681.06: Automatic cortical labeling system for neuroimaging studies of normal and disordered speech Jason A. Tourville^{1,3} Frank H. Guenther^{1,2,3}

Background

Volume-based inter-subject averaging methods fail to account for cortical variability, resulting co-registration of functionally distinct regions and a loss of statistical power. This is particularly problematic for neuroimaging studies of speech because functionally distinct regions in the peri-Sylvian region that are distant along cortical surface are proximal in the volume. Individual region of interest (ROI)-based analysis analysis of cortical responses significantly improves statistical power (Nieto-Castanon et al., 2003) but requires lengthy, tedious labeling by an expert.

Anatomical variability after volume-based normalization and co-registration. *Left*: Mean voxel overlap of superior temporal ROIs at various group sizes. Little of no overlap is seen with groups of 9 subjects. *Right*: The alignment of major sulci. Sulci were drawn on 2 individual surfaces (top) and then overlaid on the same surface (bottom), aligned to the Sylvian fissure.

Freesurfer's (http://surfer.nmr.mgh.harvard.edu/) individual cortical surface-based inter-subject averaging (Fischl et al., 1999) improves upon volume-based methods (eg., Ghosh et al, 2010) but packaged cortical labeling atlases fail to distinguish putative functionally distinct areas that underlie speech processes. Here, we describe a cortical labeling system tailored for neuroimaging studies of speech that was used to generate a Freesurfer-based labeling atlas. We applied the atlas to T1 volumes of 18 fluent speakers and 20 persons who stutter to assess the performance of the automatic atlas.

Methods

SpeechLabel System: Each hemisphere is divided into 63 cortical regions based on individual anatomical landmarks. Superior temporal, inferior frontal, precentral regions are divided into multiple gyral and sulcal components.

SLaparc Atlas Generation: Image segmentation, cortical surface reconstruction, surface-based co-registration, and initial surface labeling was performed on T1 MRI volumes from **17 neurologically** normal subjects (9 Female, Age: 20-43, Mean: 29) using Freesurfer v5.0. T1 data aqcuisition: Siemens TIM Trio 3T scanner, MPRAGE sequence, 1mm³ voxel size.

Surface labels were edited to conform to the SpeechLabel system (editing was overseen by a trained neuroanatomical expert). The labeled surfaces were used as a training set to generate the SLaparc atlas using standard Freesurfer tools (Fischl et al. 2004).

Atlas Application: The atlas was used to automatically label 18 additional fluent speakers (PFS; 4) Female, Age 19-35, Age Range: 19-35) and **20 matched persons who stutter** (PWS; 5 Female, Age: 18-47, Mean: 27; SSI-4: 13-43, Median: 26). [See POSTER 681.12 for further analysis of these data]

To assess the performance of the automatic atlas, labels were corrected by a trained expert to conform to the SpeechLabel system and the automatic and manually corrected labels were compared in terms of percent overlap. Cortical regions were mapped to the each subjects T1 volume for these comparisons.

Region % overlap, PO, given by Dice coefficent: $PO = \frac{2 |X \cap Y|}{|X| + |Y|}$

Labeled fsaverage: The Freesurfer fsaverage surface template was labeled by SLaparc and manually edited as needed.

Acknowledgments

This research was supported by NIDCD R01 grants DC007683 and DC002852 (PI: FG). We would like to thank Bobbie Holland for editing brain labels and Jennifer Segawa and Shanging Cai for providing the T1 volumes.

References

- Fischl, B., Sereno, M.I., Dale, A.M., (1999). Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System. NeuroImage, 9(2):195-207.
- Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B. and Dale, A.M. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3): 341-355.
- Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D.H., Busa, E., Seidman, L.J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B. and Dale, A.M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1): 11-22. Satrajit S. Ghosh, Sita Kakunoori, Jean Augustinack, Alfonso Nieto-Castanon, Ioulia Kovelman, Nadine Gaab, Joanna A. Christodoulou,
- Christina Triantafyllou, John D.E. Gabrieli, Bruce Fischl (2010). Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 years of age. NeuroImage 53 (2010) 85–93 Nieto-Castanon, A., Ghosh, S.S., Tourville, J.A. and Guenther, F.H. (2003). Region of interest based analysis of functional imaging data. Neuroimage, 19(4): 1303-1316.

³Center for Computational Neuroscience and Neural Technology (CompNet)

The SpeechLabel Cortical Labeling System

Regions are plotted on the Freesurfer fsaverage surface template for the left hemisphere. Each cortical hemisphere is divided into 63 regions of interest based on individual anatomical landmarks. Superior temporal, inferior frontal, precentral, and medial frontal regions are divided into functionally meaningful subunits for neuroimaging studies of speech. See table 1 for region abbreviation key.

Anatomical landmarks

Bounding sulci are shown on the mean surface curvature of the inflated fsaverage surface template for the left hemisphere. Red (positive curvature) indicates a sulcal region; green (negative curvature) indicates a gyral regions. Additional dividing landmarks include sulcal intersections and the anterior commissures. White stars indicate landmarks that are note easily viewed on the average template. See Table 2 for landmark abbreviation key.

