THE REPRESENTATION OF SYLLABIC FRAME STRUCTURES AND PHONOLOGICAL CONTENT

IN THE BRAIN

Jennifer A. Segawa^{1*}, Jason A. Tourville², Deryk S. Beal³, & Frank H. Guenther^{1,2,4}

- ¹ Graduate Program for Neuroscience, Boston University
- ² Dept. of Speech, Language, & Hearing Sciences, Boston University
- ³ Institute for Stuttering Treatment & Research and Dept. of Speech Pathology and Audiology, University of Alberta
- ⁴ Dept. of Biomedical Engineering, Boston University

Corresponding author email: jsegawa@bu.edu

This work is supported by NIH grant R01 DC007683

Background

- The **slot/filler** theory (Shattuck-Huffnagel,1979) and the **frame/content** theory (MacNeilage, 1998) both posit that:
 - The phonological content of a speech utterance is represented in parallel with its structure and timing

Syllabic Frame Structure **CCVVCC**

Phonological Content /breins/

- For instance, Spoonerisms (or exchange errors)
 occur when two phonemes in different syllables, but
 in the same syllable position exchange places
 - e.g. "dear old queen" → "queer old dean"
 - Suggests that phonemes and their syllable position information are represented separately at some processing stage
- These theories have been implemented in several influential models of speech (GODIVA, WEAVER++, Coupled Oscillator)
- However, a neural basis of the syllabic frame is largely unexplored.
- Previous work (Peeva et al., 2010) showed a syllabic representation in the ventral premotor cortex, but did not differentiate between representations of a syllabic frame and a full syllable (with phonological content)

Methods

- Subjects: 17 American English speaking subjects
- Stimuli & Paradigm
 - FMRI repetition suppression (fMRI-RS) paradigm
 - BOLD response decreases across repeated presentations of stimulus in a region that processes that stimulus

Buckner et al., (2011) *J Neurophysiol*. 105, 5, 2322-45. Fischl et al. (2002) *Cereb Cortex*. 14, 1, 11-22. Guenther et al. (2006) *Brain Lang*. 96, 280-301. Hazeltine et al. (1998) *TICS*. 1, 3, 163-169. Koch et al. (2007) *Exp Brain Res*. 179, 291-299. Levelt & Wheeldon (1994) *Cognition*. 50, 239-269. MacNeilage (1998) *Beh Brain Sci*. 21, 499-511. O'Reilly et al. (2010) *Cereb Cortex*. 20 (4): 953-965. Peeva et al. (2010) *NeuroImage*. 50, 628-638. Shattuck-Huffnagel (1979) In *Sentence Processing: Psycholinguistic studies presented to Merrill Garrett*. Hillsdale, NJ: Erlbaum. Stoodley & Schmahmann (2009) *NeuroImage*. 15, 44, 489-501. Tourville et al. (2008) *NeuroImage*. 39, 3, 1429-1443. Tourville & Guenther (2003) *Boston University Technical Report CAS/CNS-03-022*. Boston, MA: Boston University.

4 speaking conditions varying by how often each type of speech representation – syllabic frame, phoneme, or complete syllable – was repeated between pairs of pseudowords

SPSF		DPSF	SPDF	DFDF
Same phonemes Same frames		Different phonemes Same frames	Same phonemes Different frames	Different phonemes Different frames
+ time	TWAI	FAS	RAUD	DEEF
	TWAI	REEN	DRAU	GLAI
	TWAI	FAS	RAUD	DEEF
	TWAI	REEN	DRAU	GLAI
	TWAI	FAS	RAUD	DEEF
	TWAI	REEN	DRAU	GLAI

- Auditory & orthographic presentations of each target pseudoword (0.7 & 1.5 s)
- Blocks consisted of 6 trials followed by a 3 s pause
- fMRI acquisition
 - Siemens Trio Tim 3T, 32 channel head coil
 - TR: 2.5 s, 41 slices, Skip: 25%, 200mm coverage
 - Voxel size: 3.1 x 3.1 x 3.0 mm
- fMRI analysis
- Functional volumes realigned to subject's anatomical volume, corrected for slice acquisition timing, and first level model estimated with SPM8.
- ROI parcellation: cortical (surface-based speech-focused, Tourville & Guenther, 2003), subcortical (Fischl et al., 2002), and cerebellar (Diedrichsen, 2001)
- Contrast values 1st half of block vs. baseline (silent fixation)
 for each speaking condition extracted and averaged across
 each ROI using REX (http://web.mit.edu/swg/rex)
 - Normalized by average activity across each ROI

5 hypothesized patterns of across-condition fMRI-RS

*Here, SSCs refer to onset, nucleus, and coda subsyllabic constituents

- Across-condition pattern matching within ROIs (Peeva et al., 2010)
- A priori models defined by BOLD activity comparisons across conditions
- Model fit quantified by conjunction test comparing the 4 speaking conditions based on 5 predicted patterns of repetition suppression at each speech production ROI
- Significance threshold of P_{FWE} < 0.05
- Where P is derived from distribution of values from Monte Carlo simulation with 10,000 trials

FMRI-RS Pattern Matches

Discussion

Left lateral prefrontal cortex

- Two representations:
 - Syllable in middle and ventral premotor cortex SSC in posterior inferior frontal gyrus, pars opercularis
 - Both areas hypothesized to store **feedforward motor commands for speech** (Guenther, 2006; Levelt & Wheeldon, 1994)
 - Suggests that either:
 - SSC motor programs are used to construct syllable motor programs for execution, or
 - SSC motor programs are used for utterances in which syllable motor programs are not available

Cortico-cerebellar loops

- Functional and anatomical cortico-cerebellar connections (Buckner, et al., 2011; O'Reilly, et al., 2010)
- Anterior cerebellum, right lobules I-IV & V
 - Sensorimotor processing (e.g. Stoodley & Schmahmann, 2009)
 Phoneme representation for motor execution & auditory stimulus processing
 - Loop with superior temporal cortex, M1, SMA
- Lateral cerebellum, bilateral lobule VI & right lobule VIIIa
- Language, articulation, and auditory speech feedback processing (e.g. Stoodley & Schmahmann, 2009; Ackermann et al., 1992; Tourville et al.,2008)

Syllable representation for monitoring & modulating feedforward speech motor programs with auditory feedback

Loop with lateral premotor cortex

Cerebellar representation of speech structure and timing

Lateral cerebellum, right lobule VIIB

Frame representation for millisecond range timing and movement synchronization (Hazeltine, et al., 1998; Koch, et al., 2007) of speech utterances