of the 

methods can be found in APPENDIX A and APPENDIX B, respectively. 

 

C.1 Methodological Flow 

 First, we orient to the entire processing chain by providing an overview of the 

methodological flow.  This high-level description is intended to provide intuition and 

summary level understanding of the approach.  This description is not meant to provide 

enough details to understand each element, but instead to compactly tie everything 

together.  Figure 31 illustrates the processing flow, with a description following. 
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Figure 31: Primary Processing Pipeline  

Methodological flow depiction of primary processing pipeline for work of this dissertation.  Input data 

sources (left) are aligned, compiled, and manually corrected.  Processing (middle) proceeds through 

several steps: preprocessing, epoching, and signal processing.  Analysis (right) is conducted on the 

results to characterize and describe the data.  

 The input data sources, left side of Figure 31, consist of the electrocorticographic 

(ECoG) recorded data, acoustic response signal, electrode locations, task description, and 

cues and stimuli signals.  Prior to running any processing, these multiple sources first 

need to be aligned.  Semi-manual voicing onset and offset is conducted to mark the 

speech trials within the acoustic signal and remove any non-speech artifacts.  All signals 

are then aligned to common reference points. 

 Data processing comes next, with three primary stages: preprocessing, epoch, and 

signal processing.  In the preprocessing stage, the data is further refined through both 
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manual and automatic quality assessment to remove electrodes that have artifacts.  The 

ECoG signal is then downsampled, cleaned (direct current and line noise removed), and 

re-referenced.  Next, the data was filtered to the frequency band of interest.  After this, 

the next stage is to epoch the data.  Data for each electrode is aligned to a trail condition 

(stimulus presentation or voicing onset) across all trials and then averaged together to 

form an event-related spectral perturbation (ERSP).  The signal processing stage follows.  

ERSPs are analyzed for significant task-related activity.  Those showing activity are kept 

and further downsampled to reduce dimensionality for the analysis.  Lastly, additional 

transformations and trend detection are performed for some variants of the analysis. 

 The analysis steps are used to characterize and describe the final results.  The 

characterization step performs clustering to form characteristic time courses.  

Descriptions of the characteristic shapes are provided in the form of describing the 

temporal structure (trend analysis) and connecting it to anatomical and functional 

meanings.  Next we turn to some of the important elements of these steps. 

 

C.2 Filtering 

 Using a Hilbert transform to extract high gamma frequency power from ECoG 

was the primary form of filtering used in this work.  Here we provide a more complete 

discussion of filter options, including spanning into other frequency bands as well as 

different forms of filtering.  Our ultimate decision to use the Hilbert transform was to best 

align with the vast proportion of prior studies that have used it.  We also did not see any 

benefit produce by using a different method, so conformed to what others have done.   
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 ECoG signals have been shown to follow a power law scaling with broadband 

amplitude changes indicating neural activity (Miller et al., 2009), have shown high 

gamma power phase-locked to theta oscillations (Canolty et al., 2006) and to broadband 

power in the motor cortex (Miller et al., 2012), and have shown high gamma tracking of 

speech acoustic envelops in the auditory cortex (Kubanek et al., 2013).  Thus, filtering 

across several different power bands may provide additional insight into the neural 

mechanism and help to provide insight in the understanding their contribution to speech.   

 First, a brief discussion of the four different frequency bands that were considered 

is be provided.  The four frequency bands are described as follows: 

o Raw Signals (no filtering): The raw signals were looked at directly to reduce the 

amount of preprocessing.  This allows for analyzing activity contained across 

the entire frequency range.  Early preprocessing steps were still used to clean up 

the data, i.e. removing line noise, but no further filtering was performed. 

o Broadband (4 – 250 Hz): Broadband activity has been found to link local field 

potentials (LFP) and ECoG activity with functional magnetic resonance imaging 

(fMRI) bold responses (Ojemann et al., 2013).   

o High Gamma (70 – 150 Hz): High gamma frequency band activity has been 

found to correlate with local neural activity (e.g. (Miller et al., 2009; Ray and 

Maunsell, 2011)) and will be the primary focus of study.   

o Beta (15 – 30 Hz): Beta activity has been found to be suppressed with local 

activity during a task (Pfurtscheller and Lopes da Silva, 1999). 

