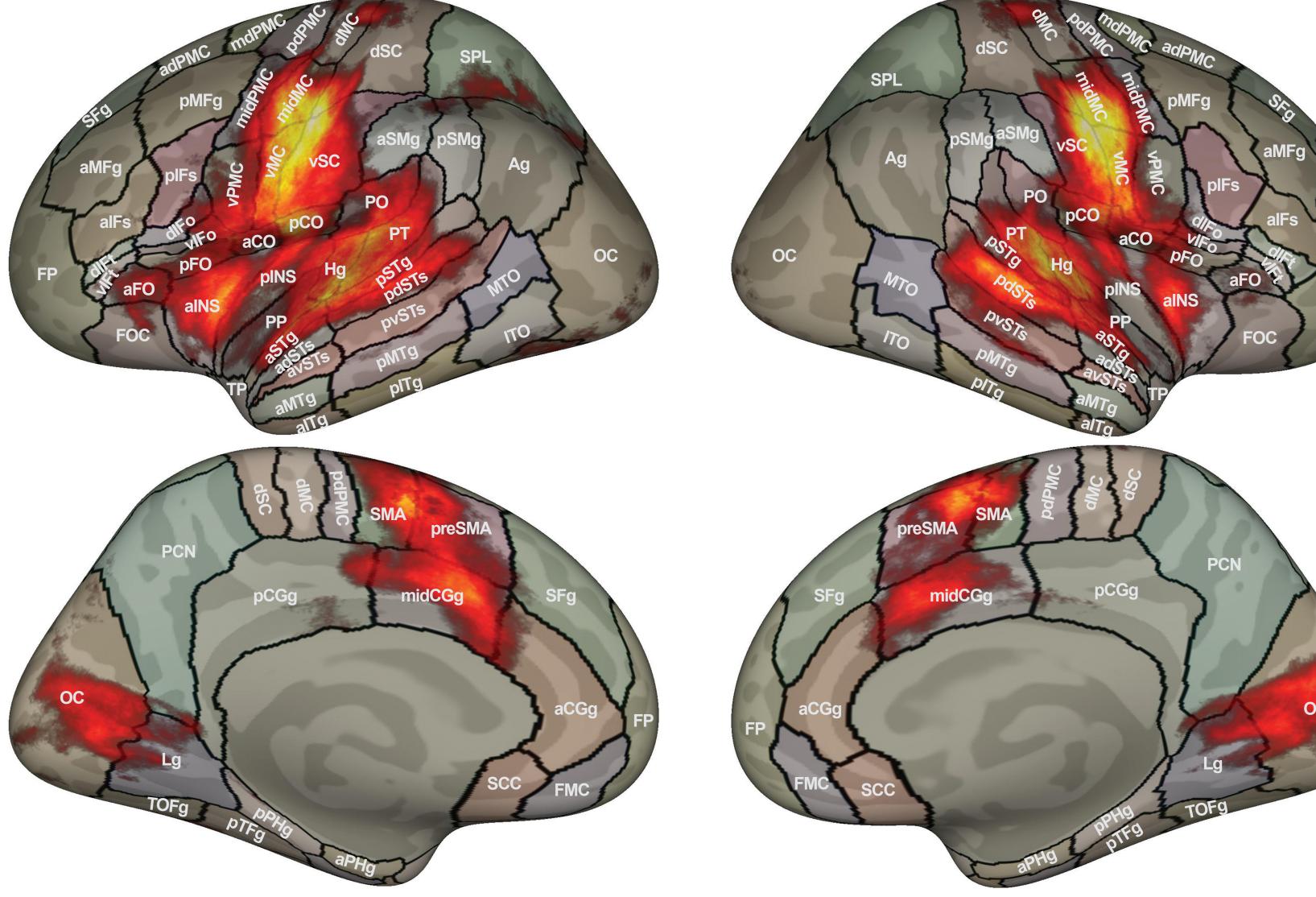
