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Abstract

We study exposure to pollution information and investment portfolio allocations, exploiting the
rollout of air quality monitoring stations in India. Using a triple-differences framework, we show
that retail investors’ investments in “brown” stocks are negatively related to local air pollution
after a monitoring station appears nearby, with particularly pronounced effects on “alert” dates
when air quality is listed as harmful to the general population. The effect of pollution information
on investment choices is most prominent amongst tech-savvy investors who are most plausibly
“treated” by real-time pollution data, and by younger investors who tend to be more sensitive
to environmental concerns. Overall, our results provide micro-level support for the view that
salience of environmental conditions affect investors’ tastes for green investments, and preferences
for environmental amenities more generally.
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1 Introduction
Globally, investment in so-called ESG (environmental, social, governance) funds has grown by over

500 percent, from US$4.8 trillion in 2010 to US$29.2 trillion in 2021, nearly three times the rate of

growth of assets under management more generally.1 Much of the growth and attention has focused

on the “E” in ESG, with sustainable investment seen as one mechanism for disciplining firms that

generate negative environmental externalities.

This attention on sustainability in investment appears timed to increasing concerns about pol-

lution generally and climate change specifically. There is, however, little empirical evidence on the

forces that have led to the rise in ESG investment (Hong, Karolyi and Scheinkman, 2020). It may

be driven by “supply”—a proliferation of ESG funds that provide ready investment opportunities.

Alternatively, increased ESG investment may result from a shift in investor preferences due to the

greater relevance and salience of environmental issues resulting from, for example, global accords

such as the Paris Agreement or increased frequency of extreme climate events (e.g., hurricanes, forest

fires, floods, droughts, and heat waves).

Yet identifying a role for investor tastes is a challenge – news about climate change often serves

as a common shock which may be confounded by concurrent events that may in turn also impact

portfolio allocations. If one wishes to exploit panel variation, one requires shocks that impact investor

tastes but do not affect perceived returns of green versus brown investments. Additionally, one requires

highly disaggregated investor data—with linkages to geography or some other source of exposure to

environmental conditions—in order to take advantage of any panel variation that one might exploit.

In this paper we document that exposure to pollution information leads investors to invest less in

“brown” industries, using a triple-differences framework framework applied to geocoded data on the

portfolios of Indian retail investors. We take advantage of the introduction of continuous air quality

monitoring stations (CAAQMSs), which began in 2006 and accelerated during the 2010s. We posit

that the arrival of a monitoring station makes pollution more salient for those located nearby, who

1See https://www.unpri.org/about-us/about-the-pri, accessed January 8, 2023.
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receive easy access to air quality data. Whereas pollution may have simply been ignored prior to the

appearance of CAAQMSs, we assert that investors may have a taste for greener investments in response

to more extreme pollution once air quality information becomes available in an easy-to-access (e.g.,

via smartphone or billboard) format. Helpful for identification, the monitoring stations’ readings were

advertised as relevant for a range of 20 kilometers, offering a natural way of defining investors who are

“treated” with readier access to pollution information, which we compare to the portfolio allocations

of “control” investors that are more distant from monitoring stations (but still close enough to the

treatment population that they plausibly serve as a relevant benchmark – and we note that in robustness

checks we show that our results are robust to using a tighter range for our treatment definition).

We utilize a comprehensive database of trading records from the National Stock Exchange

of India (NSE) to construct the portfolios of approximately 19 million investors during the years

2004–2020. We can trace any trades in these portfolio to the individual’s (anonymized) permanent

account number, and the associated postal index number (PIN) code for the account holder. We

can thus calculate, with a high degree of precision, the distance between an investor’s address and

the nearest CAAQMS, and evaluate how the sensitivity of their portfolio to air quality changed after

the monitoring program made this information widely available. (As we explain below, we may

observe—albeit imperfectly—air quality prior to the creation of CAAQMSs via satellite data, though

importantly, data from these stations were not made available to the public in real-time. This allows

us to distinguish the role of salience from shifts in actual pollution that might be correlated with the

creation of monitoring stations.)

Our main focus is to evaluate how access to pollution information affects the extent to which

household ESG investment respond to short-term pollution fluctuations, specifically the brown-share-

pollution-gradient 𝜕BrownShare
𝜕Pollution .This measurement choice aligns with the theoretical ESG-augmented

framework established in earlier work, in which investors derive a warm-glow utility from holding

green stocks, making the weighted sum of ESG scores for all equity holdings a critical factor for

portfolio allocation (e.g., Pedersen, Fitzgibbons and Pomorski, 2021).2 Specifically, we examine the

2Alternatively, this measurement choice can also be motivated by a simple discrete choice model of green versus brown stocks, which
generates the pooled average of choices at the household level, i.e., the brown share (Berry, 1994).
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sensitivity of an investors’ holdings in “brown” stocks to the extent of air pollution before versus after

the opening of a nearby monitoring station. In an event study specification, we show that the brown

share of investors in an impacted PIN Code is unrelated to air quality in the two years leading up to

the appearance of station, then experiences an immediate and sustained decline. Our point estimates

indicates that, for a one standard deviation decline in (within-monitoring-station) air quality, there is

a 0.5 percentage point (1.25 percent of the mean) decrease in the share of brown stocks in affected

investors’ portfolios after a monitoring station appears (whereas the sensitivity is approximately zero

beforehand). We use a “donut hole” approach to define a benchmark set of investors, located in PIN

Codes in the 40-60 kilometer range around a given monitoring station—these investors are sufficiently

distant from the station that its reading had less relevance (as noted above, the range communicated

to the public was just 20 kilometers). For this group of “donut hole” investors we observe no change

in investment sensitivity to air quality after a monitoring station opens. Since green stocks do not

outperform brown stocks over this period, we suggest that our findings are most plausibly driven by

investor tastes and pollution salience rather than a shift in expected returns.

To link these patterns more directly to pollution salience, we examine shifts in portfolio allo-

cations around changes in particularly salient shifts in air quality. Specifically, we look at air quality

“alert” days when the air quality reading transitions from Moderate (yellow) to Poor (amber), a change

that also triggers government warnings about the health risks posed to the broader population. Using

a regression discontinuity approach around this air quality cutoff, we show that there is a discrete drop

in the share of brown stocks held by retail investors.

In a final set of results, we explore heterogeneity in investors’ responses to exposure to air quality

information. Given that air quality information from monitoring stations was delivered primarily via

a smartphone app, we suggest that salience may have been greater amongst tech savvy investors who

were also more apt to trade via mobile phone. Thus, we begin by splitting the sample based on whether

a trader most often executed transactions via mobile device, the internet, or by some other means (i.e.,

through either a trading kiosk or a broker). We find a far greater shift in responsiveness to pollution

after a monitoring station appears amongst mobile-based investors; there is also a greater sensitivity
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for internet-based investors relative to those using more traditional methods.

