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Abstract 
We developed and tested a brain-computer interface for 
control of an artificial speech synthesizer by an individual 
with near complete paralysis.  This neural prosthesis for 
speech restoration is currently capable of predicting vowel 
formant frequencies based on neural activity recorded from an 
intracortical microelectrode implanted in the left hemisphere 
speech motor cortex.  Using instantaneous auditory feedback 
(< 50 ms) of predicted formant frequencies, the study 
participant has been able to correctly perform a vowel 
production task at a maximum rate of 80-90% correct. 
Index Terms: speech synthesis, brain computer interface 

1. Introduction 
Artificial speech synthesizers, for the most part, have been 
used primarily as a theoretical research tool for investigating 
normal speech production in humans.  Notable exceptions 
include devices to replace glottal pulse activity for 
laryngectomy patients and text-to-speech synthesizers 
incorporated into augmentative and alternative communication 
(AAC) devices. Recent progress in the field of brain computer 
interfacing (BCI) has broadened the user base for such AAC 
devices to include those with extreme, near complete, 
paralysis.  In particular, methods involving electromyographic 
(EMG) [1] and electroencephalographic (EEG) [2-6] 
potentials are bridging the gap between individuals with near-
total paralysis and the external, communicating world.  Both 
types of communication restoration systems have been used to 
decode and predict intended discrete letter and word choices 
via a brain computer interface.  However, these systems are 
often bulky (e.g. EEG) and slow, often requiring minutes to 
produce a single word.  These production rates make such 
devices completely unsuitable for real-time fluent speech 
communication between a BCI user and another party. 

In response to this unfilled need for fast artificial speech 
production, our research group has developed a real-time 
artificial vocal tract prosthesis for paralyzed individuals 
lacking speech production capabilities [7-9].  The research 
described within this report introduces the first ever neural 
prosthesis for speech restoration.  It utilizes a wireless 
intracortical microelectrode [9,10] to obtain neural activity 
related to speech production, maps it into the speech domain 
through a “neural decoder” and synthesizes instantaneous 
auditory feedback in less than 50 ms.  Not only does our 
speech prosthesis provide real-time acoustic output for fluent 
speech production, but the continuous feedback allows the 
user to perform online error correction for mispronounced 
speech sounds.  This type of control is far more natural than 

keyboard selection and “backspace” deletion of erroneous 
predictions characteristic of alternative neural interfacing 
AAC devices. 

The details of the decoder, subject and implant will be 
discussed in Section 2.  Preliminary results from our first 
speech prosthesis prototype will be presented in Section 3.  
Section 4 will include a brief discussion of the results along 
with future research directions made apparent from our initial 
investigation.  We finish with a concluding summary in 
Section 5. 

2. Subjects and Methods 
Speech restoration by wireless intracortical microelectrode 
BCI requires implantation of an extracellular recording 
electrode and electrical hardware for amplification and 
transmission brain activity.  For our methods, the choice of 
implantation site, electrode type and decoding algorithms are 
crucially important for the success of the neural prosthesis.  
The complete neural prosthesis is illustrated in Figure 1 
including implant location, wireless telemetry subsystems, 
signal processing, neural decoding and artificial speech 
synthesis modules. 

 

 
Figure 1.  A schematic of the neural prosthesis 
indicating the stroke location (labeled with an “X”), 
electrode implantation site, wireless telemetry, signal 



processing, neural decoding and artificial speech 
synthesis. 

2.1. Subject 

The participant is a 25 year old male suffering from locked-in 
syndrome as a result of a brain stem stroke incurred at age 16.  
Locked-in syndrome is characterized by near-complete motor 
paralysis with only small amounts of voluntary control over 
the ocular muscles, though the remainder of the brain 
responsible for cognition and sensation is left largely intact.  
Indeed, our subject retains voluntary motor behavior only 
through slow vertical movements of the eyes, allowing him to 
answer yes/no questions.  His audition and somatic sensation 
were not noticeably impaired though his visual perception has 
suffered due to an inability to control the eyes in a conjugate 
fashion. 

The implant location was determined according to the 
areas of highest blood oxygen level dependent (BOLD) 
response during a preoperative functional magnetic resonance 
imaging (fMRI) investigation of attempted speech production.  
Large-scale activation of the speech production network was 
observed with a peak activity on the left ventral precentral 
gyrus.  This area has been identified as a region on the border 
of the premotor and primary motor cortex for the speech 
articulators (i.e. lips, tongue and jaw movements) and will 
hereafter be referred to as the speech motor cortex. 

The subject was implanted over 4 years ago at age 21, 
approximately 5 years after becoming locked-in due to brain 
stem stroke.  The implantation procedure was approved by the 
Food and Drug Administration (IDE G960032), Neural 
Signals, Inc. Institutional Review Board, and Gwinnett 
Medical Center Institutional Review Board.  Informed consent 
was obtained from the participant and his legal guardian prior 
to implantation.  Further details concerning the implantation 
procedure can be found elsewhere [9]. 

2.2. Implant 

The implanted electronics of the neural prosthesis consist of a 
recording electrode and amplification and wireless telemetry 
systems.  The recording electrode used in the device is a 
chronically implantable two-channel Neurotrophic Electrode 
[9,10].  This electrode is unique among multiunit extracellular 
electrodes.   

Standard multiunit extracellular electrodes come in an 
array (multielectrode array, MEA) configuration with many 
tens of penetrating tips which are capable of recording one to 
two neural action potentials, or spikes, per tip [11-14].  These 
electrode arrays are implanted on the surface of the cerebral 
cortex, where they float while attached to amplification and 
transmission (most utilize wired connections while our 
implant is the only wireless system) hardware.  One major 
design issue with this type of microelectrode configuration is 
that the array tends to move with respect to the brain over 
time.  Such movement leads to variable spike amplitudes due 
to changing distances between the electrode tip and 
originating neuron.  In addition, the movement often leads to 
scar tissue formation around the electrode tip, known as 
gliosis, which further degrades the recorded neural signal. 

The Neurotrophic Electrode is a microwire style electrode 
with recording wires placed within a 1 mm long glass cone 
filled with a neurotrophic growth factor [10].  The growth 
factor promotes neurite growth from nearby neurons (as far 
away as 600 µm) allowing simultaneous recording of multiple 

neural sources [10,15,16].  Additionally, the neurite ingrowth 
creates a bridge of neural tissue, effectively anchoring the 
recording electrodes within the cortical surface and 
eliminating both gliosis and signal recording artifacts resulting 
from electrode micromovements.  Finally, the Neurotrophic 
Electrode is the only chronic microelectrode to be implanted 
for over four years in human subjects (approximately 4.5 years 
as of this writing). 

2.3. Decoding Algorithm 

We chose to decode neural signals into speech representations 
according to a discrete-time filtering method as opposed to 
discrete classification of intended phoneme or word 
productions (e.g. EMG and EEG methodologies).  According 
to previous neuroimaging and computational modeling studies 
of speech production [17,18], the speech premotor cortex was 
found to represent acoustic features of intended speech 
sounds. Therefore, we utilized formant frequencies, the 
resonant frequencies of the vocal tract, as a continuously 
variable parameter used for control of a formant-based 
artificial speech synthesizer [19].  

Specifically, a Kalman filter [20] was trained according to 
a “center-out and back” vowel-to-vowel calibration sequence 
in a two-dimensional formant frequency space acoustically 
presented to the subject.  Our center-out task is taken from the 
seminal work by Georgopoulos and colleagues which 
investigated the tuning properties of motor cortical neurons to 
arm and hand kinematics (e.g. hand movement velocities) 
[21].  During the calibration sequence, the subject was 
instructed to attempt to speak along with the stimulus as it was 
produced by a computer.  A visual representation of the 2-D 
formant frequency plane is shown in Figure 2 (right).  The UH 
(hut) sound was chosen as the “center” point with the 
remaining vowels IY (heat), A (hot) and OO (hoot) as the 
periphery with periphery target regions approximately 150 Hz 
in F1 and 300 Hz in F2.  The sequence consisted of eight 
center-out repetitions of each peripheral vowel with steady 
vowel periods lasting 1 s. and transition periods lasting 300 
ms. for a total sequence length of 63.4 seconds.  The 
calibration signal was artificially generated utilizing formant 
frequency trajectories between the center sound and each 
periphery target.  We used an offline training algorithm to 
determine the model parameters based on the relationship 
between the calibration signal formant frequencies and their 
velocities (1st time derivative) and the observed neural firing 
rates. 

The Kalman filter model parameters were saved for real-
time usage similar to previously reported studies involving 
online prediction of arm and hand kinematics [22].  The 
Kalman filter decoder was then applied in real-time to convert 
neural firing rates, sampled every 15 ms, into formant 
frequencies for instantaneous speech synthesis. The total 
signal acquisition to synthesizer output processing time was 
less than 50 ms.  This system delay is comparable to the 
natural delay from speech production to self perception in 
healthy subjects. Slower feedback delay times (> 200 ms) 
have been shown to disrupt fluent speech in normal subjects 
[23] and we would expect similar disfluencies with any speech 
prosthesis user subject to extremely delayed speech feedback. 

3. Results 
We tested the decoder performance in an online neural 
decoding paradigm.  Again, vowel sequences were artificially 
generated according to formant frequency trajectories between 



 
Figure 2.  (Left) Endpoint vowel accuracy, (top) hit rate, and (bottom) Euclidean distance in the F1-F2 plane from target in 
Hz. (Right) 2-D formant plane with example vowel targets and associated classification region. 

a “center” sound (UH) and one of three periphery vowels (A, 
IY or OO).  The subject was instructed to listen to a randomly 
selected two vowel sequence (e.g. UH (hut) – IY (heat)) and 
to repeat the sound after a GO instruction.  The trial time was 
limited to six seconds and ended in success when the subject 
produced the endpoint vowel sound within the specified 
formant frequency target region.  A trial was marked as a 
failure if the subject could not produce the endpoint vowel 
sound and hold it within the target region for 500 ms.  The 
subject participated in 25 sessions over a 5 month period in 
which he performed between 5-34 trials per session.  Each 
online testing session was divided into 1-4 trial blocks with 
short rest times between blocks. 

Two error measures were computed for speech production 
accuracy.  First, we determined the average target acquisition 
rate for each trial block as shown in Figure 2 (top left). 
Second, we computed the average endpoint error in terms of 
Euclidean distance from the last predicted formant frequency 
to the target center as shown in Figure 2 (bottom left).  Both 
measures showed statistically significant improvement 
(p<0.05; t-test with null hypothesis of zero slope as a function 
of block number) within each testing session.  This increase in 
performance indicated that the subject successfully learned to 
control the 2-D neural decoder for artificial speech synthesis.  
 

4. Discussion 
The neural prosthesis described within this report is the first 
ever brain computer interface for continuous control over an 
artificial speech synthesizer. Our results establish the 
feasibility for continuous brain control for speech restoration 
in real-time by profoundly paralyzed and mute individuals.  
Our subject was capable of producing vowel sounds at average 

rates approaching 80% within each testing session 
(approximately two hours), with a maximum of 89% by the 
end of the final block of the final session. 

The results presented here also demonstrate that neural 
signals recorded from the speech motor cortex can be used in a 
formant frequency prediction paradigm.  Such a conclusion 
implies that activity in this region of cortex is modulated by 
the production of sounds represented by formant frequencies. 
This finding is very important for the advancement of our 
understanding of speech production in humans as it directly 
identifies both a neural correlate of speech production as 
opposed to indirect methods such as fMRI investigations. 

Despite the success of our initial testing of the neural 
speech prosthesis, a number of outstanding issues remain for 
further study.  First, the system, as currently implemented, is 
capable only of vowel prediction and vowel synthesis as a 
direct result of formant frequency decoding and synthesis.  
Therefore, our next step is to extend our neural prosthesis to 
account for other speech sound types (e.g. consonants).  We 
expect this modification to be straightforward as formant 
frequencies are strongly related to speech articulator 
configurations [24].  

Additionally, the speech prosthesis does not yet contain 
any mechanism for speech onset and termination control (i.e. 
phonation). An investigation into the possibility of phonation 
control by the neural decoder is already underway and is 
planned to be incorporated into the next major device version. 
We expect both the phonation and articulatory control 
paradigms will greatly increase the user’s ability to quickly 
and accurately control an artificial speech synthesizer.  



5. Conclusions 
We reported on the development and performance of the first 
neural prosthesis for artificial speech production controlled by 
a paralyzed individual suffering from locked-in syndrome.  
The neural decoder was described as an intracortical 
microelectrode device with wireless transmission of recorded 
signals which performed a mapping between neural firing 
rates in the speech motor cortex and intended speech 
utterances. Predicted formant frequencies were synthesized in 
real-time with a total system delay less than 50 ms. for 
instantaneous auditory feedback and closed-loop BCI control.  
The subject in our study learned to control the speech 
synthesizer using the brain-computer interface by the end of 
each testing session. 
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