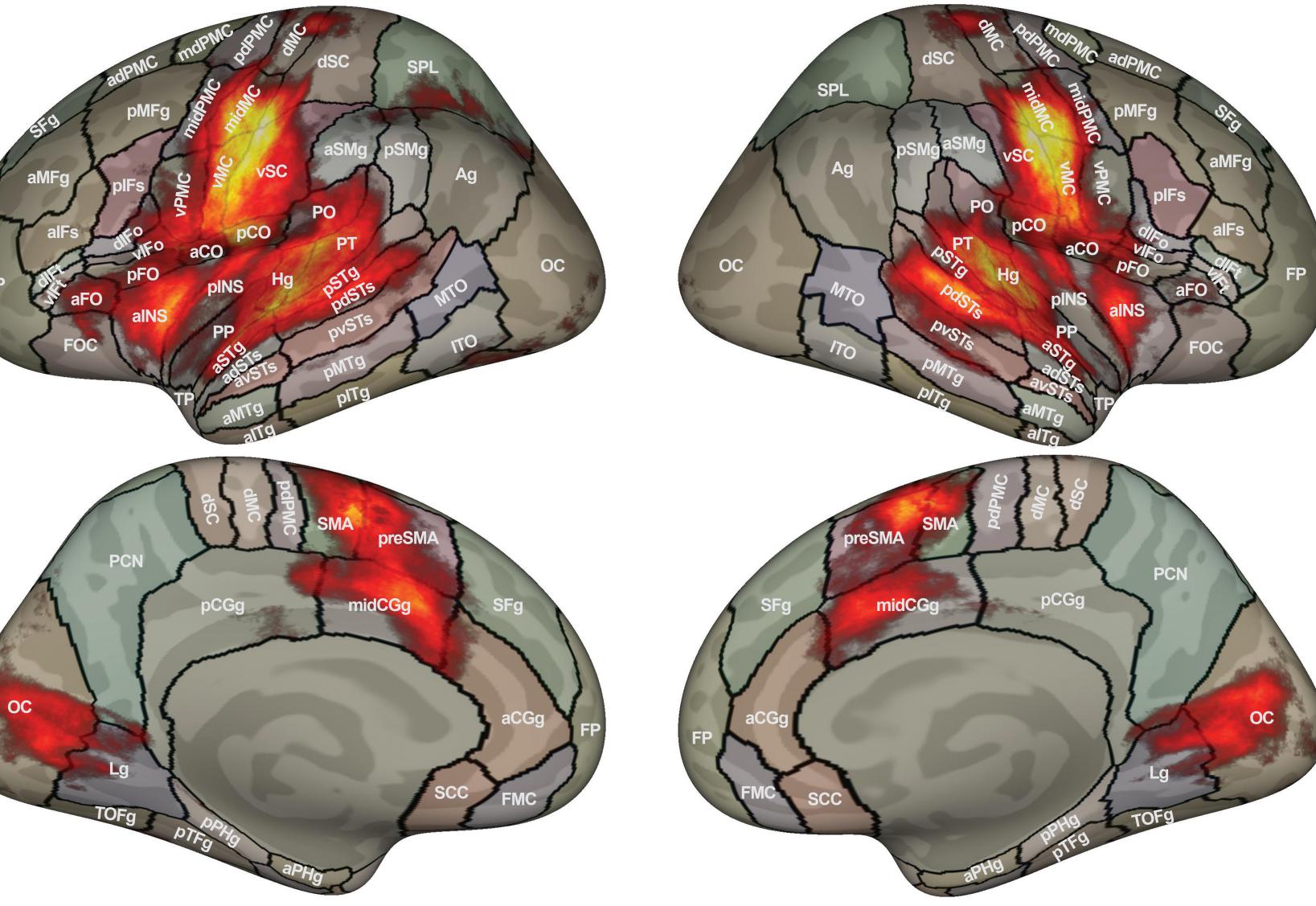