Table 5 summarizes the frequency bands considered and their frequency extent. 
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Table 5: Electrocorticography Frequency Bands 

 

 Frequency (Hz) 

Raw Signal  

Broadband 4 – 250 

High Gamma 70 – 150 

Beta 15 – 30 

 

 There are several methods for filtering the raw data to get the band responses 

noted above.  We primarily focused on the Hilbert transform, but explored other methods 

to see how results differed.  The following subsections detail each of these alternatives, 

which consist of 1) Hilbert transform, §C.2.i, 2) highpass and lowpass, §C.2.ii, 3) multi-

taper, §C.2.iii, 4) wavelet, §C.2.iv, and 5) autoregressive model, §C.2.v. 

C.2.i Hilbert Transform 

 The Hilbert transform (Hupert, 1965) has been used for spectral analysis across 

different domains.  Within ECoG research, the log-analytic amplitude of the Hilbert 

transform has been used to bandpass the ECoG recordings into band specific regions 

(Edwards et al., 2009; Chang et al., 2011; Ray and Maunsell, 2011; Moses et al., 2016).  

For high gamma, this is done using 8 logarithmically spaced bands across 70 – 150 Hz, 

such as in (Hamilton et al., 2018).  The logarithmic scale is used due to its spectral 

properties (Gasser et al., 1982).  The absolute value of the signal from each filter band is 

taken to get the power envelope.  This is then averaged to get the high gamma power.  

Many high gamma analyses have used this approach since it was first proposed by 
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(Edwards et al., 2009).  In the broadband power range, 4 – 250 Hz, this has been done 

using a filter bank of 42 center frequencies. 

 More formally, the bandpass filter for the Hilbert transform is designed as 

follows.  For each logarithmically spaced frequency band a separate bandpass filter is 

designed using a Butterworth filter (Butterworth, 1930).  The filters are symmetric 

around the passband and have 1 Hertz (Hz) of separation between their pass and stop 

frequencies, with 60 decibels (dB) of attenuation.  The passband has been designed to 

have a ripple of less than 1 dB.  The sampling rate of the signal that the filter was applied 

to was 1000 Hz.  The signal is zero padded on each side and is filtered using a zero-phase 

forward and reverse digital filter to execute the Butterworth design using the fdesign and 

filtfilt functions in MATLAB (MathWorks, Natick, MA).  The zero padding is then 

removed and the procedure continues as in the preceding paragraph.  

C.2.ii Traditional Highpass and Lowpass Filters 

 Traditionally, bandpass filters have been constructed using a highpass and 

lowpass filter to get the spectral content, such as with the fast Fourier transform (FFT) 

(Potes et al., 2012).  In this approach, we first decimated the signal down to a 500 Hz 

sampling rate.  A 3rd order Butterworth highpass filter is then used to filter the signal, 

using the lower frequency from Table 5 to set the start of the pass frequency.  This is 

done in MATLAB using the butter and filtfilt functions.  Similarly, a lowpass filter is 

then applied also using a 3rd order Butterworth filter, but with the higher frequency from 

Table 5. 
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C.2.iii Multi-Taper 

 Fourier transforms produce a biased estimate of the spectral content.  To alleviate 

this, the multi-taper method (Thomson, 1982) uses multiple estimates of the spectral 

content and then combines them back together to reduce the estimation bias.  This is done 

through the use of multiple tapers, which are orthogonal to one another.  The average of 

the collection of orthogonal tapers produces an estimate that has a reduced bias when 

compared to a Fourier transform estimate (Babadi and Brown, 2014).   

 We used Slepian tapers (Slepian, 1978) using the Chronux toolbox (Bokil et al., 

2010) in our implementation.  The window length (T) was set to 200 ms, with a step size 

of 10 ms (for broadband and beta power bands) or 50 ms (for high gamma).  The 

passband (W) is set using the values from Table 5.  The tapers are computed using the 

time-bandwidth product (TW), which is computed from the window size and the 

passband bandwidth.  The number of tapers is computed as K = 2*T*W – 1. 

C.2.iv Wavelet 

 Wavelets (Mallat, 2009) were another alternative explored.  The methods 

described above assume that the data is stationary.  Neural processing during speech is 

dynamic in time, frequency, and space.  Thus, a method that can describe the signals in 

time and frequency simultaneously and properly handle variability is desired.  A wavelet-

based method has these features and has been shown to yield more robust results in other 

studies (Jobert et al., 1994; Senhadji and Wendling, 2002; Rosso et al., 2003; Glassman, 

2005; Klein et al., 2006), including the relative wavelet power (RWP) which has been 

shown to associate with the different frequency bands in ECoG (Formaggio et al., 2013). 
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 We explored filtering frequency band results using the Daubechies 4 (db4) 

wavelet family of functions (Samar et al., 1999).  This creates a family of orthogonal 

functions through successive low-pass and high-pass filtering using the Mallat algorithm 

(Mallat, 2009).   