We next explore heterogeneity by age. Beyond a moderately higher degree of tech savvy, young

investors may also have greater environmental awareness given that they disproportionately bear the

consequences of climate change and environmental degradation. We thus posit that the young will be

most responsive to being confronted with pollution information.3 We find that air quality information

has the greatest effect on investment sensitivity for young investors, and the weakest effect for the

elderly. Finally, we split the sample by gender. While the motivation for this heterogeneity test is

less straightforward than our other sample splits, we suggest that it links to the broader literature on

the “environmental gender gap”—women express greater concern for environmental issues than men

(e.g., Xiao and McCright, 2015). We extend this line of research to show that this gender gap applies

to male versus female investors: the portfolios of women are more sensitive to air quality than men,

once this information becomes readily available.

Our work connects most directly to the body of research that aims to understand investors’ non-

pecuniary concerns generally, and specifically their interest in ESG investments. Closest to our own

work is that of Choi, Gao and Jiang (2020), which studies the link between weather and investment

in a cross-stock-exchange framework utilizing largely cross-country variation in temperature. They

show that higher temperatures are associated with a decline in prices of “brown” stocks, driven by the

trading activity of retail investors in particular. Our work is distinct from Choi, Gao and Jiang (2020)

in three main ways, and these distinctions in turn serve to highlight the broader contributions of our

paper.

First, our study emphasizes the crucial role of information dissemination on environmental

issues in shaping investors’ ESG investment behavior. While Choi, Gao and Jiang (2020) focuses on

the impact of extreme weather events, we specifically highlight the importance of making information

available and salient. In a sense, the analysis of Choi, Gao and Jiang (2020) is analogous to the

pollution-investment correlation during the pre-treatment baseline period in our study, so that we

show the importance of making information on environmental problems more readily available for

3Alternatively, air quality may be more salient for the elderly, given the health consequences, though to the extent that this is the case,
our results suggest that it is dominated by the aforementioned effects.
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retail investors’ trading decisions. This is of direct policy relevance, as it suggests that effective

communication of environmental concerns – and social issues more broadly – may encourage more

socially conscious investment choices.

Second, our detailed individual trading data allows for more persuasive identification relative

to earlier work. Choi, Gao and Jiang (2020) in particular suggest that (retail) investor tastes, driven

by increased climate concerns, play an important role in ESG investing and show an effect on stock

market returns across the cross-section of firms. However, as we note above, their data consist of

relatively coarse information on retail ownership (residual imputed from information on blockholders

and institutional ownership) and variation in temperature across cities (located in different countries)

where exchanges are located. Consequently, the analysis is subject to potential measurement error

and usual critiques of cross-country analyses. Our detailed individual-level trading data allows us

to tie trading behavior to much more localized, high-frequency shifts in environmental conditions.

Finally, the granularity of the data allows us to exploit important cross-sectional variation across

demographic characteristics like age and gender as well as trading method (i.e., mobile versus internet

versus broker). Our heterogeneity analysis analysis allows us to provide suggestive evidence on how

information on environmental quality influences and alters investor behavior.

More broadly, our work sits at the intersection of several large and growing areas of inquiry:

research on ESG investments, salience and investor behavior, and the salience of environmental

problems and attitudes toward environmental issues.

As described in Hong, Karolyi and Scheinkman (2020), ESG research may generally be classified

in one of several categories. Broadly speaking, one branch of research focuses on the extent to which

climate (and resultant environmental) risks are incorporated into stock prices (e.g., Görgen et al.,

2020; Bansal, Kiku and Ochoa, 2016) and other assets such as homes (Baldauf, Garlappi and Yannelis,

2020; Murfin and Spiegel, 2020) and agricultural land (Hong, Li and Xu, 2019). To the extent that

environmental risks become more important over time in ways that are not fully anticipated, there

may be differential returns for green versus brown companies. The question of whether socially

responsible companies generated higher returns more generally has been much-studied, but without
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any clear resolution (e.g., Hong and Kacperczyk, 2009; Berg et al., 2022).

Our own work is much more closely tied to the strand of work that explores the link between

the beliefs and preferences of investors, and their green versus brown portfolio allocation decisions.

In addition to Choi, Gao and Jiang (2020), which focuses more on retail investors, Alok, Kumar and

Wermers (2020) examine institutional investors’ responses to climate-related disasters and find that

nearby fund managers respond more sharply than more distant ones.

While we focus on pollution salience, there is a much larger literature which examines how

inattention and salience impact portfolio allocation decisions, whether driven by the notability of past

returns (Bordalo, Gennaioli and Shleifer, 2013; Cosemans and Frehen, 2021); the media (Huberman

and Regev, 2001; Jiang et al., 2022); or ESG ratings themselves (Pelizzon, Rzeznik and Hanley, 2021).

Finally, moving beyond finance-focused applications, our work relates to the larger literature in

social psychology and economics which explores whether exposure to (idiosyncratic) environmental

shocks impact beliefs and attitudes toward climate change (Li, Johnson and Zaval, 2011; Zaval et al.,

2014; Lujala, Lein and Rød, 2015). Moving beyond attitudes to actions, Barwick et al. (2019)

examine how pollution information—delivered by the same type of real-time monitoring stations that

we consider here—impacted online search behavior in China, with more searches related to pollution

avoidance behaviors after a monitoring station appears. Our work also documents real behavioral

changes, but in a very different domain, and one that has broader social consequences rather than

one with private benefits. In line with this earlier work, our findings suggest that policies that give

greater visibility to environmental quality may be useful in encouraging “greener” behaviors. While

our setting involves investment, it is plausible that one may observe similar shifts in, say, energy use

or other consumer behaviors.

2 Institutional Background
This section provides an overview of India’s rollout of continuous ambient air quality monitoring

stations (CAAQMSs), which we exploit in our empirical design. The introduction of CAAQMSs

was a part of a broader National Air Quality Monitoring Programme (NAMP), set up by the Central
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Pollution Control Bureau (CPCB) in coordination with state-level control boards. As we discuss in

this section, the initiative led to a rapid and significant increase in the availability of pollution data to

the general public, resulting in a considerable improvement in awareness of pollution problems.

A Brief History of Air Quality Monitoring in India: The CPCB has been systematically

collecting pollution data under its national monitoring programme since 1985.4 Initially, monitoring

stations collected data on four key pollutants: sulfur dioxide (SO2), nitrogen dioxide (NO2), PM10

(particulate matter under 10 microns), and PM2.5 via manual monitoring stations scattered around

the country. These manual stations involved the collection of ambient air over a period of several

days, which was then transported to a central location where the data were analyzed. The resultant

(manually generated) report was then archived to the Environment Air Quality Data Entry System.