1537: Large N Pooled Analyses of Neuroimaging Data on Speech Production

BOSTON UNIVERSITY

Alfonso Nieto-Castanon¹ Frank H. Guenther^{1,2,3} Jason A. Tourville^{1,3}

¹Department of Speech, Language, and Hearing Sciences, ²Department of Biomedical Engineering, ³Center for Computational Neuroscience and Neural Technology (CompNet)




Introduction

- Speech production network characterized by neuroimaging is based largely on small-N studies or meta-analyses of such studies
- Picture may therefore be incomplete due to false negatives arising from relatively low power
- Here we describe efforts to improve our understanding of the brain regions involved in speech using a *mega-analysis* approach
- This approach (i) increases statistical power, (ii) can result in a more heterogeneous and representative sample, and (iii) provides a means to better characterize the sources of variability across subjects and studies (Costrafreda, 2009; Van Horn, 2004;)
- Functional imaging data pooled across 10 fMRI studies of speech production (See Table 1 for list of study designs)
- Results used to determine *functional ROIs* for speech processes

Figure 1: Brain Regions Involved in Speech Production

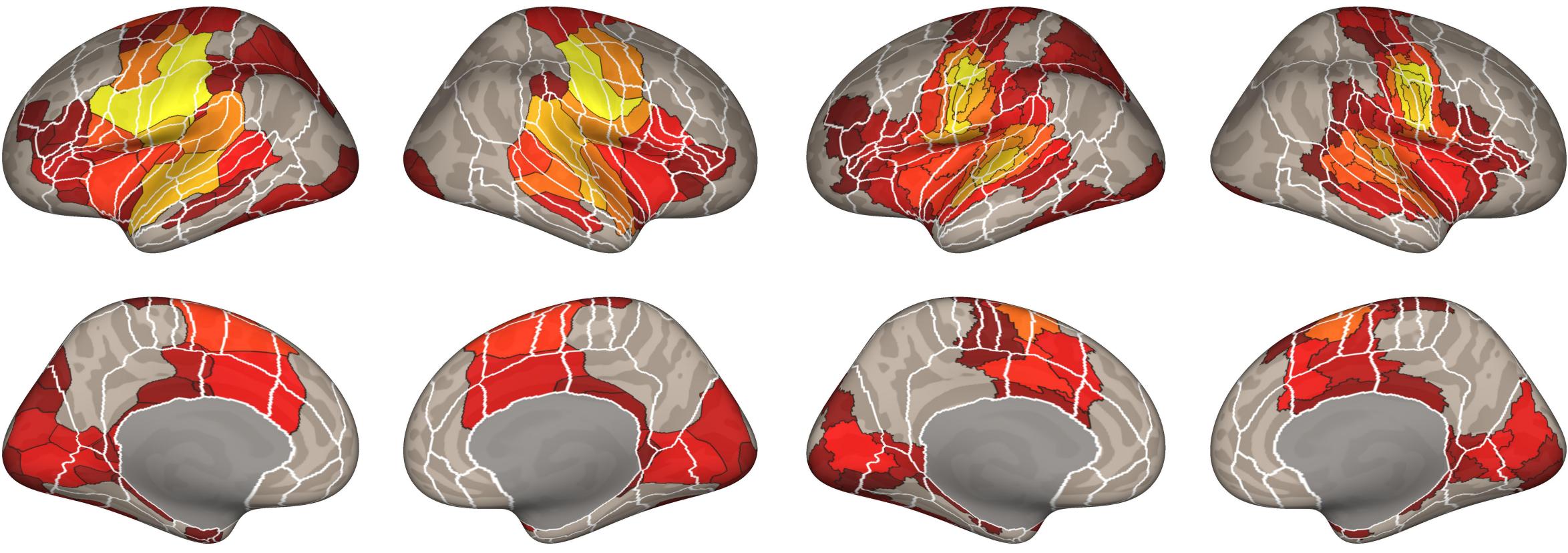
Speech-Baseline Contrast, 130 subjects from 11 studies (51 Female; Median Age: 25, Range: 18-51). See Table 1 for details of individual study designs. Significant activity is overlaid on the inflated 'fsaverage' surface included in the FreeSurfer distribution. See Tourville & Guenther (2012) for anatomical region definitions.

