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ABSTRACT 

This thesis is a combination of empirical and modeling work concerning articulatory-acoustic 

relationships in speech production. The empirical work investigates the functional relationship 

between articulatory variability and stability of acoustic cues during American English /r/ 

production. The analysis of articulatory movements shows that the extent of intra-subject 

articulatory variability along any given articulatory direction is strongly and inversely related to a 

measure of acoustic stability (the extent of acoustic variation that displacing the articulators in 

this direction would produce). The presence and direction of this relationship is consistent with a 

speech motor control mechanism that uses a third formant frequency target for /r/. Simulations of 

two speakers’ /r/ productions, using the DIVA model of speech production in conjunction with 

novel speaker-specific vocal tract models derived from magnetic resonance imaging data, mimic 

the observed range of articulatory gestures each subject used in different phonetic contexts, while 

exhibiting the same articulatory/acoustic relations as those observed in the experimental data. 

Overall these results indicate that the production target for American English /r/ is acoustic in 

nature, rather than articulatory.  
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Current models of speech production that use acoustic targets drastically simplify the nature 

and dimensionality of acoustic descriptors in order to facilitate efficient and robust control of the 

speech apparatus. These simplifications are not in accordance with neurophysiological and 

imaging evidence on the cortical representation of sounds. The modeling section of this thesis 

proposes a solution to the speech production control problem that uses a cortical representation of 

the sound that fits the multifaceted representations found in auditory cortex. A mathematical 

approximation to the relationship between articulatory movements and the associated changes in 

the sound spectrum leads to the definition of a novel difference measure for comparing two sound 

spectra. This measure is closely related to the articulatory movements necessary to transform one 

sound into the other. A neural model for the cortical representation of sounds is then developed to 

implement the basic computations leading to estimation of the proposed difference measure. 

Simulations of this neural model demonstrate successful inverse control strategies for speech 

production based on acoustic targets.   
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CHAPTER 1. A MODELING INVESTIGATION OF ARTICULATORY 

VARIABILITY AND ACOUSTIC STABILITY DURING AMERICAN ENGLISH 

/R/ PRODUCTION  

 

I. INTRODUCTION 

When producing a given phoneme, speakers use a set of articulators (e.g. tongue, jaw, lips) to 

affect the vocal tract shape and, ultimately, the characteristics of the resulting acoustic signal. The 

vocal tract configuration for the production of a given phoneme is not uniquely defined by 

phoneme identity. Different speakers will use different articulatory configurations when 

producing the same phoneme, and often the same speaker will use a range of different articulatory 

configurations when producing the same phoneme in different contexts. In particular, the 

American English phoneme /r/ has been associated with a large amount of articulatory variability 

(Delattre and Freeman, 1968; Espy-Wilson and Boyce, 1994; Guenther et al., 1999). While large, 

the degree of articulatory variability present in natural speech does not seem to hinder phoneme 

recognition by listeners, and it is often conceptualized as an expression of control mechanisms 

that make efficient use of a redundant articulatory system.  Such efficient use of redundancy in 

biological motor systems is often referred to as motor equivalence.   

Current speech movement control theories dealing with the motor equivalence problem can be 

roughly classified depending on the type of phonemic targets hypothesized (see MacNeilage, 

1970, for motivations of a target-based approach to speech motor control theories). The task-

dynamic model of Saltzman and Munhall (1989) exemplifies a type of computational model in 

which phonemic targets are characterized in terms of tract variables representing specific aspects 

of the vocal tract shape that can be independently controlled by the speech control mechanism 
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(e.g., lip aperture, tongue dorsum constriction location, etc.) In this model, articulatory variability 

can arise as a consequence of “blending” effects from the context phonemes. For example, when 

producing a /b/ in a VCV context, a full bilabial closure represents the targeted tract variable. 

Other aspects of the vocal tract not affecting the targeted tract variable, such as tongue shape, will 

vary depending on the shape adopted in the production of the leading vowel, while also being 

subject to anticipatory movements towards the following vowel configuration. In this way, 

articulatory variability in different phonetic contexts would reflect the interplay between 

constraints imposed by current and contextual phonemic targets.   

The DIVA model (e.g., Guenther et al., 1998; Guenther et al., 2003) exemplifies a second type 

of computational model of speech motor control in which the phonemic targets are characterized 

in terms of acoustic/auditory variables1 (for example, formant frequency descriptors). In this 

model, the control mechanism moves the articulators in the direction that would bring the 

formants of the resulting auditory signal closest to the targeted formants, without reference to an 

explicit vocal tract shape target. Articulatory variability then arises naturally as a consequence of 

the many-to-one mapping between the articulatory configurations and the audible acoustic 

characteristics of the produced sound. In other words, for these models articulatory variability 

reflects the variety of articulatory configurations that would produce the desired acoustic 

properties. 

                                                 
1 The current version of the DIVA model (Guenther et al., 2003) uses a combination of auditory and 
somatosensory targets.  As a result of learning in the model, sounds whose characteristic acoustic signal 
can be produced with a wide range of articulator shapes end up with primarily auditory targets, while 
sounds that can only be produced with a consistent somatosensory pattern (e.g., lip tactile information 
signaling full closure for a bilabial stop) will have both auditory and somatosensory targets.  In other 
words, the model hypothesizes that the exact nature of the target (auditory and/or somatosensory) for a 
sound will depend on the amount of variability in the two spaces that is allowable for that sound in the 
infant’s native language.  In this chapter we will deal only with /r/, which we believe to have a primarily 
auditory target in American English. 
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Often (e.g. Saltzman and Munhall, 1989; Guenther, 1998) the distinction is emphasized 

between the articulatory configurations (the state of articulatory variables, such as jaw aperture) 

and the resulting vocal tract shapes (the state of tract variables, such as tongue dorsum 

constriction degree). This highlights the redundancy of the speech articulatory system. For 

example, a particular tongue dorsum constriction degree can be achieved with a relatively low 

jaw height and a relatively high tongue body height (relative to the jaw) or a higher jaw height 

and lower tongue body height. More generally, both articulatory and tract variables represent 

different coordinate frames that can be used to represent the state of the vocal tract apparatus (see 

MacNeilage, 1970, for an introduction on the concept of coordinate systems in speech 

production). Tract variables represent a more abstract coordinate frame than articulatory 

variables, since there is a one-to-many relation between tract variables and articulatory variables 

defined by the geometrical relations among them. In the same way, acoustic or auditory variables 

(Guenther et al., 1998) can be simply thought of as yet another coordinate frame for the 

representation of the articulatory state. They represent a more abstract coordinate frame than 

either tract or articulatory variables, in that there are one-to-many relations between auditory and 

tract variables, and between tract and articulatory variables. The analysis of variability in 

articulatory configurations in the production of a given phoneme, similarly to the analysis of 

errors in a pointing task (Carozzo et al., 1999; McIntyre et al., 2000), is a useful approach for 

uncovering an appropriate coordinate-frame for the representation of targets in speech production. 

We thus believe that the analysis of articulatory variability should serve to direct the definition of 

motor control models of speech production.  Based on this view, the goal of the current work is 

two-fold: 1) to characterize, in a paradigmatic example of articulatory variability (American 

English /r/), the extent of articulatory variability in relation to hypothesized target representations 

(relevant tract and acoustic variables); and 2) to test whether a model of speech motor control 
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based on an acoustic target definition, together with a speaker-specific vocal tract model, can 

explain the specificities of the observed articulatory variability in individual speakers.  To these 

ends, we first present new, model-based analyses of electromagnetic midsagittal articulometer 

(EMMA) data on seven subjects from a previous study (Guenther et al., 1999). These analyses 

characterize the experimentally observed articulatory variability in relation to hypothesized target 

variables. We then provide simulation results of an auditory target model controlling the 

movements of speaker-specific vocal tract models based on magnetic resonance imaging (MRI) 

scans of the vocal tracts of two of the seven experimental subjects.  The model movements are 

then compared to those of the modeled speakers. Note that the present study addresses only the 

production of American English /r/. Several aspects of this chapter’s methodology (to be 

described later) are specific to the class of vowel and semivowel productions. The extent to which 

the presented results generalize to the production of other phoneme classes (in particular, 

consonants) can only be addressed by further studies.  
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II. METHODS 

A. EMMA data collection and analysis 

An EMMA system (Perkell et al, 1992) was used to track the movement of six transducer 

coils on the tongue, jaw, and lips in the midsagittal plane during the production of /r/ in five 

different phonetic contexts (“warav”, “wabrav”, “wavrav”, “wagrav”, “wadrav”) for seven 

American English speakers. A directional microphone was used to record the subjects’ speech 

simultaneously with the EMMA signals. The details of the methodology are described in 

Guenther et al. (1999). The primary acoustic cue for /r/ is a deep dip in the trajectory of the third 

formant frequency, or F3 (Boyce and Espy-Wilson, 1997; Delattre and Freeman, 1968). The 

acoustic signal was therefore processed to extract the F3 trajectory. A linear fit was used to 

estimate a first-order approximation of the effect of each transducer position on F3 for each 

subject.  The articulatory data were analyzed in terms of the articulatory covariance of the 

transducer positions at the time of the F3 minimum for /r/ (the acoustic “center” of the /r/) across 

the different productions.  

Previous analyses (Guenther et al. 1999) had shown that articulatory tradeoffs during /r/ 

production acted to reduce F3 variability. In this section we attempt to assess this kind of finding 

in the context of different speech motor control theories by testing the ability of theoretically 

motivated phonemic target variables to predict the observed variability in articulatory 

configurations. Our rationale is exemplified in Figure 1.1. Let us only consider the movement of 

the tongue tip in this example. Imagine, during the production of a hypothetical phoneme, the 

phonemic target consists of accomplishing a given tongue tip constriction degree (distance 

between the tongue tip and the hard palate). The expected array of final configurations of the 

tongue tip for the production of this phoneme would be expected to take the approximate form 

shown in Figure 1.1 left. The axes labeled A and B represent the directions of articulatory 
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movement resulting from a principal component analysis (PCA) of the final articulatory 

covariance of a number of productions of the phoneme, and the gray arrow characterizes the 

direction of articulatory movement affecting the degree of the tongue tip constriction the most. 

The right side of Figure 1.1 plots for each articulatory direction (A and B) their effect on the 

hypothesized target variable (effect on constriction degree) on the x axis, and their extent of 

articulatory variability on the y axis. This plots schematizes the observation that those 

articulatory dimensions affecting the target variable the most (B, in this case) would be expected 

to show a lesser extent of articulatory variability than those dimensions affecting the target 

variable the least (A). Such differences in the extent of articulatory variability have been, for 

example, found in the production of the vowels /i/ and /a/, with minimal variability along 

acoustically critical directions perpendicular to the vocal-tract midline (Perkell and Nelson, 

1985). The analyses in this section extend the simple scheme exemplified in Figure 1.1 (with only 

one transducer reflecting the tongue tip position) to the case of multiple transducers (6 

transducers, reflecting tongue, jaw, and lips configurations). The simultaneous analysis of 

multiple transducers on different articulators allows the articulatory dimensions (12 for each 

subject) that result from a principal components analysis to characterize complex movements of 

one or several articulators, such as those described in the literature as trading relations between 

and within articulators (for example a simultaneous raising of the tongue back and decrease of lip 

rounding for the vowel /u/, as in Perkell et al, 1995; or a simultaneous raising of the tongue tip 

and lowering of the tongue back for /r/ as in Guenther et al, 1999). As in the example shown here, 

a functional relationship between the extent of articulatory variability along each of the resulting 

articulatory dimensions and their associated effect on a hypothesized target variable is taken as 

indicative of the use of a specific target scheme in the articulatory movement data being analyzed. 
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Figure 1.1. Schematic example of articulatory variability analysis for a single articulatory measure of 

interest (tongue tip position). Left: Hypothetical configuration of tongue tip positions in the production of a 

phoneme that could be characterized by a tongue tip constriction degree phonemic target (anterior is toward 

the left). A and B represent the directions of the tongue tip movement resulting from a principal component 

analysis (PCA) of the tongue tip articulatory covariance of multiple repetitions. The arrow labeled 

constriction degree represents the direction of the tongue tip movement affecting the constriction-degree 

the most. Right: Plot relating the extent of articulatory variability along each of the articulatory directions 

(A and B) versus the effect that each of these directions has on the hypothetical target variable (constriction 

degree). Evidence for a tongue tip constriction-degree phonemic target comes from the relative separability 

of the articulatory variability based on the effect that each of these directions has on the tongue tip 

constriction degree; the articulatory direction A affects the constriction degree the least and shows a larger 

extent of articulatory variability, while the articulatory direction B affects the constriction degree the most 

and shows a smaller extent of articulatory variability. The actual analyses performed in this section attempt 

to provide evidence for several theoretically motivated phonemic target definitions by extending this simple 

scheme to the case of multiple articulatory measures of interest (indicated by six transducer positions 

located on the tongue, lips, and jaw of the speakers). 

 

For each subject, a principal component analysis (PCA) of the articulatory covariance led to 

the definition of a set of 12 vectors (principal articulatory directions) defining a base in the 
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articulatory space.  Plots were constructed relating, for each articulatory direction, the observed 

articulatory variability along this direction and: a) its effect on the acoustic cue F3 (as estimated 

by the original linear fit, in Hertz/mm); and b) its effect on each of the tongue shape indicators 

(associated with the tongue tip, tongue dorsum, and tongue back constriction location and degree 

tract variables) as estimated by the principal articulatory direction loadings on the corresponding 

transducer indicators (in mm/mm units). The directions of movement of the three tongue 

transducers perpendicular to the palate surface for each subject were used as approximate 

indicators of the tongue tip, tongue dorsum, and tongue back constriction degree, respectively. 

Constriction location was defined as the direction perpendicular to the constriction degree 

(parallel to the palate surface). Data from different subjects were overlaid after normalizing by 

each subject’s total amount of articulatory variability (each subject’s total variability was 

arbitrarily scaled to 10mm). The resulting plots were fit using a linear regression on the log 

variables. R2 and p values, as well as confidence intervals for the linear fit parameters, are 

reported in the Results. 

B. Construction of speaker-specific vocal tract models 

A speaker-specific vocal tract model is a characterization of the range of configurations a 

speaker’s vocal tract could adopt, together with the acoustic output any configuration would 

produce under glottal excitation. To estimate the former, a set of 2-D MRI midsagittal profiles 

was acquired for two subjects (the first two subjects in the EMMA experiment) while producing a 

set of phonemes. To estimate the latter (the associated acoustic outputs), acoustic data were 

collected at the start of each scan. Data for 27 and 15 phoneme productions were acquired for 

subject 1 and 2, respectively. The following paragraphs describe the procedure used to interpolate 

and generalize from the limited available articulatory and acoustic data to other non-observed 
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configurations. The results provide a simple characterization of the full range of articulatory 

configurations and acoustic outputs a speaker can produce. 

Analysis of vocal tract configurations. Previous approaches to the creation of a parametric 

description of articulatory movements (e.g. Perrier et al., 1992; Story et al., 1996, 1998) create a 

grid in the midsagittal plane and obtain the vocal tract area function from the intersection of this 

grid with the vocal tract outline. An articulatory model based directly on a vocal tract area 

function representation is, nevertheless, unlikely to produce optimally realistic articulatory 

movements, given the discontinuity between natural vocal tract articulator movements and the 

corresponding area function representation using the grid method. In this work we chose to create 

a parametric definition of the articulator space from a principal component decomposition of the 

outlines of different vocal tract segments (tongue, jaw and lips). In this way the resulting 

characterization is expected to be both articulatorily meaningful and continuous with respect to 

movement of the articulators. T1 (14s TR, 4mm slice) midsagittal MR images were obtained 

while the subject was producing a set of simple phonetic utterances involving a variety of vowels, 

semivowels, fricatives, and stop consonants chosen to represent the full range of articulations. 

Each subject was asked to produce a simple utterance (either a steady-state vowel or a /VC/ 

sequence) and hold the last phoneme during the 14 seconds of the image acquisition procedure. 

Images were inspected visually for movement artifacts, and trials with a large amount of 

movement were removed from further analyses. In each resulting raw MR image, the intensity 

histogram was clustered into eight representative levels and the air regions were identified using a 

flood fill algorithm starting from a user-defined point. The resulting air regions were corrected 

manually to form a connected set defining the air-cavity region of the vocal tract and its outline 

was extracted for each image. Figure 1.2 shows an example of the estimated vocal tract outline 

(thick line) and the original MRI data for the first subject. The resulting vocal tract outlines were 
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aligned spatially using the hard palate outline to correct for subject movement in the scanner. 

They were then parcellated into different segments of interest (jaw, lips, hard palate, velum, 

laryngeal region). The tongue body segment is highlighted in Figure 1.2.  Each segment was 

interpolated by a fixed number of equally spaced 2-d points along the identified segment outline 

in order to obtain a vector descriptor of its shape. For the present study we concentrated on the 

effect of tongue, lower lips and jaw. Principal component analysis was applied to each of these 

shape descriptors to obtain a set of five articulatory components: three for the tongue body, and 

one each for the jaw and lower lip. The variability in articulatory configurations explained by 

movements of the jaw was removed prior to the estimation of the tongue and lip principal 

components in order to remove redundancies in their definition (c.f. Maeda, 1990).  The resulting 

set of principal articulatory components was used as a characterization of the range of articulatory 

configurations the subject could produce. In this way, any articulatory configuration the subject’s 

vocal tract model could produce was represented by a five-element vector, describing the 

contribution of each of the five articulatory components to the vocal tract shape. 

 

Analysis of acoustic signals and the articulatory to acoustic mapping. Acoustic recordings of 

the subject’s production of each utterance made while in the MRI scanner (just before the onset of 

the scanner noise) were analyzed using Linear Predictive Coding (LPC) (p=26, Fs=22KHz). The 

acoustic signal was pre-emphasized with a single delay FIR filter (a1=.95) to reduce the effects 

due to radiation and the glottal pulse (Wakita, 1973). The first three formant values were 

extracted for each production.  
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Figure 1.2. Example of MRI midsagittal data and the estimated vocal tract outline (thick line) for Subject 

1during the production of /r/.  The vocal tract outline was parcellated into relevant segments of interest. The 

segment corresponding to the tongue shape is highlighted in this plot. MRI images were acquired for each 

subject while producing a set of simple sustained phonetic utterances (including vowels, semivowels, 

fricatives, and stop consonants).  These data together with the corresponding acoustic signal for each 

utterance were used to create speaker-specific vocal tract models for two subjects.  

 

In order to approximate the vocal-tract articulatory/acoustic mapping, previous models have 

derived it from the vocal tract area function either using an elliptical approximation that is 

difficult to tune (Maeda, 1990) or an elegant but more complex estimation procedure based on 

multiple 3-D volumetric MRI representations of the vocal tract (e.g. Tiede and Yehia, 1996). The 

collection of 3-D volumetric data for multiple phonemes is time-consuming and can suffer from 

problems in determining the location of the teeth, which do not show up on MR images and thus 

adversely affect the measured area function. Compared to this approach, in this work we used a 

simple linear mapping to fit the relationship between the articulatory and formant descriptors for 
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each subject. In this way, the proposed model requires a relatively small amount of MRI and 

acoustic data for each subject and avoids the complications derived from the estimation of the 

area function. The validity of this approach was first estimated by creating a random sample of 

vocal tract configurations, and computing the corresponding acoustic outputs using a standard 

articulatory synthesizer (Maeda, 1990). A random set of 10,000 valid articulatory configurations 

was created using a normal distribution of the model’s articulatory parameters (mean zero, 

standard deviation one) hard-limiting between –3 to 3 standard deviations (the full valid range of 

articulatory parameters in Maeda’s 1990 vocal tract model). For this data we found a very 

significant linear relationship (R2 = 0.97) between the articulatory and formant descriptors. 

Deviations from linearity were most apparent in extreme configurations (close to a closure). This 

result indicates that a linear mapping between articulatory and acoustic dimensions is reasonable 

if the vocal tract is restricted to non-extreme configurations (e.g. vowels and semivowels). In 

other words, this methodology would not be appropriate for modeling many consonant 

productions. The linear mapping best fitting the relationship between articulatory and acoustic 

components for each subject’s data was then estimated using linear regression on the articulatory 

and acoustic descriptors from vowels and semivowels (9 and 6 configurations for Subjects 1 and 

2, respectively).  

C. Simulations of /r/ production 

The DIVA model (Guenther et al., 1998) was used as a controller for the movement of the 

speaker-specific vocal tract articulators to produce an acoustic /r/ target in different phonetic 

contexts. The DIVA model can be characterized as a derivative controller in acoustic space. The 

implementation reduces, at each time-point, to iteratively moving the articulators in the 

articulatory direction that brings the current acoustic output closest to the desired acoustic target. 

In mathematical terms, the model uses a pseudoinverse of the Jacobian matrix relating articulator 
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movements to their acoustic consequences to move in a straight line (in acoustic space) to the 

target (see Guenther et al., 1998 for details). While in the complete DIVA model this is 

accomplished by learning this pseudoinverse transformation through experience (e.g. Guenther et 

al., 1998), in the current implementation we used an explicit calculation of the pseudo-inverse of 

the articulator-to-acoustic mapping. The articulatory space was defined in terms of the PCA 

components as described above, and the acoustic space was defined in terms of the first three 

formants of the spectrum (in Hz). The acoustic target in the model was defined from each 

subject’s own /r/ production formants. To compare the results of the DIVA model simulations to 

the experimentally obtained EMMA data for each subject, the estimated transducer locations 

were manually identified on a rest configuration of the modeled speaker-specific vocal tract. The 

approximate location where the tongue transducers were placed was visually identified following 

the directives of the original EMMA experimental paradigm, as 1, 2.5, and 5 cm back from the 

tongue tip. The initial vocal tract configurations of three phonetic contexts (/ar/, /dr/, and /gr/) 

were manually edited from the original MRI data to approximate the observed initial transducer 

configuration (75 ms before F3 minimum) in the corresponding contexts for each subject. 

Simulations of the DIVA model were run starting from these configurations to a “final” 

configuration at the F3 minimum for /r/.  The estimated direction of movement (difference 

between the final and starting transducer positions) was compared to the measured transducer 

movement in the same contexts (correlation coefficients are reported). Finally, using all available 

MRI configurations as initial vocal tract configurations (not just the three used for the preceding 

analyses), additional simulations were run using the same acoustic target for /r/, and the resulting 

articulatory variability across the model’s /r/ productions was determined. On this data we 

performed similar articulatory variability analyses as those performed on the original EMMA 

data. 
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III. RESULTS 

A. Predictive relations between hypothetical target variables and articulatory variability 

This section deals with the analysis of articulatory movement data in an attempt to show the 

ability of different phonemic target hypotheses to account for the observed articulatory variability 

in the production of /r/. In particular, it was expected that the choice of an “appropriate” 

phonemic target would provide good separability of those directions of articulatory movement 

showing large versus small articulatory variability. The main result shows that for any direction 

of articulatory movement, its effect on an acoustic variable (F3, corresponding to an acoustic 

phonemic target representation hypothesis) is a good predictive measure of the extent of 

articulatory variability along this direction of articulatory movement. On the other hand, none of 

the articulatory variables tested (corresponding to an articulatory phonemic target representation 

hypothesis) provide as good predictability of the observed articulatory variability.   

A first-order approximation to the effect of each of the EMMA transducer positions on F3 was 

first estimated using linear regression for each subject (p≤3*10-6; average R2=.56; dof≥71). The 

EMMA transducer positions at the F3 minimum for /r/ for each of the seven subjects were then 

analyzed (principal component analysis) to obtain a set of 12 articulatory dimensions 

characterizing each subject’s articulatory covariance (see Section II.A for details).  These 

articulatory dimensions represent deviations of the articulators around an average /r/ 

configuration for each subject. For a given subject, some of these articulatory dimensions show a 

relatively high degree of variability (meaning that this subject’s /r/ configurations differed 

relatively largely along those articulatory dimensions), and others show a relatively small degree 

of variability (meaning that the subject’s final articulatory configurations would be relatively 

stable along those articulatory dimensions). Similarly, each articulatory dimension would also 

vary with respect to its effect on F3 (meaning that moving the articulators along this direction 
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produces a relatively large/small change on the F3 acoustic cue) and with respect to its effect on 

different tract variables (e.g. a large tongue dorsum constriction degree effect means that moving 

the articulators along this direction produces a large change in the size of the palatal - tongue 

dorsum constriction). Figure 1.3 shows log plots of the relation between the extent of articulatory 

variability (vertical axis) and (from left to right) the effect on acoustic (F3) and tract (tongue 

dorsum degree, tongue tip constriction degree and location) variables. The results show that the 

degree of articulatory variability along any articulatory dimension is strongly related to its effect 

on F3 (R2 = .46), but it is not related to any of the tested tract variables (R2 ≤ .02). The direction of 

the observed relation between articulatory variability and effect on F3 is consistent with that 

expected from a control mechanism using an F3 target; i.e. the final articulatory variability is 

lower for those articulatory directions most relevant to determining the F3 value. The tract 

variables chosen in these plots reflect those that would seem most relevant for /r/ production (see 

Guenther et al., 1999). Correlations with the remaining tongue constriction indicators (tongue 

dorsum constriction location, and tongue back constriction width and location) were also low (R2 

≤ .04). 
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Figure 1.3. Relation of hypothetical target variables to articulatory variability during /r/ production.  Each 

point in the plots represents an articulatory dimension (a direction of movement of the articulators) for a 

given subject. Plots show the experimentally measured relation between each articulatory dimension’s 

variability and (from left to right) its effect on F3, its effect on tongue-dorsum constriction degree, its effect 

on tongue tip constriction degree, and its effect on tongue tip constriction location. The strong relation (R2 

= .46) found between an acoustically relevant variable (F3) and the articulatory variability in /r/ production 

is consistent with that expected from an acoustic target speech motor control mechanism (i.e. the final 

articulatory variability is lower for those articulatory dimensions most relevant to determining the F3 

value). No evidence (R2 ≤ .02) of a vocal tract shape- target speech motor control mechanism was found 

(i.e. the final articulatory variability was not consistently lower for those articulatory dimensions most 

relevant to determining hypothetical tract variable targets). 

 

The main positive result of the previous analyses is the following: the extent to which each 

articulatory dimension was found to vary showed a strong inverse relation to the change in F3 

associated with moving the articulators along that same articulatory dimension. In particular, the 

standard deviation of the articulatory variability along any given articulatory dimension was well 
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approximated by the squared inverse of the change (in Hertz) in F3 associated with that 

articulatory dimension. An F-test on the global fit (linear regression on log variables) for the 

combined results of all subjects showed a strong association between these variables (F1,82 = 

69.68; p = 1 *10-12). This fit is shown in the top panel of Figure 1.4.  

These results indicate that if, for a given subject, deviating from an average /r/ configuration 

along a given articulatory direction was found to have a relatively large impact on F3 (low F3 

stability), then that subject tended to show little articulatory variability along this articulatory 

dimension. Conversely, if deviating along a given articulatory direction was found to have 

relatively little impact on F3 (high F3 stability), then the subject tended to show a larger amount 

of articulatory variability along this articulatory dimension. We will refer to this as a predictive 

relationship between acoustic stability and articulatory variability. 

To assess the statistical significance of the experimental results we performed a Monte Carlo 

test (replication of all the analysis steps using a series of simulated datasets conforming to a pre-

defined null hypothesis). The null-hypothesis represents the case where there is no relation 

between articulatory variability and acoustic stability. It is important to note that this null-

hypothesis would not be appropriately tested using the significance level of the 

articulatory/acoustic linear regression R2’s in Figure 1.3. This would provide an increased false-

positive rate because such relations can appear solely from noise in the F3 measurement. This is 

worth clarifying, not only to reassure the reader that the observed relations are not artifactual, but 

moreover because we feel it helps better understand the nature of the measured 

articulatory/acoustic relationship. The observed predictive relations indicate that the effect on F3 

(in Hz/mm) relates inversely to the articulatory variability (in mm). This is equivalent to stating 

that the change in F3 (in Hz) is roughly constant when the articulators move one standard 

deviation (dimensionless, measured in degrees of articulatory variability) along any given 
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articulatory dimension, no matter if this movement represents a very large or very small change in 

articulatory configurations. This exactly is the hallmark of a controller using an F3 target: it 

would distribute the F3 error equally along all available articulatory dimensions, making the 

“important” articulatory dimensions vary little while the “unimportant” ones vary a lot. However, 

if the measurement noise in F3 was large (making the measured F3 independent of the 

articulatory state), artifactual articulatory/acoustic relations would appear in the data. The reason 

is that in this case the F3 variability (in Hz) would also be found to be independent of the degree 

of articulatory movement (in standard deviations). This artifactual case can nevertheless be 

discerned from a non-artifactual scenario based on the degree of association between the 

articulatory configurations and the acoustic variable F3 (this would be minimal in the case of a 

noisy F3 measurement). We performed Monte Carlo tests constrained to the observed level of 

association between these variables to evaluate the possibility of measurement noise inducing the 

observed articulatory/acoustic relations. A Monte Carlo test provides appropriate false-positive 

control by directly estimating the distribution of expected R2 values under the null-hypothesis. 

1000 simulated datasets representing the null-hypothesis were constructed. In each of them a 

simulated target variable was defined by adding Gaussian noise to a tract variable. The amount of 

noise in the simulated target variable was fixed such that the transducer positions / simulated 

target variable mapping would have the same association strength as the measured transducer 

positions / F3 mapping. For each of these datasets we estimated the relation between articulatory 

variability and the effect on the simulated target variable, and constructed the distribution of 

expected R2 values under the null hypothesis. The results show that while the average relation 

strength expected under the null hypothesis was relatively large (R2=.29), the probability of 

obtaining a value as high as the experimentally observed articulatory/acoustic relation (R2=.46) 
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was significantly low (p=4*10-3). These results indicate that the observed relation is statistically 

significant beyond possible artifactual causes. 

To explore the consistency of the observed articulatory/acoustic relation across subjects, we 

divided each subject’s articulatory dimensions into two equal-size sets: one with the one half of 

the articulatory dimensions that were associated with lower rates of F3 change (labeled “Small 

effect on F3 components”), and the other with those articulatory dimensions associated with 

higher rates of F3 change (labeled “Large effect on F3 components”). The small effect on F3 

components were shown to consistently (for all subjects) explain a markedly larger percentage of 

the total articulatory variability (ranging from 84% to 98%, average 93%) than the large effect on 

F3 components (2% to 16%, average 7%). These results are shown in Figure 1.4 bottom left. 

Despite the relatively low number of components (12) available for each subject, a Monte Carlo 

test (random set definition on the estimated variance components) shows these results to be 

significant (p<.05) for 6 out of 7 subjects (all but Subject 7, for which p=.08). Overall, these 

results indicate that the articulatory variability for each subject shows a strong deviation towards 

those articulatory dimensions that have a small effect on F3.  

To explore the possibility that predictive relations using tract variables (those shown in Figure 

1.3 right) failed to become apparent because each subject might use a different articulatory 

strategy (subject-dependent tract variables) we repeated the across-subject analyses explained 

above using the tract variables (as opposed to the effect on F3) to create the different large-effect 

vs. small-effect sets of articulatory components for each subject. We then selected for each 

subject the tract variable (among the six tongue tract variables) that related best to the articulatory 

variability. The percentage of articulatory variability explained by the small-effect articulatory 

components on each subject’s optimal tract variable ranged from 56% (Subject 4) to 91% 

(Subject 6), with an average of 67%. These results are still not as good (p=.02; Wilcoxon sign 
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rank test) as those obtained from an hypothesized acoustic target representation (small-effect 

components explaining between 84% to 98%, average 93%, of the articulatory variability). 

An important source of contextual variability in the current experimental setup is the phonetic 

context preceding the /r/ production. Articulatory target models often employ context-dependent 

articulatory targets (e.g., blended targets in the task-dynamic model of Saltzman and Munhall, 

1989). The following analyses address two questions regarding the influence of phonetic context: 

a) whether the observed articulatory/acoustic relations were the result of a common control 

mechanism or a context-dependent target definition; and b) whether predictive relations using 

tract variables would become apparent when context-dependent articulatory targets are employed. 

For these analyses we broke down the total articulatory variability into two components: intra- 

and inter-context variability. The inter-context articulatory variability is the variability related to 

the identity of the preceding phoneme. To compute inter-context variability, we first average the 

/r/ configurations within a given phonetic context, then compute the variability of these averaged 

configurations. The intra-context articulatory variability is the remaining portion of the 

articulatory variability, which reflects the range of /r/ configurations for different productions in 

the same leading phonetic context (i.e. the variability of /r/ configurations in an /ar/ context, 

averaged with the variability of /r/ configurations in a /dr/ context, etc.) If the observed 

articulatory/acoustic relations were the result of a context-dependent target definition, this 

relation would be apparent when looking at the inter-context variability, but not when looking at 

the intra-context variability. The results (see Figure 1.4 bottom right), on the other hand, show 

that the articulatory/acoustic relations appear for both the intra-context (R2=.46) as well as inter-

context (R2=.62) variability, pointing to the action of a common control mechanism across 

speakers and contexts, rather than a context-dependent target definition.  
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To explore the second question, i.e. whether predictive relations between tract variables and 

articulatory variability would become apparent when introducing appropriate contextual 

information, we repeated the previous context-dependent analyses using hypothesized tract 

variable instead of acoustic representations. The relations between effect on each of the tested 

tract variables and intra-context articulatory variability were weak (with R2 values always lower 

than .10). These results indicate that using context-dependent articulatory targets does not 

significantly improve the ability of tract variable target representations to explain the observed 

articulatory variability. For completeness the relation between the hypothesized tract variables 

and inter-context articulatory variability was computed and found to be similarly weak (R2<.02). 

Overall, the positive results in this section highlight a strong and consistent relationship 

between acoustic variables and articulatory variability. This result is schematized in Figure 1.5. 

This relationship is consistent with that expected from a control mechanism using an F3 target 

(i.e. the final articulatory variability is lower for those articulatory directions most relevant to 

determining the F3 value). Furthermore, this relationship appears both when looking at the total 

articulatory variability and when looking at the intra-context articulatory variability (the 

articulatory variability in each of the phonetic contexts tested). These results suggest that an 

acoustic target motor control mechanism utilizing the same acoustic target across contexts can 

account for the observed range of articulatory configurations during /r/ production. The next sub-

section further investigates this assertion with a specific model utilizing an acoustic target for /r/. 
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Figure 1.4. Experimentally measured articulatory/acoustic relations. Top: The extent of articulatory 

variability (in mm) vs. the effect on third formant frequency (F3, in Hertz) for all articulatory dimensions 

for all subjects (each dot represents an articulatory dimension - a direction of movement of the articulators - 

for a given subject). The thick line represents the inverse relation fit to data (y = 4.10 x -0.58). The data fit 

was performed on the class of functions of the form y = a * xb fitted in the log plane (explaining why the fit 

looks biased toward the lower values in this linear plot).  The  95% confidence intervals for the parameter 

values of this fit were a = [2.86, 5.90] ; b = [-0.72, -0.44]. The data fit shows a significant relationship 

between the tested variables  (F1,82 = 69.68 ; p=1*10-12). Black/gray points represent the articulatory 

dimensions that, for each subject, would be categorized as small/large effect on F3 components. The 
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inverse relation shown in this plot is identified as a predictive relation between acoustic stability and 

articulatory variability (i.e. the acoustic stability of a given articulatory dimension predicts the extent of 

articulatory variability each subject demonstrates along that articulatory dimension). Bottom left: 

Consistency of found articulatory/acoustic relations across subjects. The percentage of articulatory variance 

associated with large/small effect on F3 components is shown for each subject. Under the null hypothesis 

(articulatory variability not associated to the effect on F3) these percentages would be equal (50% each). 