C.2.v Autoregressive Model 

 Others have also used an autoregressive (AR) model to perform filtering (Sturm et 

al., 2014).  We avoid using this method since it builds a linear representation of the 

ECoG signal as a random process, and thus requires many parameters to fully capture the 

temporal dependencies.  To limit the number of parameters, an AR model could be 

constructed to only use the previous time sample to predict the next sample.  However, 

this likely does not capture the neural dynamics of speech which have varying time 

degrees of activation over the span of hundreds of milliseconds.    

 
C.3 Significant Electrodes and Bad Channel Rejection 

 Many different methods exist for selecting electrodes that show significant task 

activity and electrodes that should be rejected due to bad channel characteristics.  Here 

we will briefly review some of the alternatives that we explored. 

 Many of the techniques used in ECoG analysis have been borrowed from 

electroencephalography (EEG), which has been around longer and therefore has more 

established methods.  Standardized methods and processing pipelines have been 

developed for EEG research, such as the EEG processing pipeline (PREP) (Bigdely-

Shamlo et al., 2015).  We explored leveraging techniques from PREP, primarily for bad 



 

 

186 

channel rejection.  PREP takes a multi-stage approach to removing noisy channels, with 

robust methods throughout the early processing stages.  The pipeline uses four primary 

methods for removing bad channels: 1) unreasonable amplitudes, 2) lack of cross-channel 

correlation, 3) lack of cross-channel predictability, and 4) unreasonable frequency noise.  

Refer to (Bigdely-Shamlo et al., 2015) for more information.  It is also still common 

practice to perform visual inspection for bad channel rejection, e.g. (Pei et al., 2011b). 

 Determination of significant electrodes, and significant time-points, is largely 

done through statistical significant tests.  There are several variants that are used.  A 

common method to determine if electrodes are significantly responding to a task is to use 

a t-test.  For example, (Hamilton et al., 2018) used bootstrapped t-tests over one second 

periods and (Hullett et al., 2016) used a one-way t-test with false discovery rate (FDR) to 

determine significant electrodes.  (Moharramipour et al., 2018) looked at multi-variate 

AR statistical tests and many other variants exist, each making slightly different 

assumptions about the underlying data distributions.  There is no clear winner for which 

test is best.  We used our Kalman filter method to select electrodes that showed a change 

in trend, which is based on the assumption that the underlying data is distributed as a 

Gaussian random process.  We compared our results to a bootstrapped t-test to validate 

and found comparable performance between the methods. 

 
C.4 Epoching 

 Two alignment cases were discussed within this work, alignment to stimulus 

presentation and alignment to voicing onset.  Both of these alignments are to the first 

stimulus presented in a trial, with a common baseline for both cases being the time period 
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from one second to half a second prior to stimulus presentation.  The tests that the 

subjects performed, however, was a word repetition test and there was a paired second 

stimulus presented in each trial.  We also explored additional alignment cases where we 

aligned to the second stimulus presentation and the subsequent voicing onset.   

 The baseline period was initially set to the time one second to half second before 

the second stimulus for alignments in the second half of the trial.  This baseline period 

was found to still have activity present from the response to the first stimulus, which was 

3-5 seconds before the second stimulus.  Electrode activity had not always returned back 

to baseline levels during this baseline period, thus making this an invalid baseline, non-

task reference. The baseline period from the first stimulus was therefore also used as the 

baseline for alignments cases in the second half of the trial, as the first baseline period 

was considered to be the nearest non-task period.  The activity that extended into the 

second baseline period was also found to have an impact during the stimulus presentation 

period for the second stimulus.  These artifacts confounded the findings, making it hard 

to tease out activity unique to the second stimulus from those remaining or influenced 

from the first half of the trial.  Any results from alignments in the second half of the trial 

were therefore not used. 

 We also looked at a longer duration trial that was aligned to the first stimulus 

presentation and covered through the second vocal response.  This was not found to 

produce meaningful results as there was too much variability in subject responses 

latencies and the duration between the first and second stimulus was randomly selected 

from trial to trial. 
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C.5 Single Trial 

 All results are presented from averaged activity across the electrodes within the 

epoch alignment cases, i.e. ERSPs.  Single trial time courses were also explored to see if 

individual, raw time courses showed the same activity as the characteristic patterns found 

across the average temporal profiles.  Due to the lack of preprocessing, there was a higher 

degree of variability in the individual time courses.  Many individual trials did align well 

with the characteristic activity patterns during the significant periods, but the higher 

variability made it more difficult to align across the duration of the trial as the signal to 

noise ratio is much lower in individual trials versus the epoch.  Others in the past have 

found good single trial alignment, but doing so required additional preprocessing to 

smooth the signals, e.g. (Conant et al., 2018).  We choose not to do that in our study. 
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APPENDIX D: Additional Results 

 This appendix provides additional results that were found using the methodology 

described in CHAPTER III (§III.3).  We present the results with little description or 

discussion for both completeness and to aid those who venture to further research in this 

area.   

 The appendix focusses on three sets of additional results.  In §D.1 results for 

clusters that were only present in a single subject are provided.  In §D.2 results from 

analysis that only uses surface electrodes are presented and contrasted with the results 

from CHAPTER III, which included depth electrodes.  Finally, §D.3 presents results 

when high gamma power activity is switched with beta band power, as discussed in §C.2. 

 
D.1 Single Subject Clusters 

 CHAPTER III only presented results for clusters that were present in at least two 

subjects, with all resulting clusters coming from at least three subjects.  Here we provide 

results for the electrodes that were not included in that analysis and formed clusters only 

present within a single subject.  Several of the clusters contained only a single electrode.   

 Single subject clusters were seen in both the stimulus presentation alignment 

condition and when aligned to voicing onset.  Results for the two conditions are 

presented in §D.1.i and §D.1.ii, respectively.  Results are further broken down by the 

number of electrodes that fall within each cluster. 



 

 

190 

D.1.i Stimulus Presentation Alignment Single Subject Clusters 

 Results for single subject clusters in the stimulus presentation alignment case are 

broken out across the following three figures.  Figure 32 shows results for the cluster with 

the most electrodes, which displays high gamma suppression during the task period.  We 

refer to this cluster as high gamma suppression.  Suppression of high gamma activity 

during self-generated speech was found previously within the auditory cortex, with 

variance across subjects (Flinker et al., 2010).  Figure 33 shows three clusters that had a 

limited number of electrodes.  Figure 34 shows the final three clusters that only had one 

electrode each. 

 

 

Figure 32: Stimulus Alignment Single Subject High Gamma Suppression Cluster 

Left: Normalized power (np) over time (t) for 29 electrodes that are clustered together within Subject 

372.  Solid vertical line indicates stimulus presentation timing.  Average audio signal amplitude 

indicated by gray shaded region.  Right: Subject 372 active electrodes for cluster.  
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Figure 33: Stimulus Alignment Single Subject Clusters with more than 1 Electrode 

Additional single subject clusters for stimulus alignment case with more than one electrode.  (a,b) 

Subject 357 clusters with 5 and 2 electrodes, respectively.  (c) Subject 362 cluster with 2 electrodes.  

Left: Normalized power (np) over time (t).  Solid vertical lines indicate stimulus presentation timing.  

Average audio signal amplitude indicated by gray shaded region.  Right: Subject active electrodes for 

clusters.   
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Figure 34: Stimulus Alignment Single Subject Clusters with Only 1 Electrode 

Single subject clusters that only have one electrode.  (a) Subject 369, (b) Subject 372, and (c) Subject 

376. Left: Normalized power (np) over time (t).  Solid vertical lines indicate stimulus presentation 

timing.  Average audio signal amplitude indicated by gray shaded region.  Right: Subject active 

electrode for clusters.   

 

D.1.ii Voicing Onset Alignment Single Subject Clusters 

 Results for the voicing onset alignment case are broken out across the following 

three figures.  Figure 35 shows results for the cluster with the most electrodes.  This 

cluster matches the high gamma suppression cluster in Figure 32 for the stimulus 
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alignment case.  Figure 36 shows three clusters with limited number of electrodes.  

Figure 37 shows four clusters that only had one electrode each. 

 

  

Figure 35: Voicing Alignment Single Subject High Gamma Suppression Cluster 

Left: Normalized power (np) over time (t) for 25 electrodes that are clustered together within Subject 

372.  Solid vertical line indicates time of voicing onset.  Average audio signal amplitude indicated by 

gray shaded region.  Right: Subject 372 active electrodes for cluster.  