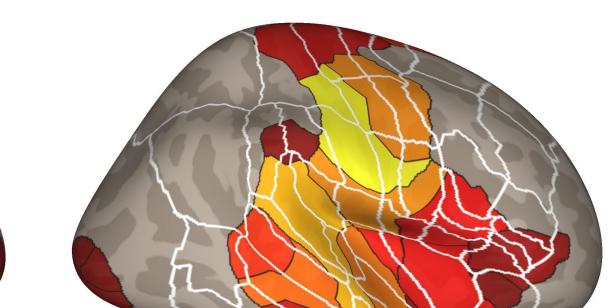
Methods **Functional Analyses**

Common pipeline: 1st-level analysis of realigned functional images (no normalization or spatial smoothing) using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). **Speech>Baseline** contrasts (all experiments) and **Perturbed Speech>Non-perturbed Speech** contrasts (three experiments) estimated for each subject.

Inter-experiment equalization: 1st-level contrast volumes normalized by experiment-specific scaling factor: standard deviation of Speech-Base*line* contrast across entire brain, averaged across all subjects within each experiment.

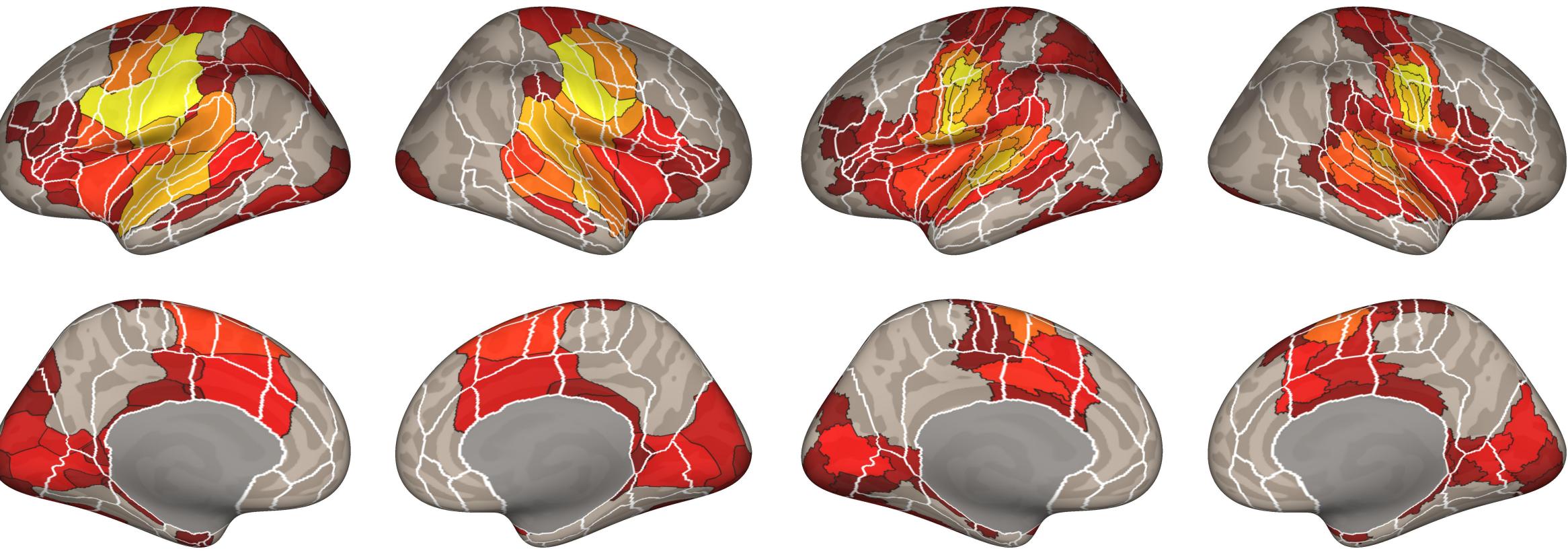
Surface-based analyses: Cortical surfaces extracted from T1 volumes for each subject using FreeSurfer (https://surfer.nmr.mgh.harvard.edu; Dale et al, 1999; Fischl et al, 1999). Contrast values at the pial surface extracted after functional-anatomical coregistration and entered into vertex-level 2nd-level analyses. Perturbed Speech>Non-perturbed Speech contrast values spatially smoothed (approx. 8 mm FWHM kernel) prior to 2nd-level analyses.


2nd-level analyses controlled for false positives using vertex-level uncorrected p<.001 threshold, and a cluster-level whole-brain FWE-corrected p<.05 threshold, Cluster- and ROI- level statistics obtained using permutation analyses (10000 simulations, permutation of residuals; Still et al., 1981).