Table 1: Regions

Cg CO IPMC ISTs O	anterior cingulate gyrus anterior central operculum anterior dorsal premotor cortex anterior dorsal superior temporal sulcus anterior frontal operculum angular gyrus
-s \\\\\\\\\\	anterior insula
Γα	anterior inferior temporal gyrus
ΛFa	anterior middle frontal gyrus
ЛТg	anterior middle temporal gyrus
Ήg	anterior parahippocampal gyrus
Mg	anterior supramarginal gyrus
Tg	anterior superior temporal gyrus
Fg	anterior temporal fusiform
STs	anterior ventral superior temporal sulcus
Fo	dorsal inferior frontal gyrus, pars opercularis
Ft	dorsal inferior frontal gyrus, pars triangularis
ЛC	dorsal motor cortex
C	dorsal somatosensory cortex
1C	frontal medial cortex
C	frontal orbital cortex
)	frontal pole
9	Heschl's gyrus
Эg	inferior temporal occipital gyrus
	lingual gyrus
dPMC	middle dorsal premotor cortex
	middle cingulate gyrus
	middle terms and a select to termina
iUg	middle temporal occipital gyrus

CGg	posterior cingulate gyrus
CN	precuneus cortex
CO	posterior central operculum
dPMC	posterior dorsal premotor cortex
dSTs	posterior dorsal superior temporal sulcu
FO	posterior frontal operculum
IFs	posterior inferior frontal sulcus
INS	posterior insula
ITg	posterior inferior temporal gyrus
MFg	posterior middle frontal gyrus
MTg	posterior middle temporal gyrus
0	parietal operculum
Р	planum polare
PHg	posterior parahippocampal gyrus
reSMA	presupplementary motor area
SMg	posterior supramarginal gyrus
STg	posterior superior temporal gyrus
Т	planum temporale
TFg	posterior temporal fusiform
vSTs	superior temporal sulcu
CC	subcallosal cortex
Fg	superior frontal gyrus
MA	supplementary motor area
PL	superior parietal lobule
OFg	temporal occipital fusiform gyrus
P	temporal pole
Fo	ventral inferior frontal gyrus, pars operculari
lFt	ventral inferior frontal gyrus, pars triangular
VIC	ventral motor cortex
PMC	ventral premotor cortex

ventral somatosensory cortex

¹Department of Speech, Language, and Hearing Sciences, ²Department of Biomedical Engineering,

Table 2: Landmarks

aals	anterior ascending ramus of the lateral sulcus
ahls	anterior horizontal ramus of the lateral sulcus
aocs	anterior occipital sulcus
cas	callosal sulcus
CCS	calcarine sulcus
cgs	cingulate sulcus
COS	collateral sulcus
crs	circular insular sulcus
CS	central sulcus
csts1	caudal superior temporal sulcus, first segment
csts2	caudal superior temporal sulcus, second segment
csts3	caudal superior temporal sulcus, third segment
ftts	first transverse temporal sulcus
hs	Heschl's sulcus
ifrs	inferior frontal sulcus
ihs	interhemispheric sulcus
itps	intraparietal sulcus
its	inferior temporal sulcus
locs	lateral occipital sulcus
ls	lateral sulcus
olfs	olfactory sulcus
ots	occipitotemporal sulcus
pals	posterior ascending ramus of the lateral sulcus
pcs	paracentral sulcus
phls	posterior horizontal ramus of the lateral sulcus
pis	primary intermediate sulcus
pocs	postcentral sulcus
pos	parietooccipital sulcus
prcs	precentral sulcus
rhs	rhinal sulcus
sbps	subparietal sulcus
sfrs	superior frontal sulcus
sros	superior rostral sulcus
sts	superior temporal sulcus
ti	temporal incisure

Overlap of automatic and manually edited labels

PFS: Mean PO: 88% +/- 10%, Range: 46-100; **PWS:** Mean PO: 88% +/- 9%, Range: 52-100

Good overall overlap b/w auto and edited labels and no difference b/w groups (2-tailed paired t-test of mean overlaps for each region: p > .41). But are specific regions of low overlap, especially **subdivisions of the inferior frontal** gyrus region (see plot below).

Conclusions

The SpeechLabel system divides the cortex into regions that are tailored for neuroimaging studies of speech production.

The SLaparc Freesurfer atlas automatically applies the system to T1 MRI volumes with relatively little user input/anatomical expertise, providing cortical ROIs at a huge time savings: Fully manual operator editing time: 8-16 hours/brain Fully automatic operator editing time: .5-1 hours/brain Auto+manual cleanup time: 1-2 hours/brain

Freesurfer tools provide an easy means to create surface and volume-based cortical AND white matter regions of interest.

2 Useful applications for neuroimaging research:

i. individually derived ROIs for group comparative analyses, e.g., morphometric analyses, functional analysis, diffusion tensor analyses, that is not dependent upon inter-subject image volume averaging [See POSTER 681.12 and POSTER for examples] *ii.* provides a common substrate for localizing effects within a surface-based template

But, accuracy of automatic classifier needs improvement in some key speech processing regions, including medial and inferior frontal areas. Why? Bounding landmarks in these areas are highly variable and boundaries are not well captured by surface curvature (only affects Application (i)!).

As we continue to refine and expand the labeling system, need to develop piece-wise labeling templates based on better understanding of region/sulcal variability.

PO of speech regions with PO < 75% in one of the groups subject groups.