 



 

 

194 

  

Figure 36: : Voicing Alignment Single Subject Clusters with more than 1 Electrode 

Additional single subject clusters from voicing onset alignment case with more than one electrode.  (a,b) 

Subject 362 clusters with 5 and 4 electrodes, respectively.  (c) Subject 376 cluster with 2 electrodes.  

Left: Normalized power (np) over time (t).  Solid vertical lines indicate time of voicing onset.  Average 

audio signal amplitude indicated by gray shaded region.  Right: Subject active electrodes for clusters. 
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Figure 37: Voicing Alignment Single Subject Clusters with Only 1 Electrode 

Single subject clusters that only have one electrode.  (a) Subject 369, (b,c) Subject 372, and (d) Subject 

376. Left: Normalized power (np) over time (t).  Solid vertical lines indicate time of voicing onset.  

Average audio signal amplitude indicated by gray shaded region.  Right: Subject active electrode for 

clusters. 
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D.2 Electrocorticography Surface Electrodes Only 

 The results of CHAPTER III contained both surface and depth 

electrocorticographic (ECoG) electrodes.  In this section we present results if only 

surface ECoG electrodes are used.  Most ECoG studies are constrained to only surface 

electrodes, due to clinical reasons.  Thus, this section provides a direct comparison to 

those studies.  This section also provides evidence that the canonical characteristic time 

courses found in CHAPTER III still hold when only considering surface electrodes, and 

thus the results of CHAPTER III can be directly compared to prior studies on their own. 

 Resulting characteristic time courses are shown in Figure 38 (a) and (b) for 

stimulus presentation and voicing onset alignments, respectively.  Six time courses were 

found in the stimulus presentation case and given the same names as in CHAPTER III.  

Seven time courses were found in the voicing onset case.  Six of them align with those 

found in CHAPTER III and are given the same names.  One new time course has a very 

broad plateau of activity and is simply referred to as New. 

 Individual cluster results, including location of electrodes, are presented in Figure 

39 and Figure 40 for the stimulus presentation and voicing onset alignment cases, 

respectively.  Figure 41 shows very high degree of temporal profile similarity between 

clusters found using only surface electrodes (dashed colored lines) and clusters found 

using all electrodes, i.e. CHAPTER III (solid colored lines).  All figures maintain colors 

with those used in CHAPTER III.   
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Figure 38: Canonical Activity Patterns for Surface Electrodes Only 

Characteristic high gamma power (normalized power (np)) time courses (time (t) in seconds) for (a) 

stimulus presentation and (b) voicing onset alignment conditions when only surface electrodes are 

present in the analysis.  Average audio signal amplitude indicated by gray shaded region. (a) Six 

characteristic time courses from stimulus presentation aligned case: Early Stimulus Processing – 

symmetric (ESP-s), Early Stimulus Processing – ramp (ESP-r), Phonological-to-Motor – ramp (PtM-r), 

Motor Execution – symmetric broad (ME-sb), Motor Execution – symmetric narrow (ME-sn), and 

Auditory Processing – symmetric (AP-s).  Stimulus presentation occurred at t=0, shown with vertical 

solid black line.  Average voicing onset per cluster shown in fainter vertical black lines (different lines 

since not all subjects showed a response for all clusters). (b) Seven characteristic time courses from 

voicing onset aligned cases: Phonological-to-Motor – symmetric (PtM-s), Phonological-to-Motor – ramp 

(PtM-r), Motor Execution – symmetric narrow (ME-sn), Motor Execution – symmetric broad (ME-sb), 

Auditory Processing – ramp (AP-r), Auditory Processing – symmetric (AP-s), and a new time course 

(New) not seen in the analysis with depth electrodes included.  Time axis reference to voicing onset 

(t=0) with a solid vertical line for the time of voicing onset.  Fainter vertical lines for average stimulus 

presentation time per cluster.  Colors maintained with those used in CHAPTER III. 
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Figure 39: Surface Electrode Clusters for Stimulus Presentation Alignment 

High gamma cluster activity patterns are shown on the left (normalized power (np) over time (t), in 

seconds), electrode locations for clusters on the right.  Solid vertical lines indicate stimulus presentation 

(t=0), and fainter vertical lines show average location of voicing onset.  (a) Early Stimulus Processing – 

symmetric (ESP-s), (b) Early Stimulus Processing – ramp (ESP-r), (c) Phonological-to-Motor processing 