Small/large-effect on F3 components are, from the 12 possible directions of articulatory variability 

measurable for each subject, the 6 directions that produce the least/most F3 change. A strong bias of the 

articulatory variability towards those articulatory dimensions that have a small effect on F3 is apparent in 

all the experimental subjects. Bottom right: Consistency of found articulatory/acoustic relations in terms 

of the intra- and inter- context articulatory variability. Context refers to the different leading phonetic 

contexts (/ar/ /dr/ /gr/ /vr/ /br/) in which the phoneme /r/ was produced. Intra-context articulatory variability 

is defined as that variability found in articulatory configurations when looking only at different productions 

in the same phonetic context. Inter-context variability is defined as the variability of the average 

articulatory configurations for each phonetic context. The plots show the observed relation between the 

effect on F3 and articulator variability acts similarly to reduce the acoustically relevant contextual 

articulatory variability (inter-context plot, R2=.62), as well as the remaining acoustically relevant 

articulatory variability for each individual phonetic context (intra-context plot, R2=.46). These data suggest 

that the observed articulatory/acoustic relations are the result of the action of a common motor control 

mechanism (one utilizing the same acoustic target for /r/ across phonetic contexts) rather than a context-

dependent target definition. 
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Figure 1.5. Diagram summarizing the main results in this section. The plot represents in a schematic way 

the range of articulatory configurations (dots in the plot) reached in the production of /r/ under different 

phonetic contexts (black boxes). The main results are: a) An acoustic variable (F3) is the best predictor 

among the phonemic target variables tested for the shape of the articulatory variability in the production of 

American English /r/. The articulatory variability is maximal along the directions of movement of the 

articulators associated with small F3 changes, and minimal along the directions of movement of the 

articulators associated with large F3 changes. b) The intra-context articulatory variability (the articulatory 

variability for each of the phonetic contexts) shows the same association with the effect of F3, indicating 

not the action of a context-dependent target definition, but possibly a common control mechanism utilizing 

an acoustic phonetic-target.  

 

B. Speaker-specific vocal tract models 

For the first two subjects participating in the previous analyses, we constructed from MRI and 

acoustic data a simple model characterizing the specificities of their vocal tracts and the range of 
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acoustic signals (limited to the first three formant values) that different configurations would 

produce.  
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Figure 1.6. Sample movements of speaker-specific vocal tract models for Subjects 1 and 2 to change F1 

(left), F2 (center), and F3 (right). For each subject, the deviations from a neutral articulatory configuration 

necessary to produce an individual change (increase/decrease) in each of the first three formants of the 

resulting auditory signal are shown (e.g., the first column represents the movements associated with 

changes in F1 while keeping F2 and F3 constant). The gray area represents the configuration that produces 

the highest formant value (for the corresponding formant) among the configurations represented. 
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A principal component analysis of the articulatory configurations led to a set of five meaningful 

articulatory components covering 75.4% and 83.7% of the total observed variability in shape for 

the two subjects, respectively. The jaw component primarily describes the aperture/closure of the 

mouth, along with the associated lip aperture/closure, and lowering/raising of the tongue body; 

the three tongue components describe approximately the raising/lowering of the apical and dorsal 

areas of the tongue and its front/back movement; the lip component describes the frontal 

extension (protrusion) of the lips (c.f. Maeda, 1990; see also the Discussion section). Components 

derived from other vocal tract segments (a velum component, describing the opening/closing of 

the nasal cavity; and a laryngeal component, describing the raising/lowering of the base of the 

laryngeal region), were estimated but not explicitly used in the simulations presented in this 

chapter (other than any of their movement that was associated with the jaw component). The 

articulatory to acoustic mapping was then estimated by a linear fit between the articulatory 

configurations (defined by the positions of each of these five components) and the corresponding 

acoustic output (defined by the first three formant values measured during the MRI scans). Figure 

1.6 illustrates movements of the resulting speaker-specific vocal tract models to achieve changes 

in F1, F2, and F3. Each column represents for each subject the movement of the articulators, 

starting from a rest (average) configuration, that would be associated with changes in an 

individual formant. The results are consistent with standard characterizations (Schroeder, 1967; 

Fant, 1980) of high/low tongue configurations associated with low/high values of F1, respectively 

(left column in Figure 1.6), and front/back tongue configurations associated with high/low values 

of F2, respectively (middle column in Figure 1.6). At the same time, the resulting vocal tract 

models accommodate the specificities of each subject. For example, Subject 2 tended to use lip 

protrusion more actively to lower F2 (see for example Perkell et al, 1993, 1995, where trading 

relations between lip protrusion and tongue-body raising, argued to stem from their motor 
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equivalence in the control of F2, were investigated in the context of /u/ production). With respect 

to the action on F3, Subject 1’s movement to increase F3 can be interpreted from an acoustic 

theory analysis as a decrease in the front cavity length together with an increase of the palatal 

constriction area, both acting to raise the third formant value, while Subject 2 appears to increase 

F3 primarily by decreasing the size of the front cavity. 

C. Simulations of /r/ production 

A simplified version of the DIVA model (Guenther et al., 1998) was used to control 

movements of the speaker-specific vocal tract models for Subjects 1 and 2 while performing /r/ 

productions in different phonetic contexts. An acoustic /r/ target was defined by its first three 

formants values ([593, 1238, 1709] Hz for Subject 1, and [376, 1476, 1990] Hz for Subject 2), 

and the simulations were run starting from articulatory configurations representative of the 

leading context phonemes (see Section II.C for details). In order to compare the model 

simulations to the EMMA data, approximate transducer locations were manually identified (see 

Methods section) on each subject-specific vocal tract model. Acoustic and articulator trajectories 

for the production of /r/ in the contexts /ar/, /dr/, and /gr/ were then obtained using the DIVA 

model. These contexts were chosen to represent the full range of articulations seen in the 

experimental data.  

Figure 1.7 compares the experimentally measured EMMA data (first row) to the simulation 

results (second row) for each subject, in terms of the direction of movement of the tongue 

transducers. The initial transducer positions in the simulations is fixed to that obtained from the 

EMMA data 75 ms before the F3 minimum (dashed lines). The results indicate that the direction 

of movement estimated using the DIVA model for the three leading phonetic contexts closely 

approximates the experimentally measured data for both subjects. The correlation between 

modeled and experimental change in transducer positions (tongue gestures) was r=+0.86 and 
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r=+0.93 for Subjects 1 and 2, respectively. Qualitatively, the model mimics the range of /r/ 

configurations used by each subject in the phonetic contexts tested (thick black lines in Figure 

1.7). 

 

 

Figure 1.7. Simulations of the DIVA model producing /r/ in different leading phonetic contexts. 

Top row shows the average lingual gestures used by each subject when producing /r/ in the contexts (from 

left to right) /ar/, /dr/, and /gr/ as measured using electromagnetic midsagittal articulometry (EMMA). 

Bottom row shows the simulation results using the DIVA model (with a subject-specific acoustically 

defined target for /r/) in conjunction with each subject-specific vocal tract model. Dashed lines represent 

the initial (75 ms before F3 minimum)  transducer positions, which are fixed to the experimentally 

observed values in the DIVA simulations. Solid lines represent the final transducer positions (at the F3 

minimum for /r/). The outline of the hard palate and velum is included for reference. The correlation 

between the modeled and experimental movement of the tongue (tongue gestures) was r=+0.86 and 

r=+0.93 for Subjects 1 and 2, respectively. 
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Next we investigated the ability of an acoustic target speech motor control scheme to predict 

the emergence of the articulatory/acoustic relationship observed in the experimental data. To that 

end, we analyzed the /r/ production simulation final articulatory configurations when using a wide 

range of leading phonetic contexts. All available configurations from the MRI data of each 

subject were used as starting articulatory positions and the DIVA model was run using the same 

acoustic /r/ targets as in the preceding simulations.  Analysis of the resulting articulatory 

variability led to the results shown in Figure 1.8. For each subject, the five articulatory 

dimensions show the expected predictive relations between acoustic stability and articulatory 

variability (Figure 1.8 left; cf. the experimental results in Figure 1.4 top). The relation between 

articulatory variability and effect on F3 predicted by the model is close to linear in the log 

variables (R2=.91), justifying the use of this family of curves when fitting the experimental data 

(see Figure 1.3). For the simulated data, the linear regression on log variables shows a significant 

relationship between the tested variables despite the limited data (F1,8 = 82.71 ; p=2*10-5). As an 

additional test, we analyzed the initial articulatory variability (the variability of the contextual 

articulatory configurations, prior to any movement of the articulators) and confirmed that the 

articulatory/acoustic relation was not present in the contextual configurations prior to the action 

of the speech controller (p>0.39). This indicates that the relationship resulted from the 

movements produced by the DIVA model. Furthermore, the simulation results mimic the 

expected relationship as derived theoretically from the DIVA control equations (dotted line in 

Figure 1.8 left; see Appendix for this derivation). The nature of the inverse relation predicted by 

the model (y ∝ x-0.78) was slightly steeper than the one observed in the EMMA data (y ∝ x-0.58) but 

the confidence intervals for the two curve parameters overlap ([-0.98,-0.58] and [-0.72,-0.44], 

respectively). For completeness, Figure 1.8 (right) illustrates the consistency of 

articulatory/acoustic relations in the simulations across the two subjects (c.f. the experimental 



   

  

30

results in Figure 1.4 bottom left). Overall, these results indicate that an acoustic target controller, 

such as the one used in the present simulations, predicts the relationship between acoustic 

stability and articulatory variability observed in the experimental data. Furthermore, the DIVA 

model produces articulatory movements that closely mimic those of a particular speaker when 

controlling a speaker-specific vocal tract model. 
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Figure 1.8. Simulated articulatory/acoustic relations in /r/ production using the DIVA model 

(compare to experimental relations in Figure 1.4). Left: The extent of final articulatory variability vs. the 

effect on F3 for all articulatory dimensions of both subjects’ simulations. The solid curve represents the 

inverse relation fit to this data (y = 2.54 x -0.78 ; equivalent linear fit on the log variables, R2=.91). The 95% 

confidence intervals for the parameter values of the fit y = a x b  were a = [1.47, 4.38] ; b = [-0.98, -0.58]. 

The estimated fit shows a significant relation between the tested variables (F1,8 = 82.71 ; p=2*10-5). The 

dotted curve represents the expected predictive relation as theoretically derived from the DIVA model (see 

Appendix). Black/gray points represent the articulatory dimensions that would be categorized as 

small/large effect on F3 components, respectively.  These results indicate that the control scheme proposed 

by the DIVA model predicts the emergence of articulatory/acoustic relations similar to those observed in 

the experimental data (see Figure 1.4 top). Right:  Consistency of simulated articulatory/acoustic relations 

across subjects. The percentage of articulatory variance in the simulated /r/ productions associated with 

large/small effect on F3 components is shown for each subject. As in the experimental data (see Figure 1.4 

bottom left), a strong bias of the articulatory variability toward those articulatory dimensions that have a 

small effect on F3 is apparent in both subjects’ simulations. 
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IV. DISCUSSION 

A. On coordinate frames and articulatory dimensions 

In target-based speech motor control models, the question of what coordinate frame is used by 

each model is usually identified with the proposed target representation. The task-dynamic model 

of Saltzman and Munhall (1989) exemplifies a type of computational model that uses a vocal 

tract shape coordinate frame (vocal tract targets defined by tract variables). The DIVA model 

(Guenther et al, 1998) exemplifies a computational model that uses an acoustic coordinate frame 

(targets defined by acoustic variables). While there are many different coordinate frames one 

could use to represent the articulatory state, a major question for speech production modelers is 

what coordinate frame(s) provides a simpler or more parsimonious characterization of behavioral 

data. In the same way as physical laws can be more readily unveiled when using an appropriate 

coordinate frame (e.g. planet orbits from an earth-centered vs. a sun-centered coordinate frame), 

for speech production the use of an appropriate coordinate frame should allow the researcher to 

more clearly expose functional relations in the data. Finally, the ability of different coordinate 

frames to characterize the available motor speech production behavioral data could direct and 

facilitate the modeler’s enterprise in proposing specific motor control strategies, and in particular 

it directly relates to the question of appropriate target definitions in target-based motor control 

schemes. 

The behavioral data dealt with in this study is the articulatory variability present in American 

English /r/ production. Since articulatory variability is a local property (it characterizes the local 

departures in articulatory configurations from an average configuration) a linear approximation to 

the articulatory space geometry is appropriate. The issue of coordinate frames, under a linear 

approximation, becomes the simpler issue of characterization of vector spaces. Under this 

framework the articulatory space is a multi-dimensional vector space, and its characterization 
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reduces to the definition of an appropriate base (a set of independent articulatory dimensions, 

each describing a direction – or vector - in the articulatory space). Different bases would in this 

way characterize different coordinate frames for the description of the articulatory state. Each of 

the columns in Figure 1.6, for example, describes a different articulatory dimension (i.e. a 

direction of movement, or vector, in the articulatory space). The three articulatory dimensions in 

this figure characterize an acoustic coordinate frame (one based on three formant descriptors).  

B. Predictive relations between acoustic stability and articulatory variability 

A purely empirical approach to describing appropriate coordinate frames for the 

characterization of articulatory variability in /r/ production could be potentially given by a 

principal component analysis of the articulatory covariance. This analysis provides the set of 

independent articulatory dimensions that best (most simply) characterize the observed articulatory 

variability. Conceptually, these correspond to the articulatory dimensions that offer an optimal 

separability of the articulatory variability associated with each dimension. In a two-dimensional 

case, for example, the resulting two articulatory dimensions would correspond to those 

dimensions associated with the largest and smallest variability, respectively. A purely empirical 

approach like this, nevertheless, has potentially limited generalizability; i.e. since articulatory 

variability is a local property, the characterization resulting from the analysis of /r/ production 

might not be appropriate for other production examples. Furthermore, the researcher is left to 

interpret the resulting articulatory dimensions in terms of his/her theoretical constructs.  

In this work we opted for a mixed empirical/theoretical characterization of the observed 

articulatory variability. In this way, we tested the ability of theoretically motivated articulatory 

dimensions to offer good separability of the observed variability in articulatory configurations. 

We feel that this approach has a better chance to generalize to other cases of speech production 

data, and that it offers a more useful source of information for the development of motor control 
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models of speech production. From this perspective, the relevance of the results presented in 

Figure 1.4 bottom-left is that they show how an articulatory dimension defined by an acoustic 

property (F3, a salient acoustic cue for /r/ perception), offers a good separability of the observed 

articulatory variability in /r/ production for all subjects tested. In particular, an average of 93% of 

the articulatory variability concentrates along articulatory dimensions that have a relatively small 

effect on the third formant (F3) value, while only 7% concentrates along articulatory dimensions 

which have a relatively large impact on F3. This result indicates that an acoustically-defined 

articulatory dimension would be a good candidate to enter an appropriate coordinate frame 

characterization of the presented speech production behavioral data. In the same way, these 

results suggest that motor control models utilizing an acoustic target representation can 

potentially provide a more parsimonious characterization of these behavioral data than models 

utilizing a different phonetic-target coordinate frame. Furthermore, following the original 

motivation for searching appropriate coordinate frame characterizations, we showed (Figure 1.3, 

and Figure 1.4 top) that using an acoustically defined coordinate frame can also be useful for 

unveiling functional relations in the behavioral data. In particular, we showed that the degree of 

articulatory variability associated with any particular articulatory dimension is related to the 

associated extent of change in F3 by a linear relationship in the log variables (R2=.46; p=1*10-12). 

This relationship is conceptualized as a predictive relation between acoustic stability and 

articulatory variability. The form of this relationship is again consistent with that expected from a 

control mechanism using an F3 target; i.e. the final articulatory variability is lower for those 

articulatory dimensions most relevant to determining the F3 value. We believe the ability of 

different speech motor control models to mimic the measured relationship between acoustic 

stability and articulatory variability could be a useful reference in creating and improving motor 

control models of speech production. In particular, this chapter argues that an acoustic target 
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model of speech production can account for the emergence of these articulatory/acoustic relations 

and the specificities of the measured articulatory variability.  

An important issue regarding the observed articulatory/acoustic relations examines the extent 

to which they favor acoustic target motor control models in contrast to vocal tract target models. 

Several results of the present study build a very strong case for the acoustic target hypothesis. 

First, the results in Figure 1.3 indicate that while the tested acoustic variable (F3) shows a 

significant relation with the extent of articulatory variability, making it a potential candidate for a 

useful articulatory coordinate frame definition, the hypothesized vocal tract-variables fail to show 

such a relation. This negative result addresses what can also be observed from the temporal 

progression of tongue shapes. Figure 1.7-top shows the average tongue shapes adopted by 

Subjects 1 and 2 in different phonetic contexts. From the inspection of this data it seems, for 

example, that the movements of the tongue tip in different phonetic contexts for each subject do 

not seem to be aimed at any specific target configuration (see also Guenther et al., 1999). 

Observations such as this one are reflected in the negative results in Figure 1.3 regarding the tract 

variables tongue tip constriction degree and tongue tip constriction location. Another piece of 

comparative evidence between acoustic and vocal-tract target hypotheses addresses the possibility 

of context-dependent effects (context here refers to the phoneme preceding /r/). The results at the 

bottom right of Figure 1.4 indicate that the observed articulatory/acoustic relations do not solely 

stem from the context-dependent articulatory variability, and can be equally observed when 

focusing on the intra-context articulatory variability (i.e. the articulatory variability resulting from 

/r/ production in each specific phonetic context). This result again points towards hypotheses that 

posit the observed trading relations as resulting from the motor control strategy (such as the 

acoustic target hypothesis), rather than explanations that rely on context-dependent targets (such 

as the possibility of different articulatory targets for /r/). Last, the possibility of context-dependent 
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articulatory targets was also directly addressed by trying to show predictive relations between 

tract variables and intra-context articulatory variability. Our failure to observe such relations 

indicates that using context-dependent articulatory targets does not seem to significantly improve 

the predictive ability of hypothesized tract variables on the observed articulatory variability. 

Regarding the possibility of subject-dependent tract variable definitions (e.g. one subject might 

use a tongue tip constriction target, while another might use a tongue-dorsum constriction target) 

our analyses do not support this possibility. No pattern of consistently used tract variables 

emerges, and when an optimally defined tract variable is used for each subject, the average 

separability of the articulatory variability is still only 67% (compared to 93% of the acoustic 

hypothesis). 

Overall, the results indicate that an acoustic frame of reference provides a more parsimonious 

characterization of the observed articulatory variability than an articulatory frame of reference 

(one defined by vocal tract constriction variables). One might argue that, given the linear nature 

of our analyses, articulatory targets defined as linear combinations of tract variables are 

completely equivalent to acoustic targets. From this perspective the results simply indicate that, if 

articulatory targets are being used, they are probably not defined by simple vocal tract 

constriction targets but could possibly be defined by non-trivial linear combinations of these 

variables. Even more specifically, they could be parsimoniously defined by those linear 

combinations that best relate to the effect on relevant acoustic cues, as exemplified by F3 in the 

current /r/ production data. Such targets would be in this case more simply characterized as 

acoustic. 
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C. Speaker-specific vocal tract models 

The simulation results shown in this chapter also indicate that it is possible to construct simple 

speaker-specific vocal tract models approximating the specificities of each subject’s speech 

production apparatus from a limited amount of MRI and acoustic data. To construct a parametric 

description of articulatory movements, most previous approaches (Perrier et al., 1992; Story et al., 

1996, 1998) create a grid in the midsagittal plane and obtain the vocal tract area function from the 

intersection of this grid with the vocal tract cavity. Area functions are estimated from MRI data in 

order to approximate the vocal-tract articulatory/acoustic mapping (e.g. Maeda, 1990, using an 

elliptical approximation to the area functions; or Tiede and Yehia, 1996, using 3-D volumetric 

MRI representations of the vocal tract). Compared to these approaches, the proposed vocal tract 

model estimation requires a relatively small amount of MRI and acoustic data for each subject 

and does not require an appropriate estimation of the area functions (which poses technical 

difficulties, e.g. the teeth not being portrayed in MR images). The resulting speaker-specific vocal 

tract models presented in this chapter are in agreement with standard characterizations of 

articulatory to acoustic relations (such as the differences between high and low, front and back, 

tongue configurations predicted from perturbation theory, Schroeder, 1967; Fant, 1980) while 

accommodating the specificities of each subject’s vocal tract and their effective articulatory 

degrees of freedom. The use of subject-specific vocal tract models, in conjunction with a speaker-

independent motor control strategy, is a promising approach to fit the specificities of different 

subjects’ speech movements. 

The vocal tract models presented in this study use a restricted set of five articulatory degrees 

of freedom or dimensions: three for the tongue, and one each for the jaw and lips. The appropriate 

dimensionality of the articulatory space, or the functionally relevant subspace, is not yet 

ubiquitously agreed upon. Maeda’s (1990) articulatory model proposes a seven-dimensional 
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articulatory space covering jaw, tongue, lips, and velum variability. In contrast, the Payan and 

Perrier (1997) biomechanical tongue model uses a set of seven muscle-related descriptors solely 

for the tongue articulatory space. The Rubin et al. (1981) articulatory synthesizer uses a ten-

dimensional articulatory space covering jaw, tongue, lips, velum, and glottal variability, 

controlled by a nine-dimensional vocal tract space. The choice for the dimensionality of the 

speaker-specific vocal tract models presented in this chapter mainly reflects our interest in 

creating a simple speaker-specific vocal tract model using a limited amount of MRI data. Several 

factors limit the minimal amount of MRI and acoustic data necessary for the presented vocal tract 

models. Among the available MRI data, the subset corresponding to vowel and semivowel 

productions imposes the first limiting factor. These data are the ones being used in the linear 

articulatory to acoustic mapping, since they provide the clearest formant frequencies and are the 

ones where the linearity approximation is more justified. The number of vowel and semivowel 

production samples should at least exceed the number of articulatory degrees of freedom to 

provide a valid estimation. Given the high degree of linearity of the mapping between articulatory 

and acoustic descriptors present in this data, a number of vowel and semivowel samples just 

exceeding this minimum value seems to be sufficient (we used 9 and 6 configurations for 

Subjects 1 and 2, respectively). The total number of MRI articulatory configuration samples is the 

second limiting factor. These data are the ones being used for the principal component estimation 

of the articulatory degrees of freedom. A rule of thumb in principal component analysis is to use 

as many data samples as five times the number of simultaneous degrees of freedom to be 

extracted. In our study the tongue shape, with three degrees of freedom, provided the largest of 

the simultaneous degrees of freedom to be extracted (suggesting at least 15 vocal tract samples). 

For this estimation we used a set of 27 and 15 samples for Subjects 1 and 2 respectively. More 

complex models derived from larger datasets will arguably better describe each subject’s 
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effective articulatory degrees of freedom. Nevertheless, the presented models with five 

articulatory components account for a relatively large proportion of the articulatory 

configurations for each subject (75.4% and 83.7% of the variability in vocal tract configurations 

respectively). Furthermore, the estimated articulatory to acoustic mappings’ agreement with 

standard conceptualizations of the articulatory to acoustic relationship reinforce our belief in the 

appropriateness of the resulting speaker-specific vocal tract models.  

D. Acoustic target model predictions and simulations 

Speech motor control models based on acoustic targets posit that the target for production of a 

phoneme is defined in terms of its acoustic properties, rather than as a specific vocal tract 

configuration. In this way the variability in articulator configurations in the production of a given 

phoneme would reflect the one-to-many relation between the acoustically defined target and the 

articulatory space (i.e. the range of articulator configurations that are able to produce sounds with 

equivalent acoustic properties). The DIVA model is an example of such a model. The simulations 

presented in this chapter use this model in conjunction with appropriate speaker-specific vocal 

tract models to replicate two of the subjects’ articulatory data. The simulation results of /r/ 

production in different leading phonetic contexts (Figure 1.7 bottom) mimicked the range of 

articulatory gestures used by the two subjects being modeled (Figure 1.7 top). The correlation 

between the experimental and modeled tongue gestures was r=+0.86 and r=+0.93 for Subjects 1 

and 2 respectively. Furthermore, the simulated articulatory configurations reached by the DIVA 

model showed similar articulatory/acoustic relations (Figure 1.8) as those found in the 

experimental data (Figure 1.4). In effect, the articulatory variability in the simulations along each 

articulatory dimension was inversely related to its associated effect on F3.  

The ability of the DIVA model simulations to fit the specificities of each subject’s lingual 

gestures for the characteristic phonetic contexts tested emphasizes the idea that a relatively wide 
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range of the articulatory variability in /r/ production can be explained by a simple speech motor 

control scheme using acoustic targets (without the need to appeal to possible multiple articulatory 

targets). In Figure 1.7-top, for example, the tongue tip for each of the subjects moves in different 

directions for each context, and these directions do not seem to aim at any common lingual 

configuration. Interestingly, this can be modeled simply as a movement in the articulatory 

direction that in each case brings the acoustic output closest to a fixed acoustic target. Similarly, 

as shown by the simulations, the same acoustic target model parsimoniously explains the 

emergence of predictive relations between acoustic stability and articulatory variability. The 

expected articulatory/acoustic relation theoretically derived from this model is exemplified in 

Figure 1.8 left (dotted line).  

E. Limitations 

There are several limitations of this study. First, the study is restricted to the analysis of 

American English /r/ production. The results presented could only be generalized if the motor 

control strategy used in speech production, which predicts the emergence of the observed 

articulatory/acoustic relations, is common across different phonemic targets. Evidence of 

articulatory trading relations argued to limit acoustic variability in the production of /u/ (Perkell et 

al. 1993) suggests another case where acoustic variables could potentially predict the extent of 

articulatory variability. It is thus likely that the descriptive ability of the acoustic-target 

hypothesis generalizes to other vowel and semivowel cases. Whether articulatory- or mixed 

articulatory/acoustic variables are more instrumental in the description of consonant productions 

is an issue that could potentially be addressed following a methodology similar to the one 

presented in this chapter. Our expectation would be that the exact nature of the phonemic targets 

(auditory and/or somatosensory) is learned, and it would depend on the amount of language- and 

subject- specific allowed variability in these two spaces for that phoneme. Second, the presented 
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articulatory/acoustic relation analyses are restricted to changes in F3. While this is an important 

acoustic cue for /r/ production, it is most probably not the only one. A more complex study 

showing the form of these relations when multiple acoustic cues are considered could potentially 

deepen our knowledge on the motor control strategies in speech production. In relation to this 

issue the simulations presented in this chapter use the first three formants as a descriptor of the 

acoustic /r/ target. The presence of a predictive relationship between F3 stability and articulatory 

variability in the simulations shows that for these relations to emerge it is not necessary for the 

targeted variable to be the sole descriptor of the target coordinate frame. Third, regarding the 

speaker-specific vocal tract models, the presented methodology is limited by the linear nature of 

the analyses involved. The relation between articulatory configurations and the acoustic output is 

complex. Nevertheless this relation seems to be well approximated by a linear relation between 

articulatory and formant descriptors if relatively open configurations (such as vowels and 

semivowels) are considered. In this way, the validation presented in the Methods section indicates 

that the appropriateness of the linear model extends for a relatively large proportion of the 

articulator space (as indicated by the good linear fits between articulatory and acoustic formant 

descriptors estimated using Maeda’s realistic tube model). The proposed speaker-specific vocal 

tract models represent a simple first order approximation to the complexities of the vocal tract 

apparatus and the corresponding acoustic output. This approximation is especially valid for 

vowels and semivowels. For the production of consonants different strategies should be 

investigated. Finally, regarding the DIVA simulations, the small number of subjects modeled 

limits our faculty to generalize the model’s ability to fit the specificities of each subject’s 

articulatory configurations in different phonetic contexts. Our expectation would be that the inter-

subject variability, assuming a speaker-independent motor control strategy, is mainly affected by 

differences in the subjects’ vocal tract morphology, and hence could be accounted for by using 
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appropriate speaker-specific vocal tract models such as the one presented in this chapter. Future 

studies using speaker-specific vocal tract models could in this way help better understand the 

sources of inter-subject variability.  
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V. SUMMARY 

The analysis of articulatory movement data on seven subjects during the production of 

American English /r/ in different phonetic contexts shows a functional relationship between 

acoustic stability and articulatory variability. This relation indicates that the extent of articulatory 

variability along any given articulatory dimension is well predicted by the effect that the 

articulatory dimension has on a relevant acoustic cue (F3): most of the articulatory variability 

present in the production of American English /r/ is concentrated along articulatory dimensions 

that produce minimal change in F3. Both the presence and direction of the observed relationship 

are consistent with speech motor control mechanisms utilizing an acoustic (F3) target 

representation. In contrast, no relationship was found between hypothesized vocal tract target 

representations and articulatory variability. The combined results indicate that if phonemic targets 

are being used, they do not seem to be simply defined by constriction variables, but as non-trivial 

linear combinations of them. Such variables are more parsimoniously defined in terms of an 

acoustic frame of reference. 

The second part of this chapter investigated the ability of auditory or acoustic target models to 

explain the specificities of the range of articulatory gestures observed in the production of 

American English /r/. Speaker-specific models capturing the shapes of two subjects’ vocal tracts 

were constructed from a combination of MRI and acoustic data. Simulations of the DIVA model 

(an example of an acoustic target motor control scheme) controlling each speaker-specific vocal 

tract model produced articulatory movements that closely mimic those of the speaker. 

Furthermore, the articulatory configurations realized by this model exhibit similar 

articulatory/acoustic relations as those observed in the experimental data. The results demonstrate 

the ability of motor control speech production models utilizing acoustic target representations to 
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mimic central aspects of the experimental articulatory data on a particular example of speech 

production. 
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CHAPTER 2. SPECTRAL ACOUSTIC TARGETS. REPRESENTATION OF 

ACOUSTIC EVENTS FOR SPEECH PRODUCTION. 

 

 

I. INTRODUCTION 

Chapter 1 introduced the notion of acoustic targets, and presented experimental evidence of the 

use of acoustic representations in speech motor control. In particular an acoustic representation 

based on formant descriptors in the context of the DIVA model was able to account for the 

experimental observations in a parsimonious manner. Nevertheless, a major pitfall of this work 

was that it was inherently limited to the case of vowels and semivowels, largely due to the 

inability of a formant representation to characterize the acoustic events occurring in many 

consonant productions. Furthermore, the extraction of formant descriptors is not robust to the 

presence of noise, and no parallel of a formant representation of the speech signal has been shown 

to occur in the brain areas involved in speech perception. All this leads to the current object of 

attention in this chapter, which is a modeling effort in the acoustic representation of speech that 

surpasses the limitations of the formant descriptors while inheriting some of its simplicity in the 

control of speech production.  

 

Acoustic representations of the speech signal have been traditionally tackled from a speech 

perception perspective. This means that representations are judged on their ability to facilitate 

robust recognition of speech utterances. A main representative of this approach is cepstral 

coefficients (the Fourier coefficients of the log of the signal spectrum –the signal energy at 

different frequency bands), which have been shown to offer a useful representation in numerous 
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speech recognition applications. Those approaches starting from a speech production perspective 

have usually been limited to the analysis of the physical speech production apparatus. The main 

representative of this approach would be the LPC coefficients, which directly relate to an 

approximation of the vocal tract by a non-uniform tube model. The work presented in this chapter 

attempts to define an acoustic representation for neural models of speech production. This means 

that the focus will be on obtaining an acoustic representation that: 1) relates simply to the 

movement of the articulators; and 2) can be implemented by simple computations of modeled 

neurons in primary auditory cortex. Together with this we are interested in showing how the basic 

computations needed to control the speech production apparatus can be performed using acoustic 

targets based on the proposed acoustic representation.  

 

We use the speech production framework of the DIVA model (Guenther 1998). Under this 

framework the speech articulators are controlled using a combination of feedforward and 

feedback commands. A feedforward motor command for each auditory target is learned from 

experience. During learning as well as during non-standard conditions (e.g. perturbation, bite-

block, etc.) there will be a discrepancy between the desired acoustic target and the produced 

sound, and/or between the somatosensory expectations and the propiosensory information. A 

feedback command projects these error sources into an appropriate corrective motor command 

acting to reduce this discrepancy. This feedback loop implements an inverse control strategy for 

speech production. In this chapter we will focus on the auditory portion of this inverse control 

strategy. We will show how this control strategy can be implemented using spectral acoustic 

targets, and outline what are the necessary modifications to the present DIVA model in order to 

use spectral target definitions. 
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This chapter is organized as follows: Sections I and II sets the mathematical framework for the 

inverse control problem on spectral targets. Section I will analyze the articulatory-acoustic 

relationship and will propose a mathematical approximation relating the movement of the speech 

articulators to the associated changes in the sound. Section II, building on the previous model, 

will propose a novel measure of “acoustic difference” for comparing one sound to another; this 

measure is designed to be applied in the inverse control of the speech articulators. Section III, 

then, will take these mathematical models into the context of the representation of speech sounds 

in auditory cortex, and the DIVA model. Finally, examples of motor control using the proposed 

representations will be presented in Section IV.  

 

A. The vocal tract 

The vocal tract is the physical apparatus used to produce speech sounds. Figure 2.1 shows a 

simple schematic. Air originating from the lungs passes through the vocal folds and enters the 

vocal cavity. Depending on the state of the vocal fold muscles, the air may be forced to vibrate 

(for voiced sounds) or not (unvoiced sounds). The shape of the vocal cavity is largely affected by 

the configuration of the tongue, jaw, and lips. By changing its shape, speakers can produce a 

variety of sounds. Maeda (1990) derives a descriptor of the vocal tract shape based on seven 

parameters or dimensions: one parameter controlling the jaw aperture; two for the lips, 

controlling lip aperture and protrusion; three parameters affecting the tongue shape; and one 

controlling the larynx height. Three additional parameters define the source characteristics (the 

characteristics of the sound as it leaves the glottis). These parameters are defined as glottal 

pressure, glottal opening, and fundamental frequency, and together with the vocal tract shape 

descriptors can be used to estimate the characteristics of the produced sound for an arbitrary vocal 

tract configuration. We will denote this descriptor by a ten-dimensional vector m, which 
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characterizes both the vocal tract shape and source articulators. The elements of the vector m are 

defined to range between 0 and 1. The vocal tract then acts as a function x=f(m) transforming an 

arbitrary articulatory descriptor m into a sound, which we will denote by the yet unspecified 

vector x. The articulatory synthesizer of Maeda (1990) offers an approximation to this 

transformation for an average speaker. In contrast to other possible representations of the vocal 

tract state (for example the area function, which describes the area of the vocal tract cavity from 

the glottis to the lips) the descriptor m varies continuously and linearly with the movement of the 

vocal tract articulators. As discussed in Chapter 1 these are desirable properties for modeling 

control strategies of the speech articulators. 

 

 

Figure 2.1 Vocal tract schematic. Air flows through the vocal cavity which is shaped by a number of 

articulators determining the produced sound characteristics. 
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B. Spectral shape 

Sound consists of small fluctuations in air pressure. Often it is useful to imagine these 

fluctuations as a superposition of simpler waves oscillating at different frequencies. The sound 

spectrum represents the amount of air pressure energy at every possible frequency2. While human 

ears are sensitive to frequencies ranging from 20Hz to 20KHz, frequencies above 4 KHz are 

found to be less relevant to the intelligibility of vowels. Sounds are often highly non-stationary, 

and the spectrum of a complex sound such as speech is rapidly changing. Useful dynamic spectral 

measures for speech are usually obtained using short time-windows of approximately 40ms of 

length. In the human ear, oscillations in sound pressure are transmitted through the outer and 

middle ear to the cochlea. The cochlea consists of a tube about 3.5cm long curved into a spiral 

shape. Inside this tube, along the organ of Corti, lie thousands of hair cells. Each of these cells 

responds to the energy of the sound at a specific frequency (or limited ranges of nearby 

frequencies). Depending on their position along the cochlea, cells will respond to the low 

frequency (near the apex) or high frequency (near the base) components of the sound. This 

transition in sensitivity from low to high frequencies as we move along the cochlear tube is found 

to be roughly logarithmic. This is analogous to a roughly logarithmic scaling in human behavioral 

sensitivity to differences in perceived pitch of pure tones (mel scale; Stevens and Volkmann, 

1940), and critical bands (Bark scale; Zwicker et al, 1957; Greenwood, 1961a, 1961b). We will 

denote by the vector x the log-spectrum of an arbitrary sound estimated at a discrete number of 

mel-spaced frequencies in a manner mimicking the cochlear cells’ sensitivity. We will use this 

                                                 
2  The spectrum is mathematically defined as the absolute value of the Fourier transform of the sound 
pressure wave form. For speech sounds, a closely related measure, the log-spectrum (i.e. the log of the 
spectrum), is preferred. The popularity of the log-spectrum over the simple spectrum results from the 
possibility of representing the spectrum as a linear mixture of different sources (corresponding to the glottal 
pulse, vocal tract transfer function, mouth radiation, transmission line distortion, etc.). In this chapter we 
will use the latter measure (log-spectrum) as a spectral characterization of speech sounds.  
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vector x as a sound descriptor, and also loosely as the modeled cochlear output3. We will use the 

notation x(t) when we want to emphasize the time-varying nature of the spectrum. Figure 2.2 

exemplifies the modeled cochlear output x(t) following a sample speech utterance.  

 

 

Figure 2.2 Modeled cochlear output x(t) following the production of the speech utterance /baba/. The 

cochlear output is modeled as the sound spectrum on a non-linear (mel space) frequency scale.  

There are some aspects of the spectrum of speech sounds that can be characterized 

simply. One is its variation with sound amplitude (which is strongly related to the perceived 

intensity of the sound). The mean value of the spectrum (the average of the energy at all the 

frequencies) covaries with the scaling of the sound amplitude. The second aspect is its variation 

with respect to voicing characteristics (e.g. those distinguishing speaker identity) as well as 

common filtering resulting from the environment. These can be approximated as linear 
                                                 
3  The details of our implementations are as follows: Sounds are sampled at 22050Hz and pre-emphasized 
using a 1st order filter with parameter a1=-.95. The log absolute value of the short time-fourier transform of 
2048 zero-padded samples is computed over windows of 40ms (using a hamming window), with 35ms 
overlap, and smoothed by low-pass filtering to the first 128 cepstral coefficients. The results are then re-
sampled to 80 equally spaced points in a mel-scale between 0 and 4 KHz, and rectified (negative values are 
set to zero).  



   

  

51

contributions to the sound spectrum, and are usually discarded or minimized in speech 

recognition algorithms using a simple linear projection. The remaining aspects of the spectrum of 

speech sounds are those actually most useful for the intelligibility of speech, and are the ones 

controlled by the vocal tract configuration. We will now turn to these aspects. In our formalism, 

we are interested in analyzing the variations of the sound spectrum x as we modify the 

articulatory configuration m. 

 
C. Articulatory-acoustic mapping 

There is a relatively simple, near linear relationship between the articulatory configurations of the 

vocal tract and the resulting formants of the produced sound, as described in Chapter 1. In this 

section we will attempt to parameterize the relation between the articulatory configurations m of 

the vocal tract and the spectrum x of the produced sound. Explicit vocal tract models (e.g. the 

Maeda synthesizer) provide an implementation of the articulatory-acoustic relationship but do not 

offer any insight into the nature of this relationship. The same can be said regarding artificial 

neural network approximations to this relationship (e.g. Blackburn 1996 used a multi-layer 

perceptron to approximate the relationship between vocal tract shape and log spectral sound 

descriptors in the context of a speech recognition system). In contrast with these approaches, this 

section will offer a mathematical parameterization of the articulatory-acoustic relationship. This 

mathematical description will be used in Section II to derive appropriate control strategies for the 

inverse control problem in speech. In particular, the results in this section will demonstrate two 

points: a) that the articulatory-acoustic relationship between articulatory configurations m of the 

vocal tract and the log-spectrum x is highly non-linear; and b) that this relationship can be 

efficiently approximated by a specific form of non-linearity in the context of multi-parametric 

groups. 
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We will start with an example of the cochlear output resulting from a linear movement of the 

articulators from one articulatory configuration m1 to a second configuration m2. In this case m 

takes the simple form: 

 

( ) ( ) 211 mmm ⋅+⋅−= λλλ          

Eq. 2. 1. 

 

where λ is an arbitrary parameter varying between zero and one representing the different stages 

in the transition from the first configuration m1 to the second m2
4. Using the articulatory 

synthesizer as an approximation of the transformation x=f(m) we can estimate the sound 

spectrum x(λ) associated with this articulatory movement. Figure 2.3 shows the spectrum of the 

produced sound.  

 

                                                 
4 While the parameter lambda can be interpreted in the context of the lambda model (Feldman 1966) the 
present work does not address or assume any specific strategy for the muscular level control of the 
articulators. Rather this parameter is herein simply used to represent an arbitrary motor control variable 
parameterizing a range of articulatory configurations. 
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Figure 2.3 Cochlear output x(λ) following a speech movement characterized by an articulatory trajectory 

m(λ) of the form shown in Eq. 2.1. Top: Three articulatory configurations along the articulatory trajectory 

m(λ), corresponding to the points λ=0, λ=1/2, and λ=1, respectively. Each plot represents the vocal cavity 

outline (lips facing left) at each articulatory configuration. Middle: Acoustic output x(λ) produced by the 

modeled vocal tract as the articulators move along the trajectory m(λ). Bottom: Acoustic output x(λ) at 

three representative points during the non-silent portion of the production. For the intermediate 

configuration the vocal tract acoustic output (thick line) is compared with the average of the acoustic output 

at the two more extreme configurations (thin line). This plot highlights the non-linear nature of the acoustic 

trajectory plotted above. 
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We will compare two alternative mathematical models approximating the signal x(λ). The first 

(Eq. 2.2a and Eq. 2.3a) is a linear approximation, and it represents the current form in the DIVA 

model in which the articulatory-acoustic mapping is locally approximated (as implemented using 

a hyperplane radial basis function –HRBF- network; see Guenther et al., 1998 for details). The 

second is the one proposed in this dissertation, and represents an exponential approximation of 

the form shown in Eq. 2.2b and Eq. 2.3b.  

 

Linear model  Exponential model  

( ) hxx ⋅+= λλ 1  Eq. 2.2a  ( ) 1xx H ⋅= ⋅λλ e  Eq. 2.2b 

hx =
λd
d  Eq. 2.3a  xHx ⋅=

λd
d  Eq. 2.3b 

 

The parameters h and H characterize in each model the direction of change in the spectrum x as 

the control parameter λ is modified, and they are expected to depend on both m1 and m2. These 

parameters take the form of a vector (h) and a matrix (H), respectively. In both cases these 

parameters can be estimated from Equation 2.3 using linear-regression techniques (see Appendix 

II.A for the description of a regression technique that allows the estimation of the parameter H in 

the exponential model from sample data x
λd
d

 and x). Both models provide a local 

approximation or fit to the changes in the sound spectrum x when varying the control parameter 

λ (Eq. 2.3). The total number of free parameters, or complexity, is larger for the exponential 

model than for the linear model5. In the linear model the parameter h is a vector with 80 elements 

                                                 
5 For a short introduction to matrix analysis concepts useful to understanding the mathematics of the 
exponential model see Appendix II.A. 
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(one for each frequency band). Its elements can be interpreted as rate of change of energy at each 

frequency band. For example, a positive value of 0.1 in the element hi means that the energy at 

the i-th frequency band is increasing during the modeled acoustic trajectory (at a rate of 0.1 dB 

s-1). In the exponential model the parameter H is a matrix with 80x80 elements (one for each 

frequency band pair). Its elements can be interpreted as modeling the energy transfer between 

pairs of energy bands. For example, a positive value of 0.1 in the element Hij means that the i-th 

frequency band is increasing its energy at a rate proportional to the energy at the j-th frequency 

band (at a rate of 10% s-1). Positive/negative values in the diagonal element Hii will be associated 

with exponential increases/decreases of the energy at the i-th frequency band. Positive and 

negative values along the off-diagonal element Hij will be associated with energy transfers 

between the i-th and j-th frequency bands. 

 

On a descriptive level, the changes in the spectrum seem to be well described as local frequency 

shifts. Those readers familiar with the mathematical description of frequency shifts will recognize 

that these are highly non-linear transformations, and probably will foresee severe limitations of 

the linear model to appropriately describe these changes. Also it is important to note that the 

space of sound spectra produced by the vocal tract is non-convex. This means that a linear 

interpolation between two valid spectra (those resulting from sound produced by the vocal tract) 

often results in a non-valid spectrum (one that cannot be produced by the vocal tract). This is 

suggested by the example shown in Figure 2.3 bottom. In these plots a linear interpolation 

between two valid spectra leads to an average spectra that not only considerably differs from a 

realistic intermediate spectrum, but it is also likely not achievable as the acoustic output at any 

articulatory configuration. Again, this non-convexity could pose serious limitations to the direct 

application of linear mapping techniques. The exponential model does not assume convexity or 
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linearly interpolable trajectories, but instead uses its increased complexity to approximate realistic 

interpolations from the observed acoustic trajectories. These observations predict a relatively 

poorer performance of the linear model. To validate them quantitatively and to learn to what 

extent the exponential model could outperform a linear model, we estimated for each model the 

extent of their local approximations (i.e. how local these local approximations are). We compared 

the two model fits (Equations 2.3a,b) based on their robustness to simultaneous equal 

perturbations of the original articulatory configurations m1 and m2. Note that if we equally 

perturb m1 and m2 the resulting articulatory trajectory will be nearby and parallel to the original 

m(λ). The direction of change of the articulators is unchanged by these perturbations, and at least 

for the extent of validity of these local approximations one would expect the direction of change 

of the spectrum to also remain roughly constant. The extent of articulatory perturbations for 

which the local approximations offered by each model remain at equivalent fit-levels was 

estimated. Figure 2.4 shows the sizes of these regions (in percentage of the total articulatory 

space), when varying the R2 fit-level threshold. The linear model drops below a R2>0.9 fit-level 

for articulatory perturbations larger than 0.00003% of the total articulatory space. The 

exponential model, at the same R2 fit-level, permits perturbations of as much as 13% of the 

articulatory space. As this plot exemplifies, the extent of validity of the local approximation 

provided by the exponential model is considerably larger than the one provided by the linear 

model.  

 

In order to emphasize the relevance of these results, they can be interpreted in terms of the 

number of local fits, or centroids in an RBF network, that would be necessary to implement an 

articulatory-acoustic mapping able to predict the direction of change of the spectrum x as we 

move the articulators in the fixed direction m2-m1. The number of centroids would be 3,286,965 
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and 8 for the linear and exponential model, respectively. This means that the additional 

complexity of the exponential model with respect to the linear model is well compensated by its 

associated increase in validity.6 Overall, the analyses shown in this section indicate that: 1) when 

considering a spectral representation of the acoustic signal, the articulatory-acoustic mapping is 

highly non-linear; and 2) this non-linearity can be well approximated by the proposed exponential 

model.  

 

The exponential model introduced in this section offers a modeling approximation to the 

relationship between articulatory parameters and the sound spectrum (or cochlear output). It 

acknowledges the strong non-linearities present in this relationship, and provides a simple way to 

model them. In the next section we will propose a strategy for the inverse control of the speech 

articulators. This strategy will be based on a simple gradient descent technique modified to better 

account for the characteristic non-linearity of the exponential model. 

 

                                                 
6  We repeated all these computations using different starting articulatory configurations m1 and m2, to 
make sure the results were not specific to the original random choice of these parameters. 
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Figure 2.4 Validity regions for the linear (dashed line) and exponential (solid line) models, locally 

approximating the articulatory-acoustic data x(λ) centered at the example shown in Figure 2.2. This plot 

represents the area (in terms of the percentage of the total articulatory space) covered by each local 

approximation at equivalent fit levels (R2). For example, the exponential model provides an R2>.9 fit to the 

modeled articulatory-acoustic data for a region extending to 13% of the articulatory space, while a linear 

model at the same R2>.9 fit-level would only extend to 0.00003% of the articulatory space. 
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II. CONTROL STRATEGIES 

A. Uni-parametric control 

We will start by assuming that we wish to control a single articulatory parameter λ whose effect 

on the spectrum x can be parameterized by Equation 2.3b, which we replicate here for 

convenience:  

 

xHx ⋅=
λd
d  

Eq. 2.3b 

 

Note that λ parameterized in the previous section an articulatory trajectory, and it was fixed in 

order to estimate the matrices H characterizing the acoustic consequences of this movement. In 

contrast, in this section we will do the opposite: we will use λ as a freely controllable articulatory 

parameter, and consider H given (its associated effect on the acoustics), in order to obtain 

appropriate control strategies on spectral targets. We will assume that the matrix H in Equation 

2.3b is anti-symmetric. This matrix is also real-valued, as the vectors x are also always real. The 

anti-symmetry assumption has the effect of stabilizing the associated transformation eH by 

making it norm-conserving (i.e. the norm of the vector eHλ x is the same as the norm of x, for any 

arbitrary λ). This normalization also represents our interest in the “shape” of x (the sound 

spectrum) independent of its norm (which is mainly influenced by the sound amplitude). For the 

analyses in this section we will assume that the vectors x representing the sound spectrum are 

normalized (of unit norm). In Section III we will re-introduce the sound amplitude into the 

control strategies. 
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Motivated by the discussion in Chapter I we will use a simple inverse-control strategy for 

controlling λ. This means that given a target spectrum xtarget we would like to control the 

parameter λ using an equation of the form: 

 

( ))(,)( target λλ xxGt
dt
d

=  

Eq. 2.4 

 

where G represents a function of the target (xtarget) and present (x(λ)) spectra, and can be 

identified with a corrective motor command. We wish to find a suitable function G that will make 

x(λ) tend towards xtarget (this is called a proportional control strategy). We will interpret this 

inverse control strategy in a discrete manner. Under the exponential model the set of possible 

acoustic states that we can reach starting from x(λ) and applying a discrete change G to the 

control parameter λ, forms a uni-parametric group of the form: 

 

( ) )(λλ xx H ⋅=+ ⋅GeG  

 

Ideally we would like to affect the articulator λ by a quantity G that would make x(λ+G) most 

similar to xtarget. That is, we want to perform an “inversion” of the previous equation. This in the 

linear case would be performed by a simple matrix inversion (or pseudo-inverse). In the case of 

the exponential model, we found the following function to provide a good approximation to this 

“inversion” problem (see Appendix II.B for details on this derivation): 
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( ) ( ) )()(, t
targettarget λδλ xHxxx ⋅⋅=G  

Eq. 2.5 

 

where the function δ(z) is defined from the derivative of the sinc function as: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

π
δ

j
z

dz
dz sinc)(  

Eq. 2.6 

 

Note that this definition is slightly different from what we would reach using a gradient-descent 

approach to the inverse-control problem using the exponential model approximation. In this case 

we would obtain a function G of the form: 

 

( ) )()(, t
targettarget λλ xHxxx ⋅⋅=G  

Eq. 2.7 

 

Given the non-linear nature of the exponential model, a gradient descent technique is more likely 

to be affected by local minima. We would then expect that the proposed function G based on the 

approximate inversion of the exponential model will behave similarly to the gradient-descent 

result for small differences between x(λ) and xtarget, but will offer better results for large 

differences between the present and target spectra. This is confirmed by the results shown in 

Figure 2.5. This figure shows the correlation between the function G(xtarget, x1) and the unknown 

parameter k, the ideal corrective command that would bring the present state towards the target. 

The spectra x1 and xtarget are related through the equation xtarget=eH k x1.  
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Figure 2.5 Comparison of the proposed control strategy (bottom) to a direct gradient descent technique 

(top). If the target xtarget and the present state x are related by an exponential model of the form xtarget = eHkx, 

an inverse control technique computes a corrective command G from x and xtarget that would bring the 

present state towards the target. Ideally the command G should approximate the value k. We defined 

randomly the values of the parameter k and estimated corrective commands using standard and modified 

gradient descent techniques (see text for details). The left plots show the relation between the parameter k 

and the estimated corrective commands (G). The modified gradient descent technique better approximates 

the ideal corrective commands as a function of the present and target states. In these simulations H is 

defined as that producing a spectral shift over all the frequencies of the spectrum (saturating at the 0 and 

4KHz). The matrix H is shown on the right top plot. The matrix δ(H) used in the modified gradient descent 

algorithm is shown in the right bottom plot. 
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The proposed function G (shown on the bottom of Figure 2.5, as “modified gradient technique”) 

offers an improved estimation of the unknown parameter k (R2=.97 vs. R2=.65), especially for 

large values of this parameter (corresponding to large differences between x1 and xtarget). In this 

example we have used a matrix H defining a global spectral shift over all the frequencies of the 

spectrum (saturating at 0 and 4 KHz). This matrix takes the form shown in Figure 2.5 top right. 

The vector x1 was defined by smoothing a random Gaussian vector, and the parameter k was 

defined to range from -1 to 1.  

 

Figure 2.6 shows four examples of the proposed inverse control strategy acting on a single 

articulatory parameter λ. For simplicity we assume this parameter to control a hypothetical 

articulatory dimension that produces the same global spectral shift in the sound spectrum as 

defined above. The plots in the top show two examples of inverse control. The spectral targets for 

these examples are defined as a random shift from the starting spectra. As these plots indicate, the 

proposed inverse control technique is able to smoothly reach the target spectrum (dashed lines in 

plots labeled as final state) from a relatively distant initial spectral configuration (plots labeled 

initial state). The plots in the bottom show two examples where the spectral target is defined 

randomly and lies outside the range of possible productions in our example (i.e. those sounds that 

can not be defined as simple spectral shifts from the original sound spectrum). These plots 

indicate that the proposed inverse control strategy performs robustly in these cases, converging, 

through pure spectral shifts, towards a state where the produced sound spectrum roughly 

approximates the desired target. 
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Figure 2.6 Four examples of inverse control on a single hypothetical articulatory parameter controlling a 

global frequency shift over the entire range of the measured acoustic spectrum (0 to 4KHz). Top: Inverse 

control on spectral targets that are possible to reach using the controllable articulatory parameter. Initial 

state plots show the sound spectrum at the initial configuration where the inverse control is started. Final 

state plots overlay the final state (solid line) with the target spectrum (dashed line) after 100 discrete 

iterations of the inverse control strategy. Images show the dynamic spectrum over the 100 iterations (axis 

labeled time) indicating a smooth convergence from the initial spectrum towards the target spectrum. When 

the spectral target lies within the range of possible productions, the proposed control strategy reaches a 

final state where the produced sound spectrum equals the desired spectral target. Bottom: Inverse control 

on spectral targets that cannot be reached using the controllable articulatory parameter. When the defined 

spectral targets are outside the range of possible productions, the inverse control strategy still converges 

towards a state where the produced sound spectrum (solid lines in final state plots) roughly approximates 

the spectral target (dashed lines in final state plots). 
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B. Multi-parametric control and the exponential difference measure 

In this section we will extend the notions introduced in the context of uni-parametric control 

(controlling a single articulatory parameter) to the case of multi-parametric control (controlling a 

number of possibly redundant articulators). The exponential model offers a uni-parametric 

approximation to the spectrum when moving the articulators in a given direction m2-m1. Its 

natural multi-parametric extension to arbitrary articulatory directions Λ would be: 

 

( ) 1
i

i

xΛx
H

⋅
∑

=
Λ⋅ i

e  

Eq. 2.8 

 

where the vector Λ now represents the direction and extent of movement of the articulatory 

configuration m, and x(Λ) (the set of possible spectral states that could be reached from the 

current spectral state x1) now defines a multi-parameter group. In this equation each element Λi 

(the elements of the vector Λ) represents the extent of movement along a given articulatory 

direction, and the corresponding matrices Hi characterize the spectral changes associated with 

each of these individual movements. For any arbitrary direction Λ this equation reduces to Eq. 

2.2b, where the corresponding matrix H would be defined as ∑ Λ⋅
i

i iH .  

 

A rigorous group-theoretically mathematical approach to this extended definition of the 

exponential model is beyond the scope of the current project. Selig (1996) offers an introduction 

to the use of multi-parametric groups in the context of robotics. It is interesting to note that the 

action of a multi-joint robotic arm can in fact be effectively characterized using equation 2.8 (for 

this case, the vector x would represent the spatial position of the arm end-effector, the elements Λi 
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represent the multiple joint angles, and the matrices Hi characterize the action of each joint). 

While these methods have proven successful in the characterization and solution of complex 

problems in robotics, in particular regarding robotic design and construction, the issue of inverse 

kinematics remains particularly challenging. Even for relatively reduced problems involving a 

few articulators (e.g. 6 joints of a robotic arm) and a few target dimensions (e.g. 3 spatial 

dimensions on a reaching task) it has not been possible to date to use these methods to derive a 

general solution to the inverse kinematics problem (Selig 1996). Furthermore note that, compared 

to this, the dimensionality of the speech control problem is an order of magnitude larger (10 and 

80 articulatory and target dimensions, respectively, in our implementation). In this way, while 

group theoretical approaches offer a promising research line, they offer to date no general 

solution applicable to the multi-parametric speech control problem at hand. 

 

The question of affine image registration, common in medical imaging applications among 

others, offers yet a different setting that can equally be characterized using Equation 2.8, and 

could potentially offer insight into possible solutions to the present problem. In fact rigid body 

transformations of an image follow equation 2.8, where now x is a vector representing the 

intensity of pixels in the image, the elements Λi represent the image translation and rotation 

parameters, and the matrices Hi characterize each of these individual actions. The affine image 

registration problem is, in this way, equivalent to the current inverse control problem (i.e. we 

wish to estimate the parameters Λi that would bring a present image closer to a second target 

image). A broad range of different methodologies has been proposed in the image registration 

literature to solve this problem. Brown (1992) offers a review of standard image registration 

techniques. One set of methods (feature- or label-based methods) involves the identification of a 

minimal subset of salient features existing in both the present and target images, which are then 
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coregistered using a least square regression or similar technique (e.g. Pelizzari et al. 1988) . In the 

current speech control context, these methods would resemble those involving formant extraction, 

as formants represent one of the most salient spectral features of speech sounds. Similarly as in 

the image coregistration problem, one drawback of formant-based methods are the limitations in 

our ability to uniquely define corresponding formants in both the present and the target sound, as 

the identity of each formant is not always obvious (e.g. formant crossings). A second set of 

common methods in the image registration literature (spatial- or pixel-based methods) attempt to 

minimize a global index of the difference between the two images. This minimization is usually 

performed using some variation of a gradient descent technique. For example, Woods et al. 

(1992) use an iterative Levenberg-Marquardt algorithm, a modification of the Gauss-Newton 

algorithm, on an intensity ratio measure of image discrepancy. Viola and Wells (1997) use a 

gradient descent on a mutual information measure of image discrepancy. The choice of 

discrepancy measure is usually problem-specific based on their sensitivity to expected sources of 

noise. The variations on the gradient descent algorithm usually offer increased robustness 

compared to a simpler gradient descent technique based on a least-square discrepancy measure. 

The reason is that the latter methodology tends to be affected by local minima, working best 

when the present and target images are relatively close to begin with. These examples are of 

closer relevance to the present problem of speech control. They suggest that a gradient descent 

technique could offer a viable solution for the present inverse control problem if appropriately 

modified to minimize the impact of local minima. In this section we will take this approach and 

directly extend the control equation 2.5, implementing a modified uni-variate gradient descent 

technique, to the multivariate case.  
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First, we will assume that we have a set of N anti-symmetric matrices Hi modeling the effect on 

the sound spectrum resulting from moving along N (possibly redundant) arbitrary directions in 

the articulatory space7. For any arbitrary sound spectra x1 and x2 we will define the combined 

measure x1Θx2 (which we will denote by exponential difference) as the N-dimensional vector 

with components determined by Equation 2.9a. 

 

[ x1 Θ x2 ]i
  ( ) 2i

t
1 xHx ⋅⋅= δ  

Eq. 2.9a 

 [ x1 Θ x2 ]ij
  

i
2

j
1

j
2

i
1 xxxx ⋅−⋅=  

Eq. 2.9b 

 

 

This measure has, in fact, some of the usual properties of a difference or subtraction of x1 minus 

x2. Specifically, x1 Θ x1 is always zero for any arbitrary vector x1, and x1 Θ x2 is always equal to –

(x2 Θ x1), again for arbitrary vectors x1 and x2. Furthermore, for our problem at hand this measure 

covaries, as shown in the previous section, with the changes in the articulatory dimensions 

necessary to bring the sound spectrum x2 towards x1. This last property makes the exponential 

difference a desirable measure of the discrepancy between two sound spectra, especially for 

speech motor control.  

 

Note that the exponential difference measure in Equation 2.9a depends on the definition of a set 

of matrices Hi characterizing the spectral transformations of interest. It is nevertheless possible to 

define an exponential difference measure that is independent of any set of generating matrices. 

This measure is shown in Equation 2.9b8. All exponential difference measures associated with 

                                                 
7 We choose to define the system based on N arbitrary articulatory directions, rather than using an 
articulatory base (with minimal and independent dimensions), simply because it offers a more general 
approach.  
8 In this equation xi represents the i-th element of the vector x. The raw measure x1 Θ x2 in Equation 2.9b 
has been defined for simplicity as a matrix (using two indexes i and j). An equivalently definition 
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arbitrary sets of matrices Hi can be generated from this more generic measure by a simple linear 

transformation (see Appendix II.C). This result will be used in section III to define a raw acoustic 

measure of spectral difference (independent of the model matrices Hi), from which a specific 

exponential difference measure (one depending on the model matrices Hi) will be derived for the 

motor control of the speech articulators. 

 

Again we wish to use an inverse control strategy now for the multi-parametric control of the 

articulators. The inverse control mechanism, extending the uni-parametric case in Equation 2.5, 

and now acting on the articulator descriptor m, will take the form: 

 

( ))(,)( target λxxGm =t
dt
d

 

Eq. 2.10a 

( ) ( )Fxx =)(,target λG  

Eq. 2.10b  

 

where xtarget is the spectral target, x(m) is the current sound spectrum, and F is a vector function 

taking the exponential difference measure into a corrective motor command acting to reduce this 

difference. From the properties of the exponential difference it is reasonable to expect the 

function F to be well approximated by a linear function or a piece-wise linear function (this 

requires using also the information of the current articulatory configuration m(t) to appropriately 

account for the validity of the different exponential model approximations in the context of the 

current production). In other words, the function F relating differences in the spectrum to 

directional motor commands can now be approximated using a simple HRBF network. This is the 

                                                                                                                                                 
in terms of a vector difference measure is simply obtained using the vectorization operation 
(concatenation of the matrix columns). 

xtarget Θ x(m) 
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same scenario as in the standard DIVA implementation when mapping differences in formant 

positions to directional motor commands.  

 

The definition of the computation in Equation 2.9 (exponential difference) as a difference 

measure is not gratuitous. It is what brings the strategies proposed for the acoustic control of low 

dimensional parametric spaces such as formant dimensions into accordance with the control of 

the sound spectral shape. What the derivations in these sections indicate is that, if we substitute 

the usual measure of difference between sounds (in the case of formants, this would be the 

difference in formant positions) by the newly proposed exponential difference measure, we 

should be able to keep the usual strategies and assumptions for the control of the articulators (in 

this case, a simple HRBF network associating acoustic differences with changes in the articulator 

positions). This notion extends naturally to accommodate other measures of interest. For 

example, during an initial babbling phase, the mapping F is assumed to be learned by comparing 

the directions of change of the articulators to the direction of change in the sounds. Using the 

concept of exponential difference we can construct something equivalent to an “exponential 

derivative” that would measure the rate and direction of change in the sound spectrum. This 

would simply take the form: 

 

( ) ττδ dt ∫ ⋅≡ )()(dx  

Eq. 2.11 

 

where δ(τ) is again (but unrelated to the previous usage in Equations 2.5 and 2.9a) the derivative 

of the sinc function. This equation is defined such that if we substitute the exponential difference 

x(t+ τ) Θ x(t-τ) 
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by a standard difference (a subtraction) the resulting measure would equal the standard derivative 

of x with respect to time.  

 

Another example of a derived measure would be the definition of distance between two sound 

spectra (or relatedly the similarity between two spectra). A simple way of defining the distance 

between two sound spectra would be as the norm of the exponential difference between the two 

sound spectra. This definition again is such that if we substitute the exponential difference by a 

standard difference (a substraction) the resulting measure would equal the standard spectral 

distance (the norm of the difference of their log-spectra). 

 

Before showing examples of the proposed multi-parametric control strategy acting on the vocal 

tract articulators to produce specific spectral targets, we need to deal with two issues. The first is 

the definition of the matrices Hi (i=1…N). These matrices are meant to model common spectral 

changes associated with articulatory movements. The second and inter-related issue is how this 

proposed strategy relates to known properties of auditory processing in the human brain. We 

would like to see if the computations involved in the proposed control strategies can be put in a 

simple form amenable to those commonly attributed to neural computations. In this way we 

would like to hypothesize a model of the neural computations involving the representation of and 

comparisons between speech sounds. Also we might be interested in learning from 

neurophysiology and behavioral studies what spectral changes the auditory system pays special 

attention to, thus aiding the construction of the yet-unspecified modeling parameters Hi. This is 

the subject of the next section.  
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III. AUDITORY PLANNING AND NEURAL COMPUTATIONS 

A. Spectral shape representation in auditory cortex 

Axons of the auditory nerve project to the ventral and dorsal cochlear nuclei of the brainstem. 

From these regions new axons travel upwards to the superior olive and the inferior colliculus, 

projecting then to the medial geniculate body of the thalamus. From there auditory fibers project 

to the primary auditory cortex, a small region in the temporal lobe located inside the Sylvian 

fissure on the Heschl gyri (Brodmann areas 41 and 42). The response properties of cells in 

primary auditory cortex show an orderly spatial organization to the sound frequency content. This 

is known as tonotopic or cochleotopic organization, and it has been demonstrated in several 

mammalian species (Merzenich and Brugge, 1973, Merzenich et al., 1975; Reale and Imig, 1980; 

Schreiner and Cyander, 1984; Morel and Kass, 1992; Morel et al., 1993; Recanzone et al., 1999) 

as well as in humans (Le et al., 2001; Romani et al., 1982; Wessinger et al., 1997). Most neurons 

in primary auditory cortex seem to respond strongly to single frequency-modulated sweeps, and 

most of these responses are selective to the sweep direction and/or its rate (Brechmann et al., 

2002; Hall et al., 2002; Mendelson and Cynader. 1985; Mendelson et al, 1993; Shamma et al., 

1993, Zhang et al., 2003). These studies also present evidence of topographically organized 

responses to the stimulus sweep velocity in primary auditory cortex. Overall this literature seems 

to indicate that primary auditory cortex analyzes the sound spectrum locally in frequency, while 

placing special emphasis on local frequency modulations.  

 

B. Auditory cortex and the DIVA model 

While the accurate description of neural activation is extremely complex, many neural models 

drastically simplify its functional definition, emphasizing two main aspects. One is the linear 

nature of the combinations of multiple inputs; the second is the application of non-linear 
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transformations at the level of each neuron’s activation. That is, the emphasis on these models is 

the ability to describe complex computations as a combination of linear operations on multiple 

elements, together with non-linear functions of individual elements, where these core elements 

are identified with the activation of individual neurons. We are going to take the same approach 

and propose a neural implementation of the spectral-target inverse control computations as a 

composition of linear combinations of multiple elements and element-wise nonlinear operations. 

The individual elements will be associated with the activation of auditory and motor cortical 

neurons. This approach is schematized in Figure 2.7. A spectral representation (x) of the present 

sound is defined as the cochlear output associated with this sound. This representation can be 

stored in short term memory and can be brought back again for the comparison between this 

reference sound and the sound currently being presented. A non-linear hard-coded operation 

initially compares the present sound with the one stored in short term memory to produce a raw 

measure (z) of their differences. Based on auditory experience, aimed at modeling natural spectral 

transformations in speech sounds, a higher-order area computes a measure of the spectral 

difference (DV) between these two sounds, corresponding to the exponential difference measure 

in our previous mathematical definitions, and equivalent to the Difference Vector in the current 

DIVA model. This computation is implemented by a set of linear weights. While beyond the goal 

of the current work, it is expected that simple learning rules could be defined to characterize these 

weights from auditory experience alone, as they model the spectral transitions occurring in 

natural speech sounds. In the present work we will explicitly define these weights to characterize 

local frequency shifts in the sound spectra (see following sub-section). Last, a piece-wise linear 

transformation (implemented with a RBF network) relates this spectral difference measure to the 

corrective motor command (DM) acting to reduce the discrepancy between the present and target 

sounds. As in the current DIVA model this transformation could be learned following simple 
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associate learning rules. In the present work we will explicitly define this transformation based on 

sample DV/DM pairs obtained during an initial babbling phase.  

 

 

Figure 2.7 Schematic of the neural model for the implementation of the spectral target inverse control 

strategy. The cochlear representation of a sound (x(1)) stored in short-term memory, and a present sound 

(x(2)) are combined through a non-linear operation at the level of individual neurons to produce a raw 

measure of their spectral differences (z). Based on the auditory experience, a linear combination relates this 

measure with a spectral difference measure (DV) that focuses on spectral attributes characterizing natural 

spectral transitions in speech sounds (corresponding to the spectral difference measure in the previous 

sections). The DV measure is mapped through a piece-wise linear map onto a corrective motor command 

(DM) acting to reduce this discrepancy.  
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There are three elements involved in this computation. The first element is the nonlinear 

operation at the level of the cortical neurons performing a raw comparison of the spectral 

representations associated with two sounds. This is defined by the simple product: 

 

[ ]+
⋅−⋅= )2()1()2()1(

, mnnmnm xxxxz  

Eq. 2.12 

  

Where x(1) is the cochlear representation stored in short term memory and x(2) is the cochlear 

representation due to the current sound. The notation [ ]+ represents the rectification of the 

activation zm,n to positive only values. The resulting measure z stores a raw comparison between 

these two sounds. This raw measure corresponds in our previous discussion with the exponential 

difference measure that is independent of the definition of the matrices H (Equation 2.9b). If the 

sound stored in short term memory represents the sound presented in the recent past (i.e. it acts 

roughly as a short-time delay) then the measure z characterizes the dynamic aspects of the input 

sound x(t). If the sound stored in short term memory represent the target sound, the measure z 

characterizes the spectral difference between the present and target sounds. The second element is 

the set of linear weights w(A) relating this to the spectral difference measure (Equation 2.9a) 

through an equation of the form: 
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The matrices of weights wi
(A)

 correspond in our previous discussion to the modeling matrices 

δ(Hi) (i.e. wi,m,n
(A)

 = [δ(Hi)]m,n). This definition make the DV measure exactly equal to our 

definition of the exponential difference x(1)Θx(2)
  (Equation 2.9a) between the sound stored in 

short term memory and the currently present sound. In the neural model these weights take the 

form of local receptive fields on the neurons zm,n, Conceptually they characterize the main 

features of interest in the activations zm,n resulting from speech sounds. While it is expected that 

these weights could be learned from auditory experience, in the present implementation we will 

define them explicitly to characterize local frequency shifts (see following sections).  

 

In our emphasis on the dynamic aspects of the spectral shape, we have disregarded so far changes 

in amplitude. Now it is time to incorporate these aspects in the context of the current neural 

model. Conceptually we wish to incorporate into the activations z (computing a raw measure of 

spectral difference) a set of neurons that encode amplitude differences between the spectra. The 

simplest way to accomplish this is by adding a bias term in the spectral representation x.  That is, 

we add a single element, set arbitrarily to a constant value of 1, to our original definition of the 

vector x. If x is a vector with L elements (80 frequency bands in our implementation) we will 

denote this element by its index L+1. Applying now Equation 2.12 to the extended vector x, the 

raw difference measure z incorporates a new set of neurons effectively measuring the amplitude 

changes in the spectrum for each frequency band. This is explicitly shown in the following 

equations, which directly follow from 2.12: 
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[ ]+
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Eq. 2.12b 

 

Correspondingly, we add a new element to the DV measure of the system in Figure 2.7. This 

element receives its inputs from the newly defined elements zm,L+1 and zL+1,m. Its weights are set to 

a value of +1 and -1, respectively, performing the following operation: 

 

∑ +++ −=
m

mLLmN zzDV ,11,1  

Eq. 2.13b 

 

This new element is defined to simply reflect the difference in amplitude between the sound 

stored in short term memory and the currently present sound. 

 

The third and last element in Figure 2.7 corresponds to the mapping between acoustic and motor 

differences (DV and DM, respectively). This mapping corresponds, in our mathematical 

description of the inverse control strategy, to the function F in Equation 2.10b. This mapping is 

implemented through a set of local weights w(B): 
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Eq. 2.14 
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where the vector DM defines a corrective motor command in the articulator space (10 

dimensional articulatory descriptor vector in our implementation), and the weights w(B) are 

defined locally depending on the present articulatory configuration m. This definition is 

equivalent to the current DIVA model implementation of this mapping through a RBF network. 

These weights are learned from experience during an initial babbling phase, when {DV,DM,m} 

samples are generated. 

 

This finishes the definition of the proposed neural model implementing the inverse control 

strategy for spectral targets in the context of the DIVA model. Section III.C will explicitly define 

the set of weights w(A) and it will compare some features of the proposed neural model to auditory 

cortex neurophysiology. In section IV, the weights w(B) will be defined and implementation 

examples of the inverse control strategy will be analyzed.  

 

C. Empirical and modeling approximations to the exponential difference measure. 

While we propose that the neural model weights w(A) could be learned from early auditory 

experience to reflect those spectral transformations commonly occurring in speech sounds, in the 

present work we opted for a simpler approach that directly models them to describe one of the 

most common spectral transformations in speech (local frequency shifts). This section starts by 

substantiating that local frequency shifts in effect describe some of the most common spectral 

changes in speech, and then deriving the model weights w(A) that characterize these 

transformations.  

 

A purely empirical approximation to the definition of the exponential difference measure based 

on articulatory movements would require the estimation of a set of matrices Hi characterizing the 
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spectral changes associated with random movements of the articulators. From them, the weights 

w(A) of the proposed neural model could be directly defined. We estimated 500 of these matrices, 

each approximating Equation 2.3b for a fixed direction of articulatory movement around an 

arbitrary articulatory configuration. Examples of a few of these matrices are shown in Figure 2.8 

top left. These matrices characterize the acoustic energy transfers occurring when the articulators 

move in a given direction. One of the most prominent features of these empirical matrices is in 

the near-diagonal elements. These elements characterize transfers of acoustic energy between 

nearby frequency bands. This is corroborated by a principal component analysis (PCA) of these 

500 matrices. Figure 2.8 bottom left plots the first 8 components of the resulting PCA, which 

show an accentuated role of near-diagonal elements in the first components.  

 

These near-diagonal, relatively smooth (changing slowly along the matrix diagonal), elements 

characterize energy transfers between nearby frequency bands, and they are characteristic of local 

frequency shifts. From the neurophysiological data discussed above, local shifts in the sound 

spectrum also represent a possible prominent feature in the cortical analysis of sounds. Motivated 

by this combination of partial but coinciding evidence, we propose then a modeling 

approximation to the matrices Hi based on a set of matrices characterizing local frequency shifts 

in the spectrum. We created 63 of these matrices; a few of them are shown in Figure 2.8 bottom 

right. These matrices could be used to reconstruct the sample empirical matrices. This 

reconstruction is shown in the top right plot of Figure 2.8. As this plot indicates, the choice of 

modeling matrices Hi emphasizes those aspects of the empirical data corresponding to local 

frequency shifts and de-emphasizes the rest. Specifically 41% of the variance of the empirical 

matrices Hi is explained by the modeling approximation.  
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Figure 2.8 Estimation of model matrices Hi approximating the spectral changes associated with 

movements of the articulators. Left: Empirical estimation. Top plots shows 8 examples of model matrices 

resulting from fitting sample data of sound spectra associated with movement of the articulators along 

arbitrary articulatory directions. Each of these matrices can be interpreted as modeling the sound energy 

transfer between pairs of frequency bands, when the articulators move in a given direction. In these plots 

the horizontal and vertical axes represent the sound frequency. Intensity values code the rate of change of 

the sound energy at the frequency band characterized by the vertical axis, as a proportion of the sound 

energy at the frequency band characterized by the horizontal axis. The empirical matrices shown on the top 

were estimated using the algorithm in Appendix II.A. The bottom plots show the first 8 components from a 

principal component analysis (PCA) of these empirical Hi matrices. These plots, together with the sample 

plots above, highlight that the empirically estimated matrices Hi have a characteristic form with prominent 
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elements close to the diagonal and relatively smooth (changing slowly along the matrix diagonal). These 

elements characterize energy transfers corresponding to local frequency shifts of the sound spectra. Right: 

Modeling approximation. Matrices Hi can be generated from model matrices characterizing local frequency 

shifts with different center frequencies and extents of the shifts. Examples of 8 of these generating matrices 

are shown in the bottom plot. The top plot shows the reconstruction of the sample empirical matrices (those 

shown on the left top plot) using these generating matrices.  

 

The choice of modeling matrices Hi was set to cover the frequency space with local frequency 

shifts characterized by a variety of center frequencies and ranges. Figure 2.9 top shows an 

example of these modeling matrices Hi (one that covers the whole frequency range) and its action 

on a random spectrum. This action can be interpreted as frequency shift saturating at the limits of 

the frequency range. The specific choice of center frequencies and ranges for the modeling 

matrices Hi is schematized in Figure 2.9. bottom. They form six scaling levels of frequency shift 

ranges, with 75% overlap of the frequency ranges on each level.  
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Figure 2.9 Modeling frequency shift matrices. Top: Example of the action of a model matrix H 

implementing a frequency shift over the whole sound spectrum. The direct application of the exponential 

model on this matrix produces a global frequency shift that saturates at the ends of the range of frequencies 

covered by the matrix. This effect is exemplified on a random sample spectrum. The model matrices Hi are 

defined as local versions of the one shown, covering different frequency ranges. Bottom: Schematics of the 

choice of center frequencies and ranges of the modeling matrices Hi approximating local frequency shifts. 

A total of 63 matrices represent frequency shifts with a variety of center frequencies and frequency ranges. 

There are 6 levels or “scales” of frequency shifts (represented by different heights in the plot). For each 

scale the number of frequency shifts is set to consecutive powers of two, and the frequency ranges are 

defined to have 75% overlap.  

 

This definition of the modeling matrices Hi leads directly to an explicit definition of the neural 

model weights w(A) used in our implementation (by defining wi,m,n
(A)

 = [δ(Hi)]m,n). An example of 

these weights is shown in Figure 2.7. As shown in this example the set of weights w(A)
i projecting 
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to a given element DVi of the spectral difference measure takes generally the form of a bipolar 

receptive field on the cortical surface of the model neurons zm,n.  

 

An example of the activations of the modeled neurons is shown in Figure 2.10. This example was 

constructed using the sounds /a/ and /e/, respectively, as the inputs for the short term memory and 

cochlear representations, respectively (for example, during the presentation of the sound /a-e/). 

The activation of the neurons zm,n forms a two dimensional image characterizing the differences 

between these sounds. In this image, high frequencies are represented in the bottom right corner, 

and low frequencies in the top-left corner. Neurons located in the lower triangular part respond to 

spectral differences that can be roughly characterized as energy shifting to the upper spectral 

frequencies. Neurons located in the upper triangular part respond to energy shifting to lower 

spectral frequencies. The spectral difference DV measure is composed by looking at the 

difference between the activation of upper and lower triangular segments with varying center 

frequencies and extents. This follows from the bipolar form of the matrices δ(Hi) represent the 

weights between the neuron activation zm,n and the DV measure. The DV measure, in turn, 

analyzes the difference between these two sounds in terms of possible frequency shifts with 

different extents and center frequencies. The two most prominent features of the activations zm,n 

can be characterized as an upward frequency shift in the mid-high frequencies, and a downward 

frequency shift in the mid-low frequencies. These features are captured by the elements of the DV 

measure at different levels. Shown in the figure are the receptive fields of two modeled neurons 

capturing these aspects when focusing on a relatively large frequency scale. The elements DVi 

focus on frequency shifts at a range of center frequencies and ranges or scales as defined above. 

The figure also illustrates the effect of the bias terms zm,L+1 and zL+1,m (the right and bottom 

portions of the image, respectively). The activation of these neurons represents the difference in 
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spectral amplitude between the two sounds at different center frequencies. The corresponding last 

term of the DV measure computes the global amplitude change between these two sounds.  

 

Figure 2.10 Example of modeled neuron’s activations for a present sound /a/ and the memory trace of 

sound /e/. Left: The cochlear representation of the vowel /a/ and the short term memory copy of the sound 

/e/ are shown in the left plots. Also a natural transition between these sounds is shown in the bottom plot 

for reference. Right: The modeled neuron’s activations zm,n (composing a raw spectral difference measure) 

are shown in the central figure. The DV spectral difference measure shown in the bottom looks at those 

specific features of the raw spectral difference characterizing local shifts in frequency. These are 

characterized by the z activations around its diagonal axis. Each element in the DV measure examines 

possible local frequency shifts with different extents and center frequencies between the two sounds. The 

last element of this measure, in contrast, examines differences in amplitude between the two sounds. Three 

example features are highlighted showing indications, respectively, of an upward frequency sweep in the 

mid-high frequencies, a downward frequency sweep in the mid-low frequencies, and an overall increase in 

amplitude. 
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In relating this model to neurophysiology or imaging data we will assume that, under normal 

circumstances, the short term memory trace is going to contain a representation of the sound 

presented in the recent past; in the case of inverse-control for speech the short term memory is 

assumed to have a representation of the target sound. Under this assumption the activation zm,n of 

modeled cortical neurons will respond strongly to frequency modulations, in particular upward 

(for m>n) or downward (for m<n) spectral peaks shifting between the m-th and n-th frequency 

bands during the time delay defining the short term memory representation. In contrast, the 

original activations xn respond to the instantaneous frequency characteristics of the present sound 

(c.f. the activations zm,n representing its dynamic aspects). We will assume that the activations xn 

are also present in auditory cortex. These activations follow the local energy of the present sound 

for the n-th frequency band, and they would be expected to show stronger activations for static 

sounds than dynamic ones. These observations so far would correspond with the general 

neurophyisiological evidence regarding tonotopical organization and directional sensitivity to 

frequency sweeps found in auditory cortical neurons. Last, the activations zL+1,m will respond 

strongly to sudden increases in the sound amplitude at the m-th frequency band, while the 

activations zm,L+1 will respond to sudden decreases in amplitude. These would correspond with 

neurons coding amplitude modulations in the sound stimuli. These type of responses can also be 

found in studies of animal and human auditory cortex (Schreiner and Urbas, 1986; Hart et al. 

2003). Regarding the short term memory trace we make no explicit assumptions about its cortical 

implementation. It could form a separate representation of the recent past with back projections to 

the modeled neurons zm,n, or it could be implicitly realized in the way neurons zm,n respond to 

present vs. recent-past stimuli (dynamic neurons). 
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This description indicates that the modeled representations x and z can provide a first order 

approximation to the response properties and functional organization of auditory cortical neurons. 

The previous analyses also show that a secondary region receiving its projections from these 

neurons through a set of simply defined local weights can compute the exponential difference 

measure designed for the control of the speech articulators. In the following section we will show 

examples of the application of this model for the inverse control of speech using auditory spectral 

targets.  
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IV. EXAMPLES OF AUDITORY PLANNING USING A VOCAL TRACT 

SYNTHESIZER 

In this section we will show examples of the proposed multi-parametric control strategy acting on 

the vocal tract articulators to produce specific spectral targets. In these examples the vocal tract 

model that we choose to control is the Maeda articulatory synthesizer (1990). As discussed in 

previous section, the inverse-control strategy for speech involves a mapping (weights w(B) in the 

neural model) between the movement of the articulators and the associated spectral differences. A 

locally linear approximation was hypothesized to suffice. We estimated this mapping explicitly 

from sample data. The sample data was generated using 10,000 productions of short linear 

articulatory movements. For each production we stored the trio {mn, dmn, dvn }where mn is the 

average (center) articulatory configuration of the production, dmn is the direction of articulatory 

movement (or average articulatory change), and dvn is the average spectral change. The mapping 

w(B) was explicitly estimated at each iteration of the inverse-control strategy from the sample data 

{mn, dmn, dvn } for the current articulatory configuration m as: 
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The parameter σ is set to 0.1 (it affects how many sample data are deemed close enough to the 

current articulatory configuration m to be considered for the local estimation of w(B)).  

 

The initial simulation (Figure 2.11) exemplifies the proposed inverse control strategy. The 

controller was acting on the articulatory parameters to approximate a spectral target defined from 

the articulatory synthesizer to approximate the American English vowel sound /a/. The initial 
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state (n=1 in Figure 2.11) was set to a neutral configuration of the articulators with zero glottal 

pressure (for silence). From this configuration the inverse controller used equations 2.12-2.14 to 

define incremental changes to the articulators through 100 iterations. In each iteration the 

exponential difference measure DV (equivalently x1Θx2) between the target spectrum and that of 

the current production was computed, and the mapping w(B) was used to transform the spectral 

difference into an incremental motor command. In order to bias the system towards relaxed 

configurations and to speed up the convergence, two small factors were added to the incremental 

motor command: a relaxation factor (driving the articulators towards a centered configuration), 

and an inertia factor (temporally smoothing the articulatory trajectory) 9.  

 

In this simulation (Figure 2.11) from the initial to approximately the fifth iteration the main 

change in the articulators corresponds to an increase in sound amplitude, which is due to an 

increase of the glottal pressure. This mainly acts to decrease the originally large amplitude error. 

From this to approximately the 20th iteration the system acts to correct the error in the spectral 

shape of the produced sound to better approximate the target spectrum. This is accomplished 

mainly by an opening of the mouth together with a backwards movement of the tongue. After 

this, the system continues incrementally fitting more detailed aspects of the spectrum (limited by 

the inherent noise in the sound analysis/synthesis process). The final configuration produces a 

sound with a spectrum mimicking the desired target spectrum (2% mean square error of the 

cochlear representation of the sound spectrum).  

 

 

                                                 
9 These factors are added to the incremental motor command at each iteration. The relaxation factor 
consists of a term proportional to the difference between a fixed (average) articulatory configuration and 
the present articulatory configuration. The inertia factor consists of a term proportional to the incremental 
motor command at the previous iteration. 
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Figure 2.11 Time-line of inverse control of the vocal tract articulators using spectral targets. The target 

spectrum approximates that of the /a/ vowel production (shown in dashed line in the bottom plots). The top 

plot shows the measure of spectral difference between the target sound and the system’s production at each 

iteration of the inverse control loop. The middle plot shows the resulting trajectory of the vocal tract 

articulatory parameters. Four relevant moments of this trajectory are highlighted in the bottom plots, 

showing their corresponding vocal tract configurations and produced spectra.  

 

The next simulation extends the previous example by using target spectra defined by productions 

of the articulatory synthesizer roughly approximating standard vowel sounds for American 

English. The results (Figure 2.12) show a good approximation of the target spectra (between 2% 

and 8% mean square error when comparing the final and target cochlear representations), as well 

as the formants of the target spectrum (between 1% and 4% error for the first two formants, 

xtargetΘx(t) 
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which are considered important cues in the perceptual identification of vowels). The 

configurations that the articulators adopt also mimic standard configurations for the 

corresponding vowels. In particular the final configurations comply with the front-back and high-

low phonetic distinctions among vowels (in Figure 2.12 the productions from left to right can be 

categorized as front-middle-back, and high-low-high).  

 

 

Figure 2.12 Simulations of the inverse controller acting on an articulatory synthesizer to mimic static 

spectral targets. Top row shows the dynamic sound spectrum of the inverse control trajectories (starting 

from a silent rest configuration). The target spectra were defined by productions of the articulatory 

synthesizer characterizing typical vowel sounds. The final configurations approximate the desired spectral 

target, as indicated by a good fit between the cochlear as well as the formant representations of the target 

and final sounds. Furthermore the final articulatory configurations mimic those of typical speakers, 

matching the front-back and high-low phonetic distinctions between vowel sounds. 
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Last we addressed the system’s robustness to the definition of spectral targets based not on the 

own productions of the articulatory synthesizer, but on a human speaker’s vowel productions 

(Figure 2.13). In order to emphasize both typical vowels and glide sounds, we used in this 

example a single simulation where the target was changed every 100 iterations. The spectral 

targets cycled through the five Spanish vowel sounds (the author’s native language). Due to the 

differences in voice and filtering between the human speaker and the articulatory synthesizer, the 

target spectra are typically non-reachable targets. As expected, the error in the system final 

productions is larger in these examples (18% and 10% mean error in the first two formants, 

respectively). Nevertheless, the produced sounds are perceptually identifiable as the target 

phonemes, and the system produces natural transitions between the vowel sounds. Interestingly 

only limited aspects of the target spectra are mimicked. While the mean square error of the target 

spectrum is quite large (between 30% and 60% mean square error), the features that make these 

sounds recognizable (the formants, or relative positions of spectral peaks) are still present in the 

system’s productions. This relative robustness of the system stems from the local analysis of the 

spectrum. This is similar to other techniques that de-emphasize the large scale spectral 

characteristics of the sound (e.g. liftering, in cepstral analysis), a commonly used strategy to 

reduce the sensitivity to variations in speaker characteristics, vocal efforts, variations in 

transmission, etc. (see Rabiner and Juang, 1993).  
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Figure 2.13 Simulations of the inverse controller acting on an articulatory synthesizer to mimic static 

spectral targets. The target spectra were defined by static vowel productions of a Spanish speaker. Top row 

shows the dynamic sound spectrum of the inverse control trajectories (the targets are changed every 100 

iterations of the inverse controller). For reference the second row shows the production of the same vowel 

sequence by the original speaker with superimposed tracking of the first three formant positions. The 

bottom rows show the final articulatory configuration for each of the six vowels, together with the formant 

representation of the produced sound at this point and the formants of the target vowel spectra. The target 

and final configurations of the first two formant positions, which are important cues for the perceptual 

recognition of vowels, are shown on the right.  

 

The previous examples show that the proposed multi-parametric control strategy can be used to 

operate on the speech articulators to produce acoustic targets defined by their spectral 

characteristics. Before these techniques can be effectively applied to produce the variety of 

sounds in natural speech there are many questions that need to be addressed. One is the relevance 

of dynamic spectral information in speech control. A simple inverse control technique can 

produce stop consonants simply by tracking the spectrum leading into and out of the closure. This 

is demonstrated in Figure 2.14, where the sequences /aba/ and /aga/ are produced using the same 
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inverse control strategy as in the examples above, now using dynamic spectral targets (that is, the 

spectral target is redefined for each iteration). In this example the system approximately 

reproduces the correct place of articulation for the consonant productions.  

 

 

Figure 2.14 Simulations of the inverse controller acting on an articulatory synthesizer to mimic dynamic 

spectral targets. The target spectra were defined by a speaker’s productions of the sequences /aba/ (left) and 

/aga/ (right). The inverse-controlled system mimics the spectral targets, and uses appropriate places of 

articulation for the stop consonant productions. 

 

Nevertheless a proportional inverse control is in general going to have limited ability in 

effectively tracking dynamic spectra. This is mainly due to its disregard for the dynamic aspects 

of the sound it is trying to mimic. A derivative term (as in a proportional-derivative controller) 

could potentially improve the performance for dynamic control for speech. While the acoustic 

measures necessary for such control are already available using the proposed exponential model 

(the exponential derivative concept introduced in section II.B) appropriate implementation of 

these techniques is beyond the goals of this thesis. Furthermore, the optimization of the inverse 
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controller for the case of dynamical targets might be unnecessary. The presence of a learned 

feedforward command in the DIVA model is expected to iteratively reduce the necessary 

corrections from the dynamical inverse controller, alleviating the necessity to optimize the latter.  

 

Another issue is the question of speaker independence. We have not yet dealt with one important 

source of speaker variability in the spectral characteristics of their productions, and that is the size 

of their vocal tract. This is particularly important for children learning to speak, who have a 

considerably smaller vocal tract than many of the speakers that form their acoustic influence. This 

variability mainly results in a speaker-specific scaling of the vocal tract resonances. In terms of 

the cochlear representation (close to logarithmic-frequency scaled) this translates approximately 

into a global spectral shift. One strategy to deal with this, and possibly other, sources of undesired 

variability would be to remove them through pre-processing. In this case, for example, one could 

use the same inverse-control strategies to affect not only the articulators but also a pre-processing 

stage where the cochlear spectrum would undergo a global shift. This approach would 

nevertheless need validation. Another approach would be to change the original spectral 

representation to be invariant to global shifts of the spectrum (for example, the absolute value of 

the cepstral coefficients). Yet it is unclear at this point what strategy the human auditory system 

uses, or could potentially use, to deal with this issue.  

 

Another practical issue relates to the sensitivity to specific acoustic differences. The model 

proposed in this chapter takes the general form of local frequency shifts based partly on 

descriptions of the neurophysiology of auditory cortical neurons, and also partly based on the 

characterization of common acoustic changes associated with speech articulatory movements. 

Human sensitivity to different features of speech sounds is nevertheless non-uniform, and it 
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seems to be affected by language-dependent auditory experience. In the proposed model, the 

sensitivity to different acoustic features is mainly related to their relative importance in the 

definition of the spectral difference measure. It would be desirable to be able to bias the spectral 

difference measure towards increased sensitivity to specific spectral features. In some cases this 

could be accomplished by the definition of new matrices Hi (or in terms of the cortical model, the 

weights w(A)) that would typify the desired features. In the more general case we could use 

empirically defined matrices Hi (such as those shown in Figure 2.8) characterizing typical 

spectral trajectories in the base language instead of, or on top of, the currently defined ones. Our 

original simulations (not shown) indicate that efficient control of the articulators is equally 

possible using empirically defined matrices instead of the currently used modeled ones. This 

opens the possibility of extending the model through empirical estimation procedures from 

sample acoustic data while incorporating the effects of experience. Last, there are also a number 

of acoustic features that call for an extension of the current cochlear representation, rather than 

the cortical model. For example, information about the sound voicing and pitch are currently not 

present (or at least not salient) in the cochlear representation due to the combination of implicit 

(small time windows) and explicit (cepstral low-pass) smoothing of the spectrum.  

 

Last, the strategies presented for inverse control are based on an error correction algorithm. While 

this has been presented in the context of inverse online control of the speech articulators it should 

be also possible to phrase them in terms of error correction learning algorithms (both of these 

strategies are present in the DIVA model, in the feedback and feedforward control loops, 

respectiely). It is reasonable to expect, under an auditory target hypothesis, that children learning 

to mimic the spectro-temporal features of phonetic or syllabic units common in their language use 

some form of error correction to incrementally improve their productions over the learning 
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period. The inverse control strategies presented in this chapter could potentially be used to define 

learning rules for the incremental motor specification of well practiced articulatory trajectories 

(feedforward learning rules). In either case the questions regarding timing and the incorporation 

of intrinsic delays need further analysis.  
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V. CONCLUSIONS 

This chapter presented the application of inverse control strategies on the speech articulators 

using auditory spectral targets. This work fills the gap between the experimental results in the 

first chapter indicating a speech motor control system which effectively uses auditory formant 

targets, the experimental indications of multifaceted sp vectral sound representations in auditory 

cortex, and the desire to extend the definition of auditory targets to sounds which are not possible 

to characterize by their formants positions. The proposed exponential model approximates the 

relationship between the articulators and the associated acoustics, when the speech articulators 

are defined based on effective articulatory dimensions and the acoustics of the sounds are defined 

based on a biologically based cochlear sound representation. The exponential model 

approximation is used to propose control strategies tailored to the estimated articulatory-acoustic 

relationship. Throughout this work special emphasis has been put in creating models that are 

well-defined, yet extendable and simple to interpret. Towards this end the definition of the 

exponential difference measure (a novel measure of the acoustic difference between two sounds) 

plays a crucial role. It allows the simple integration of the mathematical complexities of the 

studied models into the context of previous efforts using formant sound representations. The 

general mathematical models defined in this chapter have been concretized to reflect central 

aspects of the cortical representation of sounds. Using these models the results presented in this 

chapter emphasize the possibility of effective control of the speech articulators using spectral 

auditory targets.  
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APPENDIX 

APPENDIX I.A. Derivation of articulatory/acoustic relation from the motor control 

equations of the DIVA model. 

 

In the DIVA model, the differential equation governing the articulator vector x(t) given an 

acoustic target vector y takes the form: 

( )( ) ( ) )()()( ttt
dt
d xJΠxfyJx ⋅⋅−−⋅= + α  

where f(x) represents the articulatory to acoustic mapping, J represents the Jacobian (the 

multivariate derivative) of this mapping at each point x(t), J+ and Π(J) represent its 

pseudoinverse and its null space projector operator, respectively, and α is a small factor in the 

model (relaxation factor) controlling the degree of articulatory relaxation toward a neutral 

configuration (without loss of generality this is assumed to be x=0). Under a linear approximation 

of the articulatory to acoustic mapping (f(x)=A·x), and using a regularized form of the 

pseudoinverse, the explicit form of the previous equation is: 

( ) ( ) ( )[ ]
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dt
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where A is the linear mapping between the articulatory and acoustic spaces, and µ is a small 

regularization factor of the pseudoinverse. The solution of this differential equation is the 

articulatory trajectory x(t): 

( ) ( )
( ) ( ) IAIAAAK

xxIxx K

⋅+⋅⋅+⋅⋅⋅−≡

−⋅−+=
−

∞
⋅−

αµα 1
00

1

)(
tt

tet
 



   

  

99

where x0 is the initial articulatory configuration, and x∞ is the articulatory configuration that 

would be reached allowing infinite time (x∞ depends on the acoustic target y, and its solution is 

not relevant to the following discussion). Repeated productions under different initial articulatory 

configurations, will reach, after time T, the articulatory configuration x(T), following a 

distribution with average: 

( )0)( xxxx K −⋅−= ∞
⋅−

∞
TeT  

and covariance: 

TT
T

t

ee ⋅−⋅− ⋅⋅= KK ΩΩ 0  

where <x0> and Ω0 are the average and covariance, respectively, of the initial articulatory 

configurations. For simplicity, let us assume the distribution of initial articulatory configurations 

to be normal, with covariance σ0⋅I. In this case, the articulatory covariance of the final 

articulatory configurations takes the form: 

T
T e ⋅⋅−⋅= KΩ 2

0σ  

Let us, finally, define the vector q to be any eigenvector of the matrix ΩT (corresponding with 

one of the articulatory directions resulting from a principal component analysis of the final 

articulatory covariance). The acoustic effect of this articulatory direction q is defined as the 

associated change in the acoustic vector when moving the articulators along the direction q, and it 

is computed as qAq ⋅≡)(λ , and the articulatory variability associated with the same 

articulatory direction q is computed as qΩqq ⋅⋅≡ T
t)(σ . Using the definition of the matrices 

ΩT and K, and noting that their eigenvectors (they are the same for both matrices) will correspond 

to the right- eigenvectors of the matrix A, the articulatory variability σ(q) can be expressed, as a 

function of the acoustic effect λ(q), as: 
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More simply, the articulatory/acoustic relation predicted from the DIVA equations belongs to the 

class of functions: 

µ+λ

λ

ε∝λσ
2

2

)(  

where ε and µ are two small factors. The dashed line in Figure 1.8 left is an example of such a 

function approximating the simulation results (ε=.08; µ=.03). 
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 APPENDIX II.A. Solution of symmetry-constrained linear equations 

 

We want to solve a linear equation of the form: 

xAy ⋅=  

where y and x are two arbitrary data matrices, and A is the unknown, which is further constrained 

to be anti-symmetric: 

0=+ TAA  

The constrained least-square solution will obey (using the Euler-Lagrange multiplier theorem): 

0=−− BAxxyx TT  

where B is a symmetric matrix. The solution of the original equation is, then: 

( ) ( ) 1−
⋅−= TT xxByxA  

where the term ( ) 1−TT xxyx corresponds to the unconstrained solution of the original linear 

equation, which we will denote as A0. The matrix B must be solved to satisfy the original 

symmetry-constraint on A, which now takes the form: 

( ) ( ) TTT
00

11 AABxxxxB +=⋅+⋅
−−

 

The general solution of this last equation is (see Lyapunov’s equation, Horn et al. 1991): 

( ) ( ) ( )( ) ( )TTT vecIIvec 00

111 AAxxxxB +⋅⊗+⊗=
−−−

 

where vec represents the vectorization operation (concatenation of the columns of a matrix), I is 

the identity matrix, and ⊗ is the Kronecker product. The implementation of this solution is far 

simpler to compute using the reduced form: 
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( )[ ]

( ) 111

00
−−− +≡

+≡

⋅⋅=

jiij

T

T

sse

AAD

UEDUUUB T o

 

where U, and s are the eigenvectors and eigenvalues, respectively, of xxT (i.e. 

TT diag UsUxx ⋅⋅= )( ), and “o ” represents the Hadamard product (entrywise or Schur 

product). This reduced form was obtained using the definition of the eigenvalues and 

eigenvectors of the Kronecker product of two matrices. The solution of A is, then:  

( )[ ] TUFDUUUAA T ⋅⋅−= o0  

where the elements of the new matrix F are defined as 1−⋅≡ jijij sef . Finally, if the original 

constraint was for A to be symmetric (instead of anti-symmetric), the solution would be 

computed simply changing the definition of the matrix D to be: 

T
00 AAD −≡  
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APPENDIX II.B. Exponential model inverse approximation 

 

Let x1 and x2 be two real valued positive vectors with norm one, and H be a real-valued anti-

symmetric matrix. We would like to find a scalar λ between -1 and 1, such that 2xH ⋅⋅λe  best 

approximates x1 (in a least-squares sense). This optimization problem can be stated as: 

{ } { }

21
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21
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)(

)(maxargminargˆ

xx

xx
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⋅⋅≡
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⋅

−∈

⋅

−∈

λ

λ

λ

λ

λ

λλ

ep

pe

t
  

While this is a difficult non-linear problem, a useful approximation can be defined by limiting the 

range of searched λ values and treating p(λ) as a probability density10. In this way, the previous 

equation defines λ as the mode, or peak, of the distribution p(λ). Instead of its mode, we will 

settle to estimate its expected value, or average. In this way, the estimation of λ becomes: 

λλλλ dp∫−
⋅=

1

1
)(ˆ     

Substituting the definition of p(λ) we obtain:  

)(sinc)( where
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212121
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λλλδ

δλλλλλ
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dz
dde
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ddez

Hdede

zz

tttttt

==⋅≡

⋅⋅=⋅⋅⋅=⋅⋅⋅=

∫∫

∫∫
⋅⋅

⋅⋅ xxxxxx HH

 

Figure 2.15 left shows the form of the function δ(z). Note that this function, as defined, takes an 

imaginary number as input z and returns also a purely imaginary number δ(z). Also this function 

is anti-symmetric (i.e. δ(-z)=-δ(z) ). In terms of matrix functions (see Appendix II.A), δ(H) 

transforms a real-valued anti-symmetric matrix into another real-valued anti-symmetric matrix.  

                                                 
10  While p(λ) does not comply with the definition of a probability density function (i.e. it is always 
positive, integrating to one) we find the relaxation of these constraints to lead to a simpler estimation that is 
similarly effective in our simulations. 
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As a last note, the limitation of the range of λ over the extent -1 to 1 does not imply any limitation 

on the scale of the search, as the matrix H is unconstrained (i.e. if we wanted to search over the 

range -2 to 2, we would simply multiply H by 2).  A possible extension would be to include an a-

priori function q(λ) in the integration over λ instead of hard-limiting the range of the variable λ. 

This would result in a definition of δ(z) based on the derivative of the z-transform (closely related 

to the Fourier transform) of the function q(λ). Figure 2.15 right shows an example of the resulting 

function δ(z) when q(λ) is defined as a hamming window. The exact form would of course 

depend on the length of the hamming window used.  

 

   

δ(z) 

 z z 

Figure 2. 15 Form of the function δ(z). The function δ(z) represents the relation between the eigenvalues of 

H (x-axis) and the weights of the exponential inverse approximation (y-axis). Left: The search range of λ 

is defined between -1 and 1. The function δ(z) can be characterized as the derivative of a sinc function. 

Right: Introducing a short hamming window a-priori q(λ) and extending the search range to cover all the 

real line bounds and smoothes the resulting δ(z) function.  
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 APPENDIX II.C. A short reference to concepts in matrix analysis 

 

If a square matrix of arbitrary dimensions A has elements aij, the transpose of A (denoted by At) is 

defined as the matrix with elements aji
* (the conjugate of aji). A matrix A is called diagonal if its 

only non-zero elements are located along the diagonal of the matrix (aij = 0, if i≠j). It is called 

symmetric if its transpose is equal to the original matrix (At = A), and anti-symmetric if its 

transpose is equal to minus the original matrix (At = -A). It is called unitary if At⋅A and A⋅At 

equal the identity matrix (a diagonal matrix with ones in its diagonal), and normal simply if 

At⋅A=A⋅At. All diagonal, symmetric, anti-symmetric or unitary matrices are normal matrices.  

 

Any normal matrix A can be composed as the product Q⋅D⋅Qt of a unitary matrix Q and a 

diagonal matrix D. The elements in the diagonal of the matrix D are called the eigenvalues of A, 

and the columns of the matrix Q are called the eigenvectors of A. Even when all the elements of 

the matrix A are real, the matrices Q and D are generally complex valued. In fact the eigenvalues 

of any anti-symmetric matrix are always purely imaginary. The eigenvalues of a symmetric 

matrix are always real, and those of a unitary matrix lie in the unit circle (they have absolute 

value equal to one). These relations also hold in the opposite direction (i.e. a matrix with purely 

imaginary eigenvalues is always anti-symmetric, etc.)  Furthermore if A is a symmetric matrix, 

j⋅A is anti-symmetric, and vice versa; and for any arbitrary matrix A, the matrix A+At is always 

symmetric, and A-At is always anti-symmetric. A simple rule-of-thumb to remember many of 

these matrix relations is to associate normal matrices with complex numbers, symmetric matrices 

with purely real numbers, anti-symmetric matrices with purely imaginary numbers, and unitary 

matrices with unit-norm complex numbers. Following this rule of thumb one would expect, for 

example, that we would get a unitary matrix by exponentiating an anti-symmetric matrix. We will 



   

  

106

now see how this is in fact the case, but first we have to properly define what a function of a 

matrix is. 

 

Powers of a matrix An are defined in the natural way as the product of the matrix A n-times. A 

new matrix f(A) defined as a function of an original matrix A, where the scalar function f(z) 

admits a Taylor decomposition f(z)=r0+r1⋅z+r2⋅z2+r3⋅z3+…, is defined from the powers of the 

original matrix A as f(A)=r0+r1⋅A+r2⋅A2+r3⋅A3+… If the matrix A admits a decomposition as 

Q⋅D⋅Qt  then the matrix f(A) can be expressed as Q⋅f(D)⋅Qt. Furthermore, the matrix f(D) is 

simply the diagonal matrix with elements f(dii). In other words, the eigenvectors of f(A) are the 

same as the eigenvectors of A, and if dii are the eigenvalues of A, then the eigenvalues of f(A) are 

f(dii). The exponentiation of a matrix is the function f(A) where f is the exponential function (with 

a Taylor series rn=1/n!) and it is denoted by eA. Two useful notions regarding matrix 

exponentiation are the following. First, the exponential of an anti-symmetric matrix is always 

unitary. This follows from the eigenvalues of eA being the exponential of purely complex 

numbers (the eigenvalues of A). Second, the exponential of the sum of two matrices eA+B is in 

general different than eA⋅eB which in turn is different than eB⋅eA. These three matrices are equal 

only if A⋅B=B⋅A (then it is said that matrices A and B commute). Note that two arbitrary matrices 

generally will not commute (i.e. A⋅B≠B⋅A), but a matrix always commutes with itself so eA(λ1+λ2) 

always equals eAλ1⋅eAλ2. 

 

A most useful definition in matrix analysis is the notion of a matrix form, also called a bi-linear 

form. The form of a matrix A is defined as the following function: 
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2
t
121 ),( xAxxx ⋅⋅=Af  

 

where x1 and x2 are two arbitrary vectors. If the matrix A and the vectors x1 and x2 are real-

valued, the form of the matrix A is also always real. Bi-linear forms of symmetric matrices play 

an important role as they are commonly used to derive different notions of distance between two 

vectors x1 and x2. The form associated with an anti-symmetric matrix A can be directly related to 

the form associated with the symmetric matrix j⋅A as fA(x1,x2) = -j ⋅ fj⋅A(x1,x2). We will use the 

notion of bi-linear forms associated with real-valued anti-symmetric matrices in this dissertation 

as the basis for comparing two sounds. As a last observation, the bilinear form of any matrix A 

can always be expressed as a product of two vectors: one independent of A, and another 

depending on it, in the following way: 

 

)()(),( 2121 Axxxx vecvecf tt
A ⋅⋅=  

 

where vec represents the vectorization operation that takes a matrix and converts it into a vector 

by concatenating the matrix’ columns. Thus all bilinear forms can be expressed as a linear 

combination of the product x1 · x2
t  (this is called the outer product of the vectors x1 and x2).  
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