Identifying Functional ROIs In Speech Network

Average activity clustering: Watershed segmentation of the group-level Speech-Baseline statistical maps leads to ROIs divided along local minima in average functional responses. Preprocessing with 6 mm spatial smoothing kernel on the cortical surface results in approximately 150 distinct regions in each hemisphere. Only ROIs with significant average Speech-Baseline (FDR-corrected p<.05) were retained.

Figure 2: Average Activity Clustering


155 ROIs in LH (69 significant), 166 in RH (45 significant)

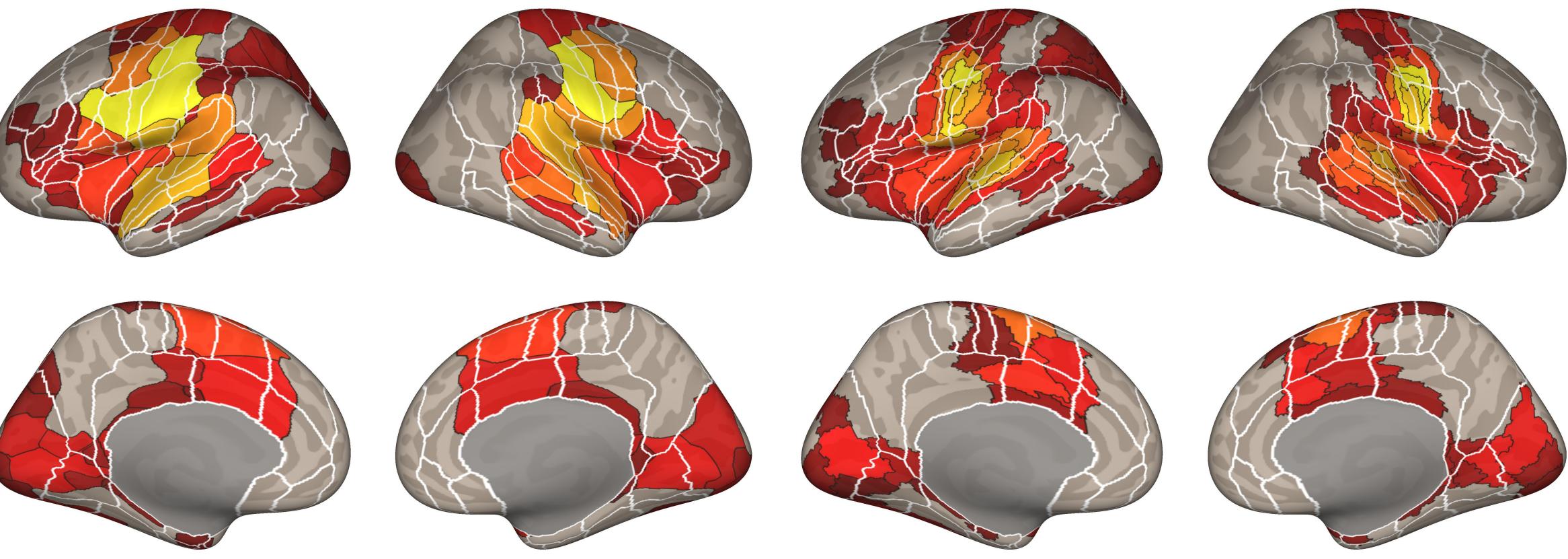
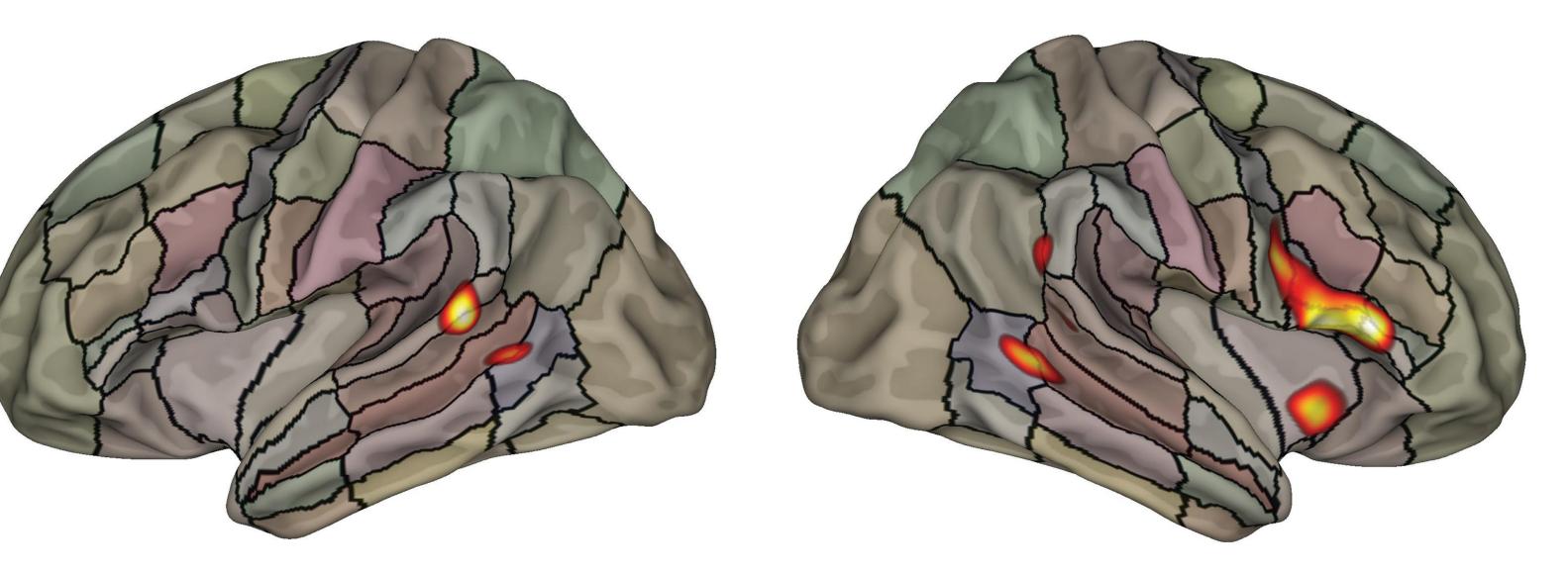