This process of data collection took weeks to complete, so that much of the information was stale by

the time the report was finished. Furthermore, even the reports were often inaccessible – it was left to

local pollution control authorities to upload and/or make this information available. Finally, the data

was, in some cases, constrained or unsuitable for analysis, so no data were available at all (Pant et al.,

2019). The CPCB itself released the data at a monthly or annual frequency.

As the preceding description makes clear, the manually collected pollution data gathered under

the earlier NAMP were slow to produce, of questionable quality, and hard for the general public to

access (if the data were made available at all).

Both the quality and availability of data shifted markedly with the introduction of CAAQMSs,

first piloted in 2006 and later expanded in 2016 (see below for more details on the rollout). These

newer monitoring stations collect information on a wider range of pollutants than earlier instruments.5

Furthermore, both the collection and analysis of data has been fully automated via “internet of things”

technology that facilitates continuous automated data collection, as well as the transfer of pollution

data to a central server in real-time every few minutes. At the center, data analysis is also automated,

and is ready for use shortly after collection. Pollution data from the CAAQMSs are used to calculate

4Air quality monitoring began earlier, in 1978, in 10 cities – Ahmedabad, Mumbai, Kolkata, Kochi, Delhi, Hyderabad, Jaipur, Kanpur,
Chennai, and Nagpur.

5Measured pollutants including PM2.5, PM10, nitrogen oxides, sulphuric dioxide, benzene, toluene, ethylbenzene, and xylene.

7



an air quality index (AQI), a standardized metric that incorporates a wider range of pollutants than the

earlier NAMP monitoring program. Real-time AQI readings are publicly available online and via a

smartphone app, with historical data archived by the CPCB and downloadable on its website.6

A primary purpose of the continuous air quality monitoring program is to create public awareness

of environmental conditions. This objective was greatly facilitated with the advent of CAAQMSs, as

the earlier manually-driven system could not provide real-time environmental data to the public. This

information is now delivered via public displays, web widgets, alerts, and a proliferation of mobile

apps that provide localized information on air quality.

Rollout and location of CAAQMSs: Real-time pollution monitoring was first piloted in Delhi

in 2006, with the expansion accelerating only in 2016 (see Figure 1). 7

The decision of where to locate monitoring stations is done by the CPSB in consultation

with the state-level pollution control boards. The criteria naturally include consideration of nearby

pollution severity and population; however, there is a much longer list of practical concerns that

include geographic obstructions, security, cost, and power availability, among many others. While

we identify our main results from a difference-in-differences framework, it is still worth noting that

within a relatively narrow geographical region, the locations of CAAQMSs (as well as their timing)

are dictated in large part by considerations that are largely exogenous to factors that might affect the

portfolio allocation decisions of individual traders.8

Classification of Treated versus Control PIN Codes: Our empirical approach is to compare

individuals located in the immediate vicinity of newly established CAAQMSs (i.e., the treated group)

to individuals who are marginally further away, and thus “untreated” with pollution information (i.e.,

the control group). There is no clear threshold for how the relevance of air quality readings diminish

with the distance from a monitoring station. We propose a donut-shaped approach that leverages the

6It is difficult to measure exactly how many people keep track of local air quality via smartphone because, in addition to the CPCB’s
own app, there are dozens more that provide real-time AQI data for India and internationally. Many are listed as having 100,000+
downloads. The CPCB reports that its own app has been downloaded over 500,000 times. For more details on the monitoring program
as well as references for AQI measurement, see Pant et al. (2019)

7See, e.g., Gulia et al. (2022) on the timing of CAAQMSs. For the current map of stations, see https://app.cpcbccr.com/ccr/#/
caaqm-dashboard-all/caaqm-landing, last accessed June 20,2023.

8Greenstone et al. (2022) similarly use the rollout of monitoring stations in China to study the impact of real-time information on local
underreporting of pollution, and also online searches for, e.g., face masks and filters.
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comparison of average pollution levels within the inner and outer rings of the ‘donut,’ while leaving

out the area in the middle as the buffer region. We use a 20-kilometer radius of a CAAQMS to define

traders who are “treated” with AQI information when a monitoring station opens. This range was

determined based on discussions with CPCB officials, based on the distance that pollution readings

would be perceived as relevant to the public. We use investors located 40 to 60 kilometers from a

monitoring station as the benchmark or control group.9

There are cases of overlapping treatment and control areas in some densely populated areas,

as India’s major metropolitan areas are covered by multiple stations. For example, Delhi has 41

monitoring stations to cover its 20 million residents spread across nearly 1500 square kilometers.

There are 21 stations for Mumbai (population 21 million, area 603 sq km); and 7 stations for Kolkata

(population 15 million, area 205 sq km). We describe below how we deal with the handful of PIN

Codes where this issue arises.

Note, however, that once one gets outside of a handful of major metropolitan areas, coverage is

much sparser. For example, Jodhpur, a city of 1.6 million, has a single monitoring station, and there

are no other stations within 60 kilometers of it. The entire state of Jammu and Kashmir has just a

single monitoring station in its largest city of Srinagar (population 1.7 million).

Before proceeding to the next section, we emphasize that our results do not depend on this

specific treatment-control definition. We also consider narrower radii of 5, 10, or 15 kilometers

in robustness checks below (Appendix Table A4). Furthermore, since India’s largest cities have a

preponderance of overlapping monitoring stations, we demonstrate that the results still hold when we

exclude the small subset of traders located in Mumbai, Delhi, and Kolkata.

9These cutoffs are not definitive, and for this reason we offer a number of robustness checks to show that our results are not sensitive to
these particular choices. We choose our main cutoffs based on our reading both of Indian government communication as well as prior
research on a monitoring station’s relevant radius. For example, in a UNICEF report that examines the proportion of children under
threat to respiratory infections from pollution, Rees, Wickham and Chandy (2019) highlight the lack of reliable data on ground-level
monitoring of pollution through air monitoring stations. In this context, the report uses 10km as the first relevant radius around the
monitoring station and 50km as the upper limit. In the context of India, Roychowdhury, Somvanshi and Kaur (2023) highlights that
a CAAQMS has a range of 10km, and if there are no topographical barrier the range could be as much as 50km. Further, in most
mobile apps the name of the monitoring station is mentioned which makes the pollution number less relevant for a resident situated
a significant distance away. We take 0-20km as a distance that would very likely be affected by pollution information from a station
(showing also robustness for narrower radii), while in most cases its relevance likely wanes by 40km.
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3 Data
We use several data sources in our analysis that allow us to connect pollution, monitoring, and trading

behavioral at a granular level. The databases include individual-level stock holdings over time for

Indian investors as well as basic geographic and demographic information; geocoded information on

the timing of the installation of CAAQ monitoring stations, and information on local pollution inferred

from satellite images.