– ramp (PtM-r), (d) Motor Execution – symmetric broad (ME-sb), (e) Motor Execution – symmetric 

narrow (ME-sn), and (f) Auditory Processing – symmetric (AP-s).  
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Figure 40: : Surface Electrode Clusters for Voicing Onset Alignment 

High gamma cluster activity patterns are shown on the left (normalized power (np) over time (t), in 

seconds), electrode locations for clusters on the right.  Solid vertical lines indicate voicing onset (t=0), 

and fainter vertical lines show average location of stimulus presentation.  (a) Phonological-to-Motor 

processing – symmetric (PtM-s), (b) Phonological-to-Motor processing – ramp (PtM-r), (c) previously 

unseen cluster (New) (d) Motor Execution – symmetric broad (ME-sb), (e) Motor Execution – 

symmetric narrow (ME-sn), (f) Auditory Processing – symmetric (AP-s), and (g) Auditory Processing – 

ramp (AP-r).  
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Figure 41: Cluster Comparison of Surface Electrodes to All Electrodes 

Characteristic high gamma power (normalized power (np)) over time (t) for clusters from (a) stimulus 

presentation and (b) voicing onset alignment cases.  Solid vertical lines indicate alignment condition in 

which the cluster was identified, and fainter vertical lines show average location of other alignment 

condition.  Solid color lines are for characteristic activity from clustering with all electrodes, dashed 

lines for surface electrodes only. (a.i) Early Stimulus Processing – symmetric (ESP-s), (a.ii) Early 

Stimulus Processing – ramp (ESP-r), (a.iii) Phonological-to-Motor processing – ramp (PtM-r), (a.iv) 

Motor Execution – symmetric broad (ME-sb), (a.v) Motor Execution – symmetric narrow (ME-sn), and 

(a.vi) Auditory Processing – symmetric (AP-s).  (b.i) Phonological-to-Motor processing – symmetric 

(PtM-s), (b.ii) PtM-r, (b.iii) previously unseen cluster (New) (b.iv) ME-sb, (b.v) ME-sn, (b.vi) AP-s, and 

(b.vii) Auditory Processing – ramp (AP-r).  Colors maintained with those used in CHAPTER III. 



 

 

201 

 

D.3 Beta Frequency Band 

 Beta frequency rhythms have been found during task-related activity (Wang, 

2010) and motor preparation (Rubino, 2006), including desynchronization, or beta 

suppression (Pfurtscheller and Lopes da Silva, 1999).  The primary focus of our work has 

been on high gamma power.  Here, we provide clustering results from the beta frequency 

band to demonstrate how the methodology translates to other frequency bands of interest 

and has the potential to be more widely used.   

 The characteristic beta power time courses are shown in Figure 42 for the 

stimulus presentation alignment case.  Figure 43 further breaks down these findings by 

cluster and shows the electrode locations.  In Figure 44, the characteristic beta power 

time courses are shown for the voicing onset alignment case.  Figure 45 presents the 

details of each individual cluster with the electrode locations for the voicing onset 

alignment case. 
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Figure 42: Beta Power Characteristic Time Courses for Stimulus Presentation Alignment 

Characteristic time courses (normalized power (np)) over time (t). Solid vertical lines indicate stimulus 

presentation (t=0), and fainter vertical lines show average location of voicing onset (different lines since 

not all subjects showed a response for all clusters).  Different colors used to display each cluster. 
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Figure 43: Individual Beta Power Clusters for Stimulus Presentation Alignment 

Left: Characteristic time courses (normalized power (np)) over time (t). Solid vertical lines indicate 

stimulus presentation (t=0), and fainter vertical lines show average location of voicing onset.  Right: 

Electrode locations for clusters.  Each row displays a different cluster, each in a different color. 
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Figure 44: Beta Power Characteristic Time Courses for Voicing Onset Alignment 

Characteristic time courses (normalized power (np)) over time (t). Solid vertical lines indicate voicing 

onset (t=0), and fainter vertical lines show average location of stimulus presentation (different lines since 

not all subjects showed a response for all clusters).  Different colors used to display each cluster.  
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Figure 45: Individual Beta Power Clusters for Voicing Onset Alignment 

Left: Characteristic time courses (normalized power (np)) over time (t). Solid vertical lines indicate 

voicing onset (t=0), and fainter vertical lines show average location of stimulus presentation.  Right: 

Electrode locations for clusters.  Each row displays a different cluster, each in a different color.  
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