Figure 3: Between-Subjects Clustering

100 ROIs in LH (59 significant), 100 in RH (52 significant)

Between-subjects variability clustering: Neighboring vertices/ROIs sequentially grouped based on the similarity of their patterns of functional responses (minimization of within-ROI variability in Speech-Base*line* contrast values across all subjects; Seghier et a., 2009). Resulting hierarchical tree trimmed to contain 100 ROIs per hemisphere. The average response within these ROIs accounted for 74% of the overall variability in responses across all vertices in the cortical surface. Only ROIs with significant average Speech-Baseline (FDR-corrected p<.05) retained.

Summary

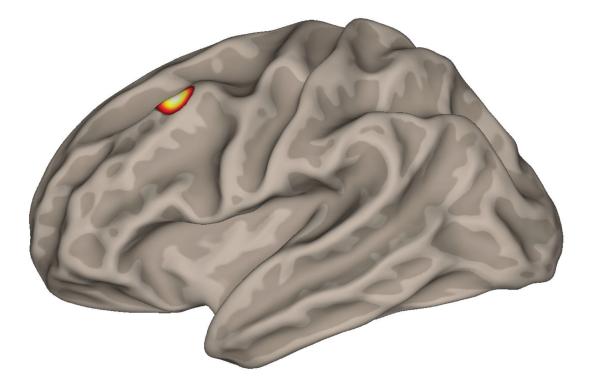

- Pooled analysis reveals distinct peaks within the Speech Production, network, characterized by Average Activity Clustering. In particular:
- medial prefrontal/cingulate cortex; insular/opercular cortex • Between-Subjects Variability Clustering indicated additional functionally distinct anterior-posterior bands in the core sensorimotor regions that
- subserve speech prodution
- Pooled analysis of *Perturbed*>*Non-perturbed* contrast revealed greater lateral frontal right hemisphere activity with distinct peaks in premotor cortex, inferior frontal gyrus, and anterior insula
- First step in building a functional-anatomical atlas for speech production

Future Directions

- Integrate subcortical analysis
- Incorporate remaining studies (29 additional datasets) add more?? • Investigate functional and structural connectivity between functionally derived ROIs ... currently have ~90 DTI datasets
- Quantify functional-anatomical relationships

Figure 4: Feedback Control Network

Perturbed Speech>Non-perturbed Speech Contrast; 38 subjects from 3 studies (18 Female; Age Range: 19-51; Median: 26). See Table 1 (gray columns) for study designs.



ROI-Level Cluster Activity

	Activation Mass	ROI-Level <i>pFWE</i>		
Left				
pSTg	1375	.036		
Right				
dIFo	2148	<.001		
vIFo	1795	<.001		
vlFt	649	.007		
vPMC	2103	.012		
pFO	1277	.017		
aFO	1003	.027		

• Explore task, behavior, and demographic effects and compare to variability-based clustering to identify functional-anatomical relationships

• e.g., **pMFg activity** greater in Women than Men during speech:

References

- Costafreda, S. G. (2009). Pooling fMRI data: meta-analysis, mega-analysis and multi-center studies. Frontiers in Neuroinformatics 3(33).
- Dale, A.M., Fischl, B., Sereno, M.I. (1999). Cortical surface-based analysis I: Segmentation and surface reconstruction. NeuroImage 9(2):179-194.
- Fischl, B., Sereno, M.I., Dale, A.M., (1999). Cortical surface-based analysis II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2):195-207.
- Seghier, M.L., Price, C.J. (2009). Dissociating functional brain networks by decoding the between-subject variability. NeuroImage, 45(2): 349–359.
- Still, A.W. and White, A.P. (1981). The approximate randomization test as an alternative to the F test in analysis of variance. British J. Mathematical and Statatistical. Psychology, 34, 243–252.
- Tourville, J.T., and Guenther, F.H. (2012). Automatic cortical labeling system for neuroimaging studies of normal and disordered speech. Meeting Planner, 42nd Annual Meeting for the Society for Neuroscience. New Orleans, LA. Program No. 681.06.
- Van Horn, J. D., Grafton, S. T., Rockmore, D. & Gazzaniga, M. S. (2004). Sharing neuroimaging studies of human cognition. Nature Neuroscience 7(5):473-81.

Table 1: Studies In Analysis Pool

All subjects right-handed and speakers of American English unless otherwise noted. All data acquired on 3T scanners.

	Sequence Learning	Sequence Learning in PWS	Speech Production in PWS	Speech Rate, Clarity, and Emphasis	Syllable Sequence Representation	Syllable Frame Representation	Consonant Cluster Representation	Overt Production	Auditory Shift	Auditory Category Shift	Somatosensory Perturbation
Task	Trisyllabic pseudowords with (legal/illegal) syllable frames that are novel/learned Baseline: "xxx"	Trisyllabic pseudowords with (legal /illegal) syllable frames that are novel/learned Baseline: "xxx"	Bisyllabic words (teacup", "topic" and "boutique") Baseline: "###"	5-syllable sentences under fast, clear, emphatic, or normal conditions Baseline: Box characters	Bisyllabic pseudowords that varied in terms of their phonemic or suprasyllabic content Baseline: "XXXXX"	Monosyllabic pseudowords that varied in terms of their phonemic, frame, or syllabic content Baseline: "xxx"	Bisyllabic pseudowords that varied in terms of their phonemic, cluster, or syllabic content Baseline: "xxx"	Vowel (V), consonant–vowel (CV), or bi-syllabic (CVCV) pseudowords Baseline : "xxxxx"	Monosyllabic CVC words under normal or altered auditory feedback (F1 shifted up or down by 30%) Baseline : "yyy"	Monosyllabic CVC words under normal or altered auditory feedback (F1/F2 shift) resulting in within- or across- category change) Baseline: "***"	VV or VCV pseudowords under normal or perturbed somatosensory feedback (interdental block) conditions Baseline: "yyy"
Subjects	12 (7F)	17 (2F)	16 (3F)	14 (7F)	18 (7F); Fluent French	17 (9F)	16 (8F)	10 (3F)	10 (6F)	18 (9F)	13 (6F)
Jubjetts	Age: 26 (20-43)	Age: 27 (18-43)	Age: 26 (19-43)	Age: 25 (18–35)	Age: 18-30	Age: 30 (20–43)	Age: 30 (20-43)	Age: 26 (19–47)	Age: 28 (23–36)	Age: 24 (19 – 33)	Age: 30 (23–51)
Equipment	MGH Siemens Trio	MGH Siemens Trio	MIT Siemens Trio	MIT Siemens Trio	Marseille	MGH Siemens Trio	MGH Siemens Trio	Allegra / Trio	MGH Siemens Trio	MGH Siemens Trio	MGH Siemens Trio
	32 Channel Coil	32 Channel Coil	32 Channel Coil	12 Channel Coil	Bruker Medspec	32 Channel Coil	32 Channel Coil		12 Channel Coil	32 Channel Coil	12 Channel Coil
Structural	176 sagittal slices	176 sagittal slices	176 sagittal slices	171 sagittal slices	128 sagittal slices	176 sagittal slices	176 sagittal slices	128 sagittal slices	128 sagittal slices	176 sagittal slices	128 sagittal slices
Acquisition	1x1x1 mm	1 x 1 x 1 mm	1 x 1 x 1 mm	1 x 1.33 x 1.33 mm	1 x 1 x 1 mm	1 x 1 x 1 mm	1 x 1 x 1 mm	1 x 1 x 1.33 mm	1 x 1 x 1.33 mm	1 x 1 x 1.33 mm	1 x 1 x 1.33 mm
Functional Acquisition	Sparse Sampled 41 axial slices 3.1 x 3.1 x 3 mm 25% gap TA: 2.5 s; ITI: 10 s 1 Volume / Trial 40 Trials / Run 6-8 Runs / Subject	Sparse Sampled 41 axial slices 3.1 x 3.1 x 3 mm 25% gap TA: 2.5 s; ITI: 10 s 1 Volume / Trial 40 Trials / Run 6-8 Runs / Subject	Sparse Sampled 46 axial slices 3 x 3 x 3 mm 10 % gap TA: 2.4 s; ITI: 5 s 1 Volume /Trial 60 Trials / Run 3-4 Runs / Subject	Sparse Sampled 45 axial slices 3.1 x 3.1 x 3 mm 10 % gap TA: 2.75s; ITI: 14.75s 1 Volume / Trial 50 Trials / Run 4 Runs / Subject	Block Design 32 axial slices 3.1 x 3.1 x 3 mm 1 mm gap TR: 2.1 s Mean IBI: 14.5 s 35 Blocks / Run 3 Runs / Subject	Block Design 41 axial slices 3.1 x 3.1 x 3 mm 25% gap TR: 2.5 s IBI: 12 s 18 Blocks / Run 5-6 Runs / Subject	Block Design 41 axial slices 3.1 x 3.1 x 3 mm 25% gap TA: 2.5 s; IBI: 15 s 15 Blocks / Run 6-7 Runs / Subject	Sparse Sampled 30 axial slices 3.1 x 3.1 x 5 mm TA: 2s; Mean ITI: 16.5 s 2 Volumes / Trial 65 Trials / Run 2-3 Runs / Subject	Sparse Sampled 32 axial slices 3.1 x 3.1 x 5 mm TA: 2 s; ITI: 12 s 2 Volumes / Trial, 64 Trials / Run 3-4 Runs / Subject	Sparse Sampled 45 axial slices 3 x 3 x 3 mm 10 % gap TA: 2.75 s; ITI: 8 s 1 Volume / Trial 80 Trials / Run 5 Runs / Subject	Sparse Sampled 32 axial slices 3.1 x 3.1 x 5 mm No gap TA: 2 s; ITI: 11 s 2 Volumes / Trial 72 Trials / Run 3-4 Runs / Subject

Acknowledgments

This research was supported by NIDCD R01 grants DC007683 and DC002852 (PI: FG). We would like to thank Elisa Golfinopoulos, Bobbie Holland, and Shanqing Cai for their contributions to the pooled analyses.