Stock Trading Data: We use comprehensive data on stock trading from the National Stock

Exchange (NSE) of India, one of the largest stock exchanges in the world10. We obtained the data on the

universe of trading records from the NSE for the period of 2004–2020. The data allows us to observe

a number of features for each transaction – the anonymized Permanent Account Number (PAN) of the

trader, the transaction date, the security ticker, total shares purchased or sold, and the execution price.

We limit our analysis to transactions involving stocks included in the Prowess Database (similar to

CRSP in the U.S.) maintained by the Centre for Monitoring Indian Economy (CMIE).11 In addition,

we retain only securities that are common shares of domestic stocks and exclude trading activities

related to ETFs and foreign stocks.12 For each retail investor, we further obtain their geographical

location at the six-digit PIN Code level, which is essential to match our trading data to information on

the location and opening of CAAQMSs. Overall, the initial sample includes equity transactions for 19

million unique investors across India.

We provide the geographic distribution of domestic retail investors in Appendix Figure A1.

Unsurprisingly, there is a particularly high concentration of investors in Delhi, Kolkata, and Mumbai.

These are India’s three most populous cities, and also major financial centers. However, as the figure

makes clear, NSE investors are widely distributed across the entire country.13 We use historical

transaction data from as far back as 2004 to construct a holding sample containing an observation

10The National Stock Exchange (India) ranks No. 9 in terms of market cap in 2023: https://www.edudwar.com/
top-10-stock-exchanges-in-the-world/

11Prowess is the standard database employed by researchers studying Indian equity markets. See, e.g.,Khanna and Palepu (2000);
Goldberg et al. (2010); Balasubramaniam et al. (2023); Bau and Matray (2023).

12None of the ETFs in our sample have an explicit ESG orientation.
13Furthermore, as we discuss below, in Appendix Table A5 we show that our baseline results are virtually unchanged when we exclude

investors from these three areas.
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for each investor-stock-day following standard methods (e.g., Frydman, Hartzmark and Solomon,

2018; Ben-David and Hirshleifer, 2012).14 We then aggregate investors’ portfolio holdings based

on their location to match the variation in CAAQMS introduction and conduct our main analysis at

the PIN Code-by-month level. Intuitively, each regional account describes the stock holdings of a

representative regional investor.

Identifying Brown Stocks: We classify firms as “brown” or “green” based on their industry

classifications, following Choi, Gao and Jiang (2020), which in turn uses the definition of the Inter-

governmental Panel on Climate Change (IPCC) to classify five sectors as sources of high emissions

– Energy; Transport; Buildings; Industry (such as chemicals and metals); and Agriculture, Forestry,

and Other Land Use. Then, following Krey et al. (2014), each sector is classified into sub-categories,

each of which is hand matched with industry names provided by Datastream. (Note that emissions of

air pollutants are highly correlated with CO2 emissions through fossil-energy consumption, as noted

by Lin et al. (2023) and Agee et al. (2014), making this industry-level measure also a plausible proxy

for a firm’s contribution to lower air quality.)

We categorize green versus brown stocks at the industry- rather than firm-level for two reasons.

First, because of our focus on retail investors, it is better-aligned with the likely heuristics used by

most retail investors – who are less apt to explore the specific ESG impact of individual firms – when

making investment decisions.15 Second, and more importantly, our choice is driven by the empirical

data challenges associated with firm-level ESG coverage in India. Compared to developed markets

like Europe and the United States, the availability and quality of firm-level ESG data in India are

relatively sparse and less reliable.

We use the industry classifications provided in Prowess database to hand match to Datastream

industries, in order to classify each firm (via its industry classification) as green or brown based

on the Choi, Gao and Jiang (2020) list. Figure 2 plots the evolution of “brown” and “green” (i.e.,

non-brown) stocks over our sample period. In Panels A and B we show the number of stocks and

14Following Ben-David and Hirshleifer (2012), we remove a trader’s investment from the sample if the cumulative number of shares
becomes negative at any point (owing to a purchase that occurred prior to the start of the sample period).

15Consistent with this assumption, Moss, Naughton and Wang (2023) show that that retail investors exhibit muted responses to firms’
ESG disclosures, using data from Robinhood.
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market capitalization, and in panel C we show brown stocks’ share of market capitalization. Brown

stocks’ market share varied between about 30 and 40 percent during the period of 2004-2020, peaking

in 2010 then dropping steadily thereafter.

Pollution Monitoring Stations – CAAQMSs: We obtained geo-coded data on the location and

timing of continous air pollution monitoring stations from India’s Central Pollution Control Board.

The first CAAQMS appeared in Delhi in 2006, and by 2021 there were 311 stations spread across the

country (see Figure 1, Panel B). We classify a PIN Code as in the “treatment” group if its centroid

is located within a 20 kilometer radius of a CAAQMS under the assumption that, when a monitoring

station appears, investors in the PIN Code gain ready access to real-time air quality data. We leave a

buffer of a “donut hole” region comprised of PIN Codes 20-40 kilometers around the station, and then

classify PIN Codes that have centroids located 40-60 kilometers from each station as the “control”

group.

We classify a PIN Code as control only when its centroid is not within the treated region of

any other CAAQMS. Thus, the treatment and control groups are mutually exclusive and the sample

is created such that there is no overlap across the groups, with every CAAQMS having unique set of

treated and control PIN Codes. Panel A of Appendix Figure A2 illustrates our assignment approach

for single monitoring station in Jodhpur, which provides a relative straightforward case, given that the

city hosts only a single station. Panel (b) shows an example of two monitoring stations in Delhi which

illustrates that India’s largest cities have multiple stations that are generally within 60 kilometers of

each other; this creates some complications in treatment and control assignments, which we address

as described above. However, as also noted earlier, we sidestep these complications in a robustness

test in which we exclude Mumbai, Delhi, and Kolkata from our analysis.

Satellite Data on Pollution: We wish to measure local air pollution at the PIN Code level in a

consistent manner both before and after the introduction of CAAQMSs. To do so, we take advantage

of data generated by NASA’s Moderate Resolution Imaging Spectroradiometer on its Terra satellite.

These readings are used by NASA to generate data on aerosol optical depth (AOD), which is a widely-

used proxy for pollution from outdoor particulate matter and reflects the density of various particles
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such as sulfates, nitrates, black carbon, and sea salts (see, e.g., Van Donkelaar, Martin and Park, 2006).

Following existing studies such as Tsai et al. (2011), we confirm in Appendix Figure A3 that AOD

and PM 2.5 (obtained from the CAAQMSs) are highly correlated, based on a comparison following

the implementation of the monitoring program, when both pollution proxies are available. The AOD

data are available at a frequency of 30 minutes in a 10-by-10 kilometer grid. Our main pollution data

are average monthly readings for the grid location that contains the PIN Code’s centroid.

One natural concern is the endogenous timing of CAAQMS installations, i.e., monitoring stations

may have been placed in areas where pollution is worsening. We discuss this issue in Section 4.2

below: to briefly summarize, we do not observe any shift in pollution (nor investor attributes or local

economic conditions) around the opening of a monitoring station.

Weather Data: Air quality is correlated with sunshine and/or precipitation, which may in

turn also affect trading behavior. We thus include meteorology controls for weather.These data are

collected from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 Land

datasets, which combine observations from satellites, weather stations, and weather forecast models

as far back as 1963. As part of the ERA5 climate reanalysis, the data also provide high-resolution

information about land surface variables. Similar to the AOD data, we use the zonal statistic method

to calculate the monthly average and create a panel data at the pincode-month level, for rainfall and

for surface temperature, which we include in all main specifications.

Sample Description and Summary Statistics: Our regression analysis is at the PIN Code-

month level. Our main sample consists of 1,859 distinct “treated” PIN Codes and 5,254 “control” PIN

Codes, over the period January 2004 to June 2020. The panel is unbalanced – in 65 percent of PIN

Code-month observations, stock holdings are zero so that our main outcome, share of brown stocks, is

undefined. Some monitoring roll-out occurs during 2017-2019, close to the end of our sample period.

To ensure that the underlying sample for each station is a relatively balanced panel (i.e., we do not have

observations very distant in time from the appearance of a monitoring station), we have additional

filtering, and focus on the +/- 4 years time window around the rollout date. The total number of

observations for the baseline specification at the PIN Code-month level is 499,036.
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Table 1 presents summary statistics for the primary variables we use in our analysis. Aggregated

across our entire sample period, we observe that a typical retail investor holds roughly 41.8% of their

portfolio in brown stocks, marginally above the overall share of brown stocks in the Indian market (see

Figure 2). Of relevance for the heterogeneity analyses we present in Section 5.5, Table 1 also provides

portfolio brown shares across investor groups. We observe that female investors hold a marginally

lower fraction of assets in brown stocks relative to their male counterparts (41.2 versus 41.9%), while

the share of brown stocks is notably lower for young investors (40.4%), relative to mid-aged and old

investors (41.9 and 42.8% respectively).

4 Empirical Strategy

4.1 Empirical Specifications

Our objective is to assess how the sensitivity of individual’s green investments to pollution changes as

the monitoring program improves public access to air quality information. Specifically, we investigate

the connection between pollution exposure and investments in brown stocks, which we refer to as

the brown-share-pollution gradient, and measure how it differs before versus after the (staggered)

rollout of local monitoring station across regions. As described in section 2, our methodology differs

slightly from that of Barwick et al. (2019), since we do not rely exclusively on the staggered rollout of

monitoring stations for identification. In addition, to control for any time-varying local confounding

factors, we leverage detailed information on investors’ geographies and add a third layer of differences.

Specifically, we compare changes in outcomes for retail investors close (i.e., within 20 kilometers of

a station, the treated ring) with those located further away from the monitoring station (i.e., 40-60

kilometers, the control ring).

We estimate the changes in brown-share-pollution gradient using the following specification:

𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝(𝑚),𝑡 = 𝛽 × 𝑇𝑟𝑒𝑎𝑡𝑝 × 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 × 𝑃𝑜𝑠𝑡𝑚,𝑡 +
∑︁
𝑘

𝛼𝑘 ×𝑂𝑡ℎ𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠

+𝑋 ′
𝑝,𝑡\ + 𝛾𝑝 + _𝑚,𝑡 + Y𝑝,𝑡 (1)
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where 𝑝, 𝑚, 𝑡 denote a PIN Code, monitoring station area and month, respectively. 𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝(𝑚),𝑡

represents the average share of brown stocks across all retail investors in PIN Code 𝑝 in monitoring

station area 𝑚 at time 𝑡. A station area 𝑚 contains PIN Codes with centroids within 20 kilometers of

the monitoring station – treatment PIN Codes – and PIN Codes 40-60 kilometers from the station –

control PIN Codes. 𝑇𝑟𝑒𝑎𝑡𝑝 is an indicator variable that equals one if a PIN Code falls into the treated

group (i.e., within 20 kilometers of the monitoring station) and zero otherwise. The treatment variable

captures exposure to this information in real-time as a result of the arrival of a monitoring station.

𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 is the local ambient air pollution measure from AOD in PIN Code 𝑝 and month 𝑡. It is

worth reiterating that AOD measures local residents’ exposure to pollution both pre- and post-arrival of

a monitoring station, although air quality information (collected by the station) is available only in the

post period. The binary variable 𝑃𝑜𝑠𝑡𝑚,𝑡 is an indicator variable that takes on a value of one beginning

in the first month following the the installation of a local monitoring station 𝑚. Other Interactions

include all lower-order terms, such as𝑇𝑟𝑒𝑎𝑡𝑝×𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 , 𝑇𝑟𝑒𝑎𝑡𝑝×𝑃𝑜𝑠𝑡𝑚,𝑡 , 𝑃𝑜𝑠𝑡𝑚,𝑡×𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 ,

and 𝑇𝑟𝑒𝑎𝑡𝑝, 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 and 𝑃𝑜𝑠𝑡𝑚,𝑡 . 𝑋𝑝,𝑡 is a vector of control variables including local trading

activities (number of retail investors, total turnover) and weather conditions (rainfall, temperature) in

PIN Code 𝑝 and month 𝑡.

The set of PIN Code fixed effects, 𝛾𝑝, controls for time-invariant factors of a PIN Code, enabling

us to identify differences based on time-series variation in whether a nearby monitoring station has

opened. To account for time-varying characteristics in the region around monitoring stations, we

include station area × time fixed effects (_𝑚,𝑡) in our most saturated specification. This allows us to

identify differences between treatment and control groups for each station at the same point in time.

We cluster standard errors at the PIN Code level to account for possible serial correlations among the

sample periods. The coefficient of interest, 𝛽, captures changes in the relationship between pollution

exposure and investment in brown stocks that occur with the appearance of a monitoring station,

comparing nearby (treated) versus more distant (control) PIN Codes.

We also implement a event-study version of the specification in Equation (1) and explore

dynamics around the treatment date. In particular we substitute for the 𝑃𝑜𝑠𝑡𝑚,𝑡 dummy with a
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collection of indicators measuring the quarters elapsed since the installation of a monitoring station:

𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝(𝑚),𝑡 =

6∑︁
𝑖=−6

𝛽𝑖 × 𝑇𝑟𝑒𝑎𝑡𝑝 × 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 × 𝐷 (𝑡 ∈ 𝑖)𝑚,𝑡 +
∑︁
𝑘

𝛼𝑘 ×𝑂𝑡ℎ𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠

+𝑋 ′
𝑝,𝑡\ + 𝛾𝑝 + _𝑚,𝑡 + Y𝑝,𝑡 (2)

where 𝐷 (𝑡 ∈ 𝑖)𝑚,𝑡 is a dummy variable that takes a value 1 if the month t belongs to the 𝑘 𝑡ℎ quarter

since the monitoring station appeared. This specification allows for the tracking of the evolution of

𝛽𝑖 over time in relation to the rollout of monitoring station and provides a graphical representation

of the dynamics of brown-share-pollution gradients. The number of pre- and post-treatment periods

available varies across different waves of PIN Codes. To ensure a balanced time frame for analysis,

we report 𝛽𝑖 for a period of 6 quarters prior to and following the monitoring rollout, while binning the

remaining more distant periods in the sample.

4.2 Discussion of Possible Threats to Identification

Most previous studies have focused on estimating the pollution-concentration-response function, which

quantifies the causal effect of air pollution exposure on health and non-health outcomes. However, iden-

tifying this relationship is challenging due to the endogeneity of ambient pollution levels. Endogeneity

can arise from omitted variables, such as individual endogenous location choice, or measurement er-

rors. Graff Zivin and Neidell (2013) provide a detailed review of the sources of endogeneity. Equation

(1) emphasizes that our focus is distinct from theirs. We are not aiming to estimate the impact of

pollution per se, but rather to measure how the causal effect (sensitivity of brown share to pollution

exposure) varies before versus after the introduction of monitoring stations.

When attempting to estimate the slope of the relationship between brown shares and pollution

separately using data from before and after the station rollout, the endogenous nature of pollution

could lead to inconsistent estimates for both periods. However, assuming certain conditions hold,

the inconsistency in slope estimates could offset each other, hence making the OLS estimate of 𝛽

in Equation (1) consistent. The crucial identification assumption is that the rollout schedule is not

correlated with the difference in time-varying unobservables between treated and control areas that
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could drive the observed outcome, given the controls.

In this section, we investigate the validity of the identifying assumption and consider the potential

estimation biases that arise from a staggered rollout setting, which has garnered increased attention in

recent literature.

CAAQMS Rollout: Although the assignment of CAAQMS is not entirely random, it is primarily

the result of negotiations between the Central Pollution Control Board and state-level pollution control

authorities. As discussed in Section 2, the assignment of CAAQMS is influenced by a long list of

exogenous concerns, including population, geographic obstruction, power availability, and so forth.

Note that we focus on a relatively narrow geographical region and examine geographically proximate

control and treatment PIN Codes around the same monitoring station. Moreover, our regression

analyses include station-area × time fixed effects, and therefore eliminate any potential threats to our

identification posed by time-varying differences in local characteristics. Thus, the location and timing

of monitoring are largely exogenous to the portfolio allocation decisions of retail investors.

To probe empirically whether endogenous rollout is a substantial concern, we first test whether

differences in time-varying local characteristics between control and treatment PIN Codes correlate

with the policy rollout, after controlling for fixed effects in Equation (1). We begin by plotting the

dynamics of pollution levels (as captured by AOD) between treated and control areas in Figure 3, as a

function of time relative to monitoring. We do not observe any significant shift in the local pollution

gap between treated and control investors before versus after the introduction of a monitoring station.

Second, we examine a set of confounding factors, including local investor composition as captured

by growth of investor base and entry of new investors, and economic activities (entry of new firms

and night time light images) that likely differentially impact the portfolio allocation of individual

investors. We show in these “balance” tests that program rollout is uncorrelated with changes in

these attributes (See Appendix Table A2), supporting the identification assumption described at the

beginning of Section 4.2. Finally, the event-study analysis detailed in Equation (2) helps identify

possible endogeneity issues, to the extent that they are reflected in pre-existing trends in the outcome

variable. We return to this issue below in the discussion of Figure 5, which will lend additional support
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to the identification assumption.

Bias in Staggered DID: A recent literature on difference-in-differences estimation indicates that

the two-way-fixed-effects (TWFE) estimator may be thought of as a weighted average of all potential

2 × 2 DID estimates among three groups, and can be biased when there are heterogeneous treatment

effects over time or across units (Goodman-Bacon, 2021; Callaway and Sant’Anna, 2021; Sun and

Abraham, 2021). This bias results from some of the 2 DID estimates entering the average with negative

weights, thus introducing biased estimates that dilute the true treatment effect. The “negative weight”

problem is primarily driven by comparisons between previously treated groups as controls and newly

treated groups.

Our results are not affected by the estimation concern mentioned above, as we are interested

in the brown-share-pollution gradient rather than the level of brown share itself. Our specification

can be viewed as a “stacked” difference-in-differences model, which produces an efficient estimator

for uncovering the aggregated treatment effect through OLS (Cengiz et al., 2019; Baker, Larcker and

Wang, 2022). In essence, we estimate the average treatment effect on the pollution gradient across

multiple “canonical” DiD regressions with two groups and clean pre- and post-periods.

To explore the analogy of TWFE in our setting, below we also estimate the event study specifi-

cation separately for investors located in the treated and control PIN Codes and plot the 𝛽𝑖 estimates.

As we discuss further in presenting our main results, we observe a significant shift in the brown-share-

pollution gradient, but only for investors in treated PIN Codes, lending support to the validity of the

parallel trend assumption.

5 Results

5.1 Visual Evidence

We begin with a visual presentation of how the brown-share-pollution gradient shifts with the introduc-

tion of local monitoring stations. We present our results in a canonical 2 × 2 difference-in-differences

setup, which is relatively transparent and easy to interpret, and later also show event-study plots to

highlight that these shifts coincide precisely with the arrival of monitoring stations.
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In each panel of Figure 4, we show a binned scatterplot that displays the relationship between

observed air quality and brown-share-holdings for both control and treated PIN Codes (top and bottom)

before and after the arrival of a monitoring station (left and right). We sort PIN-Code-month average

pollution into 100 buckets and plot average pollution against brown share. We adjust the local brown

share for the time-varying mean in a station area across both control and treated PIN Codes. Consistent

with a lack of attention to air quality, we observe no correlation between brown-share and air quality

before the appearance of a monitoring station in both treated and control PIN Codes (left two panels).

We similarly observe no relationship in control PIN Codes after a monitoring station appears (upper

right panel). We observe a distinct pattern in the lower right panel which shows the relationship

for nearby (treated) PIN Codes in the post-period – in this case there is a clear negative relationship

between air quality and the investors’ brown share holdings.

5.2 Baseline Estimation

Both to control for a wider array of geographic and temporal attributes, as well as to study how

the pollution-brown-share gradient evolves over time, we present an event-study plot of 𝛽𝑖 in Figure

5. The value of the coefficient for the quarter just before the event is set as the benchmark and

normalized to zero. The vertical axis provides the estimated change in the brown-share-pollution

gradient ( 𝜕𝐵𝑟𝑜𝑤𝑛𝑆ℎ𝑎𝑟𝑒
𝜕𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛

), and the horizontal axis provides the quarters relative to the monitoring program.

We observe two patterns. First, for the quarters leading up to the introduction of CAAQMs , the 𝛽𝑖

estimates are statistically indistinguishable from zero, lending support to the validity of the parallel

trend assumption. Second, the brown-share-pollution gradient becomes negative immediately after the

monitoring program rollout, with the estimated 𝛽 values in the range of -2 and -3 in the post-periods.

Table 2 presents our baseline regression results results based on Equation (1), where we test

the robustness of the patterns described above using different sets of fixed effects and controls (note

that for ease of interpretation, we demean the pollution variable in all specifications). We present

our most parsimonious model in Column 1, with PIN Code and year-month fixed effects. Columns 2

and 3 include interactive state-time and district-time fixed effects respectively, to absorb time-varying
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confounding effects at the regional level (i.e., changes in local economic conditions or employment)

and to allow for common trends specific to each region. Column 4 is the most stringent specification,

including interactive monitoring-station-time fixed effects and PIN Code fixed effects.16 Columns

5–8 provide analogous specifications, but include in addition controls for local trading activity and

weather. As explained in the preceding section, our primary interest is in the coefficient on the three-

way interaction of 𝑇𝑟𝑒𝑎𝑡𝑝 × 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 × 𝑃𝑜𝑠𝑡𝑚,𝑡 . This reflects the differential response of investors

to pollution after a monitoring station appears, in treated relative to control PIN Codes. The point

estimate of -2.4 in our favored specification in Column 8 implies that, relative to the pre-period, after

a monitoring station appears, an increase in pollution from the 25th percentile to the 75th percentile

(an AOD increase of 0.27, which is the within-station interquartile range) is associated with a decline

of the brown share in investors’ portfolios in treated areas by 0.65 percentage points (0.27*2.4). This

represents a 1.6 percent decrease relative to the mean brown share of 41 percent. In other words,

the brow-share-pollution elasticity becomes 3.2 percentage points more negative once a monitoring

station appears.17

Table 2 also demonstrates that retail investors’ investments in brown stocks in control PIN Codes

are unaffected by pollution both before and after the introduction of a monitoring station – that is, the

coefficients on the the 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 and 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛×𝑃𝑜𝑠𝑡 terms are both insignificant when𝑇𝑟𝑒𝑎𝑡𝑒𝑑 = 0.

This finding helps to validate our treated and control assignments, and mitigates potential concerns

over spatial spillovers.

To further highlight the fact that our findings are driven by shifts in treated PIN Codes around

the appearance of monitoring stations, we show event-study plots for treated and control investors

separately. Specifically, in Figure 6 we show the point estimates and 95% confidence intervals for

the coefficients generated by a variant of specification (2) above, in which we split the sample into

investors located in treated and control PIN Codes.

From an identification perspective, it is comforting that our measure of brown share investments

16These high-dimensional fixed effects essentially convert the model to a stack of "canonical" DiD regressions with unit fixed effects
and time fixed effects.

17The estimate change in brown-share-pollution elasticity is 0.65/41.87
0.27/0.54 = 3.2%
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is essentially flat in the two years (eight quarters) preceding the installation of a monitoring station for

both treated and control PIN Codes. At that point there is a clearly discernible shift in the sensitivity

of brown investment share to AOD in treated PIN Codes—higher AOD (i.e., worse pollution) is

associated with a lower brown share after a monitoring station arrives. We observe no such shift in

control PIN Codes. These patterns also mitigate a concern suggested by the lower-order terms in

the Table 2 – that treated PIN Codes may have had a lower sensitivity to pollution in treated PIN

Codes before the appearance of a monitoring station. This may result from the structure imposed by

the triple-interaction specification, which generally forces fixed effects and controls to have identical

coefficients for treatment and control investors. Our event plot suggests that this difference disappears

when we allow for the more flexible specification illustrated in the event plot (and similarly in the

alternative approach we introduce at the beginning of the next section, which accounts for a bias

resulting from staggered rollout, we do not observe a pre-CAAQMS difference).

5.3 Robustness and Interpretation

Alternate Definition of Control Groups: As discussed in Section 4.2, recent advances in applied

econometrics have shown that, when employed in staggered difference-in-differences (DID) settings,

two-way fixed effects models may yield biased coefficient estimates due to varying treatment effects

across time or units. As noted earlier, we believe that such concerns are less applicable to our setting, as

our primary focus is on the brown-share pollution gradient rather than the brown share level. Further,

our baseline specification uses a stacked difference-in-difference by using a control group of more

distant PIN Codes for every treated (nearby) PIN Code of a monitoring station. Nonetheless, to further

assess the robustness of our results, we adopt the stacked method outlined in prior research (Cengiz

et al., 2019; Baker, Larcker and Wang, 2022) and make comparisons of treated PIN Codes versus

not-yet-treated and/or never-treated PIN Codes, defined based on the timing of their treatment.

The basic idea is to create, for each treated cohort, “clean” datasets that combine the “treated”

PIN Codes (those within 20 kilometers of the station) with other nearby PIN Codes that serve as

controls. We consider two different approaches to choosing the “clean” controls within the treatment
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window for each treated cohort: (1) We include only observations for never-treated PIN Codes, i.e.,

those that were not treated during our sample period, as comparison groups in a given event window;(2)

we include “not-yet-treated” PIN Codes, defined as those that do not get treated within 4 years for

each treated cohort, in addition to the never-treated units.

We then stack the resultant datasets and estimate the following specification, which is similar to

the baseline analysis:

𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝,𝑐,𝑡 = 𝛽 × 𝑇𝑟𝑒𝑎𝑡𝑝 × 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 × 𝑃𝑜𝑠𝑡𝑐,𝑡 +
∑︁
𝑘

𝛼𝑘 ×𝑂𝑡ℎ𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠

+𝑋 ′
𝑝,𝑡\ + 𝛾𝑝,𝑐 + _𝑐,𝑡 + Y𝑝,𝑐,𝑡 (3)

where 𝑝, 𝑐, 𝑡 denote a PIN Code, cohort (dataset) and year-month, respectively. 𝛾𝑝,𝑐 and _𝑐,𝑡 represents

the PIN Code × Cohort and Cohort × Year-Month fixed effects. When controlling for Cohort × Year-

Month fixed effects, we ensure that the coefficients are estimated by comparing treated PIN Codes

solely to “clean” controls in their respective dataset. Appendix table A3 presents the results, which

show that the brown-share-pollution gradient across specifications ranges from -3.80 to -1.85, which

is broadly in line with our baseline findings.

Alternative Specifications: In Appendix Tables A4 and A5, we present a pair of robustness

checks for the main results. In Appendix Tables A4 we consider alternative cutoffs to define the

“treated’ group as those within 15 or 10 or 5 kilometers of a monitoring station; the point estimates

in our preferred within-station specification are virtually unchanged. Appendix Table A5 excludes

PIN Codes in the largest metropolitan areas—as explained in Section 2, these PIN Codes offer a less

straightforward delineation of treatment and control assignments. We observe substantially larger

point estimates on the three-way interaction.

Additional Stock Characteristics: A potential concern in interpreting our results is a possible

correlation between a stock’s “greenness” and other company-level attributes. While it is not obvious

ex ante why investor response to pollution should involve other attributes (and as such these variables

could be seen as bad controls), we nonetheless consider the possibility that the changes in green
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investment that we document may reflect shifts in portfolios along other dimensions. To address this

concern, we construct portfolio shares based on other stock traits, including size, age, and market-

to-book, and estimate the impact of the pollution information program on the elasticity of portfolio

shares with respect to pollution exposure. We adopt a similar approach to the one used in constructing

our primary variable, “brown share” . For example, we first define value/growth stocks as those with a

high/low book-to-market ratio (above/below the median of cross-sectional distribution at year t-1) and

then compute the average share of value stocks held by retail investors in PIN Code 𝑝 at time 𝑡. We

report the coefficient 𝛽 for the specification in Equation 1, using these portfolio shares as the dependent

variable in place of brown share. The results are presented in Panels A, B, and C of Appendix Table

A6, respectively. We do not observe in shifts in the sensitivity of these other portfolio characteristics

to pollution after the introduction of CAAQMSs18.

Preferences or Beliefs: The question naturally arises of whether portfolio adjustments are made

as a result of beliefs about the returns of green versus brown stocks, or a distaste for holding brown

stocks. While it is beyond the scope of our paper to evaluate whether tastes or beliefs drive investors’

portfolio changes, we can at least evaluate whether, during the period that monitoring stations were

opening, brown stocks underperformed in India or elsewhere. We show in Appendix Figure A5 the

cumulative returns of brown and green portfolios over the period January 2000 to December 2019 (see

Section 3 for details on the portfolios’ construction). Over any relevant horizon, the two portfolios

perform quite similarly, though with the brown portfolio actually generating higher returns. Given

this pattern, if beliefs explained our main results, they would necessarily stem from from erroneous

expectations of negative brown stock returns. To the extent that investors hold unbiased beliefs, our

findings are more readily reconciled with taste-based explanations.

5.4 Response to High-Salience Changes in Air Quality

Thus far, we have posited that the increased salience of pollution via CAAQMSs is responsible for

the increased sensitivity of investors’ green portfolios to air quality. In this section, we explore a

potentially more direct link to salience as an explanation, based on high-frequency changes around
18In unreported results, we confirm that there is little shift in the average stock characteristics for the portfolio held by local investors.
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particularly salient shifts in air quality. To do so, we look at transitions across the color-coded Air

Quality Index (AQI) categories used by the Central Pollution Control Board to communicate pollution

severity to the public. We focus on the transition from Moderate (yellow) to Poor (amber) at an AQI

cutoff of 200, which is particularly important in terms of government communication: “amber alerts”

government messages via social media and elsewhere, warning that prolonged exposure to outside air

may cause breathing discomfort and respiratory problems; the government also recommends the use

of masks when the AQI is above 20019.20.

We study responsiveness around the yellow-amber transition using PIN Code-day observations

in the range of 100 to 300 (i.e., 100 units above and below the cutoff). We begin by presenting visual

evidence of this relationship in the left panel of Figure 7, which provides a regression discontinuity plot

for local brown share, using distance to the “yellow-amber” threshold of 200 as the running variable

and a local linear trend on each side of the discontinuity. Consistent with our previous findings, we

observe a negative relation between local air quality and brown share, at the higher frequency of

observation we use in this analysis. In addition, we observe a clear discontinuity at the yellow-amber

cutoff, with a discernable drop in portfolio brown share at AQI = 200 (i.e., the level that triggers amber

alert warnings).21 In the right panel of Figure 7, we show that analogous pattern for control Pin Codes

and observe no such discontinuous effect (nor do we a general negative relationship between pollution

and brown share).

We provide the results of our RD analysis in Table 3, following the procedure outlined by

Armstrong and Kolesár (2018) to select the optimal bandwidth and construct confidence intervals.

Specifically, we begin with the rule-of-thumb choice of the smoothness constant,𝑀𝑟𝑜𝑡 , and also confirm

robustness using different choices. Across all specifications in Table 3, the coefficient of interest is

19For example, as part of the National Programme for Climate Change and Human Health (NPCCHH) initiative, the Indian government
issue alerts to the general population to raise awareness about health concerns and risk reduction from exposure to pollution.
https://ncdc.gov.in/WriteReadData/l892s/3065716611669017053.pdf

20Government messaging continues at higher AQIs, with more dire messages as the AQI transitions to red (“respiratory illness with long
exposure”). We do not emphasize this transition in the main text for two reasons. First, we see a sharper distinction between yellow
and amber in the sense that it causes a shift from no-warning to warning, as compared to simply a transition to a marginally more
extreme warning. Second, pollution in the high-200s and above is arguably so severe that pollution becomes very salient irrespective
of any color coding. We do provide results on the amber-to-red transition in the appendix material, and do not find any significant
shift around this change. Finally, note that the Central Pollution Control Board of India uses six categories in total, with each level
accompanied by different health advisories. AQI statistics and color categories are available at https://app.cpcbccr.com/AQI_India/

21We do not observe any change around the amber-red cutoff – see Appendix Figure A4.
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negative and statistically significant. In economic terms, Panel A shows that portfolio brown share is

0.65 to 0.91 percentage points (1.66% to 2.22% in relative terms) lower when AQI is just above the

amber-alert cutoff.22

Overall, we take our RD estimates as bolstering our salience-based interpretation of our main

results, given the pronounced shift in brown share portfolio allocations above a threshold that triggers

greater visibility of pollution’s harmfulness.

5.5 Heterogeneity by investor type

We provide some exploratory analyses based on several attributes of traders that potentially relate to

propensity to access local pollution information and/or concern for the environment, including age,

gender, and whether investors primarily execute trades via mobile, internet, or more traditional means.

We naturