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Abstract— Communication with a robot using brain activity
from a human collaborator could provide a direct and fast
feedback loop that is easy and natural for the human, thereby
enabling a wide variety of intuitive interaction tasks. This
paper explores the application of EEG-measured error-related
potentials (ErrPs) to closed-loop robotic control. ErrP signals
are particularly useful for robotics tasks because they are nat-
urally occurring within the brain in response to an unexpected
error. We decode ErrP signals from a human operator in
real time to control a Rethink Robotics Baxter robot during
a binary object selection task. We also show that utilizing a
secondary interactive error-related potential signal generated
during this closed-loop robot task can greatly improve classifi-
cation performance, suggesting new ways in which robots can
acquire human feedback. The design and implementation of the
complete system is described, and results are presented for real-
time closed-loop and open-loop experiments as well as offline
analysis of both primary and secondary ErrP signals. These
experiments are performed using general population subjects
that have not been trained or screened. This work thereby
demonstrates the potential for EEG-based feedback methods
to facilitate seamless robotic control, and moves closer towards
the goal of real-time intuitive interaction.

I. INTRODUCTION

Using brain signals to control robots could offer exciting
possibilities for intuitive human-robot interaction. Although
capturing and identifying such signals represents a consid-
erable challenge given current technology, recent research
has shown that the error-related potential (ErrP) signal is
generated by the brain in response to observing or making
a mistake. If this signal could be leveraged to facilitate
human-robot control even in a restricted class of situations,
it would enable many new applications of natural human-
robot collaboration. For example, humans could remotely
supervise robots on factory floors and communicate “stop”
instantaneously when the robot makes a mistake without
needing to type a command or push a button.

Reliably detecting this error-related potential could enable
communication via a signal that occurs naturally in the brain
during interaction with, or observation of, a collaborating
robot. This could potentially alleviate the extensive user
training, extra cognitive load, or constant visual stimuli
often required by common brain-computer interface (BCI)
systems. Due to the inherent difficulty of quickly extracting
such signals from a subject’s brain activity using elec-
troencephalography (EEG), studies involving error-related
potentials are often performed in controlled settings and for
simulated or open-loop tasks. However, robotic applications
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Fig. 1: The robot is informed that its initial motion was incorrect
based upon real-time decoding of the observer’s EEG signals, and
it corrects its selection accordingly to properly sort an object.

demand closed-loop scenarios in real-world environments;
this paper therefore explores the applicability of EEG-
measured ErrP signals to real time closed-loop robotic tasks.

Towards this end, a feedback system is developed for
human-robot collaboration that hinges upon online identi-
fication of error-related potentials. In particular, a Rethink
Robotics Baxter robot performs object selection while being
observed by a human. The human operator’s EEG signals
are collected and decoded in real time; if an ErrP signal
is detected, the robot immediately corrects its trajectory.
Figure 1 depicts the system’s operation during a sorting task,
which is a simple extension of the object selection task.

An important result obtained by these experiments is the
observation and analysis of interactive error-related poten-
tials, namely secondary errors, generated in online closed-
loop experiments due to the human’s active participation.
They naturally occur in response to a real-time misclassi-
fication of the EEG signal, i.e. when the robot does not
properly obey the human’s feedback. These secondary errors
are often significantly easier to classify than the initial error-
related potential (primary error). This signal can therefore
improve system performance and greatly aid the development
of EEG-based closed-loop controllers for robotic tasks; this
paper provides preliminary offline analysis towards this goal.

A. Human-Robot Interaction using ErrP Communication

There are many ways that a human can interact with a
robot using ErrP signals for communication. The human can
be actively included or excluded from the control loop, and
the computation can be performed in real time or after the
experiment is completed. Specifically:



Closed-Loop implies that the robot and human directly affect
each other throughout the task; the behavior of one affects
the other. For example, the EEG classifier detects an ErrP
and communicates a trajectory correction to Baxter. This
adjustment is immediately observed by the human, affecting
their behavior and EEG signals, completing the closed loop.
Open-Loop implies that the robot performs the task without
any feedback from the human. The robot is still observed by
the human and EEG data is acquired, but it is not decoded
in real time to command the robot. The human’s role may
seem similar to the closed-loop scenario, but the lack of
collaboration significantly affects the subject’s engagement.
Online Performance implies that the EEG classification
system operates in real time, as is necessary for closed-loop
feedback. To achieve this, the system must acquire EEG data
for less than one second and then make a classification deci-
sion within milliseconds; longer latencies would deteriorate
the effectiveness of closed-loop feedback.
Offline Performance is obtained by running the EEG classi-
fication system on pre-recorded EEG data after an open-loop
or closed-loop experiment is completed. Offline analysis has
no constraint on computation time, so it generally achieves
better performance by optimizing the classification pipeline.

Due to the nature of real-world robotic applications, this
work focuses on developing an online closed-loop system.
EEG data is acquired for brief windows during the task and
decoded in a few hundred milliseconds to provide immediate
feedback to the robot. 12 subjects participated, only one of
which had ever used an EEG system before, and none had
been previously trained for our task. One of the subjects
was in a meditative state, and the data of that subject was
excluded from the present analysis for consistency. The
classifier used in online sessions was trained on a single-
experiment basis using only 50 initial trials. Offline analysis
is also presented, with optimal classification parameters
using all available data; with advances in computation and
hardware, similar results could eventually be achieved online.

B. Paper Contributions

This paper develops and tests an online feedback system
for an object selection task where human directives are
communicated to the robot via an EEG classification system.
In particular, this work presents the following:

• Demonstration of the existence and applicability of
error-related potentials to robotic collaboration tasks

• Closed-loop ErrP classification, allowing a human to in-
fluence a robot in real time via natural thought patterns
and the robot to influence the human’s EEG activity

• System performance results for online and offline anal-
ysis of both open-loop and closed-loop scenarios

• Demonstration of secondary ErrPs in closed-loop sce-
narios, and their offline utilization to boost performance

This work therefore makes progress towards the goal of
intuitive human-robot interaction by exploring methods of
applying EEG data to real-time robotic control.

II. LITERATURE REVIEW

A. EEG-based methods for Robot Tasks

The emergence of non-invasive electroencephalography
(EEG) and its natural applicability to human-robot col-
laboration tasks has spurred much research over the past
decade. For example, EEG signals have been used with
motor imagery tasks to control robots such as a quadcopter
or wheelchair [1], [2]. While this certainly showcases the
promise of using EEG for robot applications, typical ap-
proaches often require several training phases to pre-screen
operators based on task proficiency and for the human
operator to learn how to modulate thoughts appropriately.
The most common tasks for EEG-based control use signals
produced in response to stimuli (usually visual). These
include the P300 signal, in conventional grids [3] or during
rapid serial visual presentation (RSVP) [4], and the steady
state visually-evoked potentials (SSVEP) [5], [6]. While
these have shown good average classification performance,
they require constant attention of the operator, add cognitive
or visual burden, and usually require many repeated prompts
in order to decode a single command. Such challenges make
these approaches less amenable to closed-loop control tasks.

B. The Error-Related Potential Signal

A more desirable approach would be one that utilizes
a naturally occurring brain signal, thereby generalizing to
many different tasks and not requiring extensive training
or active thought modulation by the human. One such
signal that has been observed is the error-related potential
(ErrP) [7]. This signal is consistently generated when a
human consciously or unconsciously recognizes that an error
has been committed, even if the error is made by someone
else [8], [9], [10], [11]. Researchers believe ErrPs are an
integral component of the natural trial-and-error learning pro-
cess. Interestingly, researchers have found that these signals
demonstrate a characteristic shape even across users with no
prior training (see Figure 2). In addition, they are typically
detectable within 500 ms of when the human observes the
error [7], [9]. This suggests that error-related potentials are
particularly well-suited for use in robotic tasks.

Fig. 2: Error-Related Potentials exhibit a characteristic shape across
subjects and include a short negative peak, a short positive peak,
and a longer negative tail. Image adapted from [8].

C. Applicability of Error-Related Potentials to Robotics

Recently, efforts have been made to apply error-related
potentials to robotic tasks [12], [13]. These works show that



ErrPs can be used to improve performance via reinforcement
learning, but have not used error-related potentials in real-
time tasks where this is the sole input (i.e. no motor imagery
or thought modulation). More recently, the existence of ErrPs
and the ability to classify them in an online setting has been
demonstrated in a real-life driving task [14], but these signals
have not been used in a closed feedback control loop to
change the system’s behavior.

This work aims to present a new paradigm for human-
robot interaction that improves the probability by which
ErrPs can be successfully extracted on a single-trial basis and
used to modify a robot’s behavior in real time. Additionally,
in contrast to many Brain Computer Interface (BCI) ap-
proaches, our method is applied to subjects who have neither
been trained for the task nor used BCIs before.

D. Novel Contributions

The work that we present in this paper is different from
existing work in several key ways:

• ErrPs are the sole communication channel from the
human to the robot, and are used in a closed-loop task.
This enables real-time communication and correction of
robot errors, which could then trigger secondary ErrPs.

• The interface is designed around the human; the robot
adapts to the human rather than the other way around.

• Human subjects are neither trained for the task nor
screened based on EEG performance. This moves one
step closer towards bringing robot control to everyday
operators who are naive to the system, task, and BCIs.

III. SYSTEM AND EXPERIMENTAL DESIGN

To explore the application of EEG-detected ErrP signals to
robotic tasks, a paradigm and feedback system were designed
and implemented to allow a human observer to interact with
a Baxter robot. The general setup can be seen in Figure 1,
where the human observes the robot’s actions and influences
its behavior using natural thought patterns.

A. Experimental Methodology

An experimental paradigm was designed where a human
passively observes whether a robot performing a binary-
choice reaching task makes a correct or incorrect decision,
and resulting EEG signals are used to influence the robot in
real time. A typical recording session lasted approximately
1.5 hours including EEG cap preparation, and was separated
into 4 blocks (for the closed-loop sessions) or 5 blocks (for
the open-loop sessions). Each block contained 50 trials and
lasted 9 minutes. This paradigm was implemented at the MIT
Distributed Robotics Laboratory.

1) Binary Choice Paradigm: The sequence of events
comprising the paradigm is illustrated in Figure 3. During the
experiment, a subject wearing an EEG cap is seated 50 cm
from Baxter and judges whether Baxter’s object selection
is correct while a decoder searches for ErrP signals. At
the start of each trial, the subject gazes at a fixation point
placed directly below Baxter’s arm and in the center of two
blinking LEDs. One of the two LEDs then cues the desired

target (left or right). Baxter then randomly selects a target
with a 50/50 or 70/30 bias towards choosing correctly (for
open-loop and closed-loop experiments respectively), and
performs a two-stage reaching movement. The first stage is
a lateral movement that conveys Baxter’s intended target and
releases a pushbutton switch to initiate the EEG classification
system. The human mentally judges whether this choice is
correct, and the system informs Baxter to continue toward the
intended target or switch to the other target based on whether
an ErrP is detected. The second stage of the reaching motion
is then a forward reach towards the object.

If a misclassification occurs, a secondary error may be
induced as shown in Figure 3b since the robot did not obey
the human’s feedback. This second ErrP may be used in
the future to cause another trajectory change and thereby
ultimately choose the correct target.

The binary choice paradigm was implemented under two
different conditions:

Open-loop sessions: No online classification was running
while Baxter performed the target selection, and a one-
stage reaching movement was used. The subjects passively
evaluated Baxter’s performance, and were aware that their
EEG signals were not controlling it. In seven out of eight
sessions the probability of Baxter choosing the correct target
was 50%, and in the remaining session it was 70%. Offline
analysis of these experiments confirmed the presence of the
error-related potentials and optimized the parameters for the
classifier used in the closed-loop sessions.

Closed-loop sessions: The subject’s EEG signals were
used to control Baxter’s behavior in real time. A full session
included four blocks of trials. The first block was used to
collect training data; no classification was performed, but the
controller randomly decided whether to inform Baxter of an
error to induce a secondary ErrP in the subjects. At the end
of each block, a new classifier was trained with the data from
the current session. Online classification was performed and
used as closed-loop feedback for all blocks after the first.

2) Subject Selection: All subjects provided informed con-
sent for the study, which was approved by the Internal
Review Board of Boston University and the Committee on
the Use of Humans as Experimental Subjects of MIT. For
all EEG recordings, participants were recruited through com-
munity advertisements at Boston University and MIT, were
selected from the general population and did not undergo any
training sessions. Subjects were not screened based on their
innate ability to produce the desired error-related potentials
or their experience with EEG systems or BCI.

