BEHAVIORAL & NEURAL CORRELATES OF SPEECH MOTOR SEQUENCE LEARNING

JENN SEGAWA & FRANK GUENTHER BOSTON UNIVERSITY

FUNDED BY: NATIONAL INSTITUTES OF HEALTH (R01 DC007683, F. GUENTHER, P.I.)

1. LEGAL

• e.g. FREMP
• Legal consonant clusters in English

2. ILLEGAL

• e.g. FSEFK
• Illegal (or highly infrequent) consonant clusters in English
• i.e. novel subsyllabic sequences

15 sequences (pseudowords) per condition 60 repetitions per sequence over 2 days

5 / 24

PARADIGM: PRACTICE

16 participants (9 F, mean 25.6 years)

SPEECH MOTOR
SEQUENCE LEARNING IN
PEOPLE WHO STUTTER

WHY PERSISTENT DEVELOPMENTAL Speech disorder: First develops around the age of 3, as children are beginning to produce complex speech sequences Speech sequencing disorder: People who stutter (PWS) show (speech) motor sequence learning deficits Brain areas most implicated in stuttering, e.g., basal ganglia, preSMA, posterior superior temporal cortex ... sound familiar?

MANY THANKS TO:

FRANK GUENTHER

DERYK BEAL

ELISA GOLFINOPOLOUS

ALFONSO NIETO CASTAÑÓN

ANNA OH

JASON TOURVILLE

THANK YOU.

ANALYSIS: FMRI 1ST LEVEL

- Nipype interface across neuroimaging analysis software packages
 - SPM8: Functional volumes motion-corrected, high-pass filtered, aligned to subject's anatomical volume
 - RAPIDART: Errors, intensity- and motion-outliers removed
 - SPM8: GLM estimated for each subject
 - Utterance duration regressor included

Ghosh et al. (2010). OHBM, Barcelona, Spain.

tp://www.fil.ion.ucl.ac.uk/spm/software/spm8. http://www.nitrc.org/projects/rapidart/

31 / 60

ANALYSIS: FMRI 2ND LEVEL

- Cortical results (Freesurfer)
- Subcortical results (SPM8)
- Voxel thresholded at p < 0.001 (uncorrected)
- Cluster thresholded at CWP < 0.0167 (corrected for 3 analyses – 2 cortical and 1 subcortical)
 - Calculated with Monte Carlo simulations

Fischl et al. (1999). *HBM*, 8,272-284. Ashburner (2007). *Neurolmage*, 38, 1, 95-113. Klein et al. (2009). *Neurolmage*, 46, 3, 786-802. Hayasaka & Nichols (2003). *Neurolmage*, 20, 2343-2356

RESULTS: SUPERIOR PARIETAL LOBULE (SPL) & INFERIOR TEMPORAL-OCCIPITAL CORTEX

Shifting visual attention or shifting between multimodal stimuli

· Proposed visual word form area

Novel > *learned* implies:

· Greater attention to visual stimulus for novel

Coull & Frith (1998). NeuroImage. 8, 176-187. McCandliss, et al. (2003). Trends in Cog Sci. 7, 7, 293-299. Shomstein & Yantis. (2004). J Neurosci. 24, 47, 10702-10706.

RESULTS: INFERIOR FRONTAL SULCUS (IFS)

- · Implicated in verbal working memory
- Non-speech motor sequence learning
 - Dorsal lateral prefrontal cortex (dIPFC) consistently implicated
 - Tasks use visual/spatial cues
 - · dIPFC also implicated in visual working memory

34 / 60

METHODS: DTI

- Diffusion-weighted images analyzed with FMRIB Diffusion
- · Eddy-current and motion corrected
- Diffusion tensors fitted at each voxel (in cortical mask)
- Volumes registered to individual subjects' anatomical volume
- ROIs from *novel* > *learned illegal* contrast
 - Used voxels 2mm below grey-white boundary
 - · Mean FA across voxels within ROI
- For FA-BOLD correlation, LOSO analysis to avoid "voodoo" correlations

Gotts, et al. (2012). Cog Neurosci 3, 3-4, 250-259.

35 / 60