A total of twelve individuals (91.67% right-handed and
83.33% male) participated in the experiments, seven in the
open-loop condition (85.71% right-handed, 71.43% male),
and five in the closed-loop paradigm (100% male and
100% right-handed). From the five subjects participating in
the closed-loop paradigm, only data from four of them is
presented. The fifth subject performed the task while being
in a meditative state, and for consistency we exclude that
subject’s data from the analysis.



(a) The subject is seated directly be-
tween two possible targets with in-
dicator LEDs - here, the right LED
indicates the correct target. Curtains
surround the test area and subject to
minimize distractions.

(b) Two LEDs first flash to cue the subject’s attention, then one LED indicates the randomly chosen correct
target. Baxter randomly chooses a target, biased towards choosing correctly, and makes an initial lateral
movement to indicate its choice which is correct (C) or incorrect (I). Online classification of EEG data
determines if a trajectory switch is required; this leads to four possible outcomes based on whether the
initial movement and classification outcome were correct or incorrect. In the future, secondary error-related
potentials can be used to correct misclassifications in the I-I or C-I cases.

Fig. 3: The experimental paradigm implements a binary reaching task; a human operator mentally judges whether the robot chooses the
correct target, and online EEG classification is performed to immediately correct the robot if a mistake is made.

Fig. 4: The system includes a main experiment controller, the Baxter
robot, and an EEG acquisition and classification system. An Arduino
relays messages between the controller and the EEG system. A
mechanical contact switch detects arm motion initiation.

B. Robot Control and EEG Acquisition

The control and classification system for the experiment
is divided into four major subsystems, which interact with
each other as shown in Figure 4.

The experiment controller, written in Python, oversees
the experiment and implements the chosen paradigm. For
example, it decides the correct target for each trial, tells
Baxter where to reach, and coordinates all event timing.

The Baxter robot communicates directly with the experi-
ment controller via the Robot Operating System (ROS). The
controller provides joint angle trajectories for Baxter’s left 7
degree-of-freedom arm in order to indicate an object choice
to the human observer and to complete a reaching motion
once EEG classification finishes. The controller also projects
images onto Baxter’s screen, normally showing a neutral face
but switching to an embarrassed face upon detection of an
ErrP; see Figure 3a and Figure 1, respectively.

The EEG system acquires real-time EEG signals from the
human operator via 48 passive electrodes, located according
to the extended 10/20 international system and sampled at
256 Hz using the g.USBamp EEG system [15]. Based on
previously studied ErrP characteristics, this configuration
ensures that the dominant traits of the desired signal will
be captured. It will also capture other higher cognitive pro-
cesses and task-related EEG activity. A dedicated computer
uses Matlab and Simulink to capture, process, and classify
these signals. The system outputs a single bit on each trial
that indicates whether a primary error-related potential was
detected after the initial movement made by Baxter’s arm.

The EEG/Robot interface uses an Arduino Uno that
controls the indicator LEDs and forwards messages from
the experiment controller to the EEG system. It sends status
codes to the EEG system using 7 pins of an 8-bit parallel
port connected to extra channels of the acquisition amplifier.
A pushbutton switch, discussed in detail below, is connected
directly to the 8th bit of the port to inform the EEG system of



Fig. 5: A mechanical momentary switch affixed to the bottom of
Baxter’s arm precisely determines when the arm begins moving.
This feedback onset time is vital for reliable EEG classification.

robot motion. The EEG system uses a single 9th bit to send
ErrP detections to the Arduino. The Arduino communicates
with the experiment controller via USB serial.

Experiment codes that describe events such as stimulus on-
set and robot motion are sent from the experiment controller
to the Arduino, which forwards these 7-bit codes to the EEG
system by setting the appropriate bits of the parallel port.
All bits of the port are set simultaneously using low-level
Arduino port manipulation to avoid synchronization issues
during setting and reading the pins. Codes are held on the
port for 50 ms before the lines are reset. The EEG system
thus learns about the experiment status and timing via these
codes, and uses this information for classification. In turn,
it outputs a single bit to the Arduino to indicate whether
an error-related potential is detected. This bit triggers an
interrupt on the Arduino, which then informs the experiment
controller so that Baxter’s trajectory can be corrected. The
experiment controller listens for this signal throughout the
entirety of Baxter’s reaching motion.

Knowing the exact moment of arm motion initiation, i.e.
the feedback onset time, is vital for reliable EEG classifi-
cation. This is achieved via a hardware switch mounted to
the bottom of Baxter’s arm as shown in Figure 5. The switch
contacts the table when the arm is in its neutral position, and
it is immediately released when motion begins. One pole of
the switch is wired to 5 V, while the other is passively pulled
low by a resistor and wired directly to the 8th pin of the
aforementioned parallel port. This allows the EEG system
to detect the instant at which the arm motion begins, much
more precisely and reliably than if a software trigger was
used via the Arduino parallel port.

While the above switch robustly detects Baxter’s initial
motion and is used for the classification of a primary ErrP,
there is no analogous switch for detecting secondary errors.
Detection of the secondary error, which indicates whether the
first classification was incorrect, should begin as soon as the
human observer processes that the robot chose to continue
towards the initial target or switches to the opposite target.
Since the arm is in free space when this motion begins, and
it is unclear when the human interprets the robot’s target
destination, it is difficult to add a hardware switch. Instead,
many trials were run to determine when the arm begins its
second motion relative to the initial switch liftoff, and this
offset was used as the second feedback onset time.

Fig. 6: Various pre-processing and classification stages identify ErrPs
in a buffer of EEG data. This decision immediately affects robot
behavior, which affects EEG signals and closes the feedback loop.

IV. TRAINING AND ERRP CLASSIFICATION

The classification pipeline and feedback control loop are
illustrated in Figure 6. The robot triggers the pipeline by
moving its arm to indicate object selection; this moment is
the feedback onset time. A window of EEG data is then
collected and passed through various pre-processing and
classification stages. The result is a determination of whether
an ErrP signal is present, and thus whether Baxter committed
an error. The implemented online system uses this pipeline
to detect a primary error in response to Baxter’s initial move-
ment; offline analysis also indicates that a similar pipeline
can be applied to secondary errors to boost performance.

This optimized pipeline achieves online decoding of ErrP
signals and thereby enables closed-loop robotic control.
A single block of 50 closed-loop trials is used to train
the classifier, after which the subject immediately begins
controlling Baxter without prior EEG experience.

A. Signal Classification Pipeline

The classification pipeline used to analyze the data has
a pre-processing step where the raw signals are filtered
and features are extracted. This is followed by a classi-
fication step where a learned classifier is applied to the
processed EEG signals, yielding linear regression values.
These regression values are subjected to a threshold, which
was learned offline from the training data. The resulting
binary decision is used to control the final reach of the
Baxter robot. The same signal classification pipeline was
applied to all experiment scenarios, including both open-loop
and closed-loop settings. During offline analysis (using data
from the open-loop condition) the frequency range, XDAWN
filter order, number of electrodes, type of features, cost
function, and decoder were optimized via 10 iterations of
10-fold cross-validation. The following subsections describe
the steps for closed-loop online classification in more detail.

1) Pre-Processing: Starting at the feedback onset time, a
buffer of 800 ms from all 48 EEG channels is filtered using a
4th order Butterworth zero-phase filter with a passband of 1-
80 Hz. The mean of all channels is then subtracted from each
channel to remove noise common to all electrodes. Since
the error-related activity is linked to central cortical areas,
dimensionality reduction is then implemented by selecting
only the 9 central electrode channels (FC1, FCz, FC2, C1,
Cz, C2, CP1, CPz, CP2). This channel selection procedure
also helps remove electrodes likely to be contaminated with
eye blink and muscle artifacts.



2) Feature Extraction: Features are extracted from the
reduced 9 channels using two different pipelines.

Covariance and XDAWN filter: The mean of all correct
(mean-correct) and of all incorrect (mean-incorrect) training
trials were computed and then spatially filtered using a 5th

order XDAWN filter [16], [17] (this order provided the best
performance in offline analysis). The two filtered mean trials
are then appended to each individual training or testing trial
to create augmented trials [18], [19]. The covariance of each
augmented trial is computed and vectorized using a tangent
space projection, yielding 190 features [18].

Correlation: Correlation indexes are computed on a per-
channel basis between the 9 chosen electrode channels and
the mean-correct and mean-incorrect trial traces obtained
from training. For each channel and trial, the difference
between the mean-incorrect and mean-correct correlation
indexes is computed to yield 9 features per trial.

Classification is done using a vector of all 199 features.
Different feature selection approaches were evaluated in
offline analysis (such as Fisher Score, one-way ANOVA, and
PCA) but no significant performance increase was found.

3) Classifier: During offline analysis, an Elastic Net with
α = 0.5 and l1ratio = 0.0002 was implemented and trained.
This trained classifier was then used during online classifi-
cation to output linear regression values.

4) Threshold: The desired output is a binary indication
of the ErrP presence, so a threshold is chosen for the regres-
sion values. A threshold was computed during the offline
training that minimized a biased cost function: Cost =√

0.7 (1− sensit.)
2
+ 0.3 (1− specif.)

2. More emphasis is
placed on detecting ErrPs since missing an error in a robotic
task could break a process or injure a person.

5) Decision: Once the regression value is subjected to
the threshold, the classifier outputs the final binary decision.
A 0 indicates that no ErrP is present and the robot should
maintain its initial choice, while a 1 indicates an ErrP is
present and the robot should switch targets.

V. RESULTS: PRIMARY AND SECONDARY ERRORS

Analysis of the data demonstrates existence of ErrP signals
for the chosen robotic task in both closed-loop and open-loop
scenarios. The classification pipeline is evaluated using both
online performance and offline enhancements.

A. Existence of Error-Related Potentials for HRI Task

Figure 7 shows a representative ErrP signal detected in the
closed-loop experiments. The mean of FCz electrode traces
are shown when there was an error (red), and when there
was no error (green). The dark black trace is the difference
between them, and displays a negative peak occurring around
250 ms after feedback onset that agrees with theory [7]
followed by a positive peak. Figure 8a shows detailed time
and spatial evolution of the primary ErrP for one of the
subjects, where the plots are time-locked to the feedback
onset when Baxter first moves to indicate object selection.
The top plot shows the presence of the signal across all 48
EEG electrodes. The bottom plots are a time-lapse of the

Fig. 7: This example ErrP was recorded during a closed-loop human-
robot interaction. FCz location is shown as the black dot on the scalp,
and green highlights show where correct and incorrect trials differ
significantly (p-val< 0.05, Wilcoxon signed rank test, corrected)

signal location on the scalp, created by interpolating between
electrode locations. The signal is concentrated at the center
of the head, which agrees with ErrP theory [7].

B. Closed-Loop ErrP: The Secondary Error

An important result is that allowing the human to influence
the robot in real time via their brain activity enables sec-
ondary ErrPs, or secondary errors. These arise in response to
system misclassifications, i.e. when Baxter does not correctly
interpret the human’s feedback. This occurs when the initial
reach was correct but the system detects an ErrP, or when
the initial reach was incorrect but the system fails to detect
an ErrP - see cases C-I and I-I in Figure 3b, respectively.
Since the human is actively engaged and aware that the
robot should obey their feedback, secondary ErrPs are often
stronger and easier to detect than the primary ErrP.

Figure 8b demonstrates the existence of the secondary
ErrP in an analogous format to that described for the primary
ErrP. Since no hardware switch is available for secondary
feedback onset time, however, the signals are aligned using
status codes sent from the experiment controller and a
measured offset time from the primary switch liftoff. EEG
activity is again centered towards the middle of the scalp.

1) Impact on Classification Accuracy: Two stark differ-
ences between the primary and secondary errors are illus-
trated in Figure 9: the amplitude of the mean secondary
ErrP (black) is about double that of the primary ErrP, and
the shape of the secondary ErrP is more consistent across
subjects. These differences can facilitate robust classification
and lead to better overall performance and generalization.

C. Performance

This section presents the online closed-loop classification
performance, as well as offline analysis of primary and sec-
ondary errors in open-loop and closed scenarios, to evaluate
the success of the system in the chosen collaboration task.
Online closed-loop: EEG signals from the human observer
are classified in real time and communicated to the robot.
If an error is detected, the controller commands Baxter to
switch targets before completing the reach. The classification
decision, using a pre-trained classifier, is made within 10-
30 ms after acquiring 800 ms of EEG data.
Offline closed-loop: The classifier is trained using EEG
data from an entire online closed-loop session (4 blocks of



(a) (b)

Fig. 8: Primary (a) and secondary (b) ErrP signals evoked by the task from the same subject are shown evolving over time
and location. The top row shows activity of all 48 electrodes, the middle row demonstrates mean FCz EEG activity, and the
bottom row interpolates activity across the scalp. The ErrP signal is seen as early as 200 ms from the robot’s movement.

Fig. 9: Compared to primary ErrPs (left), secondary ErrPs after Bax-
ter’s correct selection (CI, center) demonstrate increased amplitude
and decreased shape variability across subjects. Secondary ErrPs
after Baxter’s incorrect selection (II, right) are less common and
therefore more variable. Black traces represent the mean trace across
individual subject traces from the FCz electrode.

9 minutes each, totaling 190 trials on average). Features and
thresholds are optimized, and the classifier is tested on a
single-trial basis via 10 iterations of 10-fold cross-validation.
Offline open-loop: The classifier is trained using EEG data
from an open-loop session (5 blocks of 9 minutes each); the
human was a passive observer, and Baxter did not receive
real-time feedback. The classifier is tested on a single-trial
basis via 10 iterations of 10-fold cross-validation.
Offline secondary error: EEG data is pre-collected during
an online closed-loop task. All EEG signal traces over
five 9-minute blocks are used to train a classifier for the
secondary ErrP that occurs after the first ErrP classification.
The performance reported is of the classifier applied on a
single-trial basis using 10-fold cross-validation.

Figure 10 presents the ROC AUC performance for each
session type, which is an unbiased metric with 0.5 as chance.
As expected, offline cases have better performance than
online cases since the latter can only use data from previous
blocks and thus have fewer training trials. However, even
using all data from a subject (190 trials) offline represents a
difficult task and achieves an AUC of 0.65.

The right three boxes of Figure 10 demonstrate the overall
AUC performance gain achieved by using secondary errors,
and Figure 11 separates the AUC results into individual
subjects. The secondary errors significantly increase perfor-

Fig. 10: Performance is summarized by the AUC score for different
session types, where 1 is perfect classification.

TABLE I: Classification Performance

Session Type Accuracy
Mean

Accuracy
Std. Dev.

Chance % Above
Chance

Closed-loop Offline 64.17 06.56 56.49 13.59
Open-loop Offline 65.06 01.75 58.91 10.43
Second. ErrP (II+CI) 73.99 07.64 58.16 27.21
Second. ErrP (II) 83.49 01.64 73.19 14.07
Second. ErrP (CI) 86.51 05.03 58.41 48.10

mance, to over 0.8 in CI cases. Since Baxter’s initial choice
is correct in 70% of trials, there are many more trials in
this case than the II case so it is expected that the trained
classifier can perform better for this case.

Table I summarizes performance in terms of accuracy,
which measures how often Baxter ultimately makes the cor-
rect selection. Chance is determined by randomly shuffling
trial labels. Notably, classification using secondary ErrPs
boosts performance by over 20% in the CI case (the most
common case). Figure 12 further breaks down the perfor-
mance into True Positive Rates and False Positive Rates for
each of the four session types. Offline analysis shows that
classifying secondary ErrPs greatly increases true positive
and true negative rates. Thus, secondary errors are promising
for improving feedback between humans and robots.

VI. CONCLUSION AND FUTURE WORK

By focusing on the detection of naturally occurring error-
related potential signals, an online closed-loop EEG system
has been developed that enables intuitive human-robot inter-
action even for general population subjects that have not been



Fig. 11: Classifying secondary errors significantly raises AUC per-
formance. All subjects perform well above chance, and AUC values
over 0.8 are attained in CI cases (the most common case).

Fig. 12: Using secondary ErrPs in the classification loop greatly
increases true positive and true negative classification rates.

previously trained on the task or EEG systems. The existence
of ErrPs for a real-world robotic application is demonstrated,
and a classification pipeline is developed to decode the EEG
activity. Once trained offline using a small sample of open-
loop trials, the pipeline can decode brain signals fast enough
to be used online.

Offline analysis also demonstrates the existence of a
secondary ErrP when the human observes that the robot has
incorrectly interpreted their feedback. This signal is typically
easier to classify than the original error, and can thus be
used to improve the performance accuracy. In the future, this
signal can be incorporated into the online scenario to boost
closed-loop performance as well. This also suggests that new
paradigms can be designed that exploit the secondary error.
For example, the robot can perform motions that are designed
to elicit error potentials from the human user to acquire
feedback at crucial decision points, when choosing between
many options, or even during a continuous trajectory.

In this way, the presented system moves closer towards
the goal of creating a framework for intuitive human-robot
interaction in real-world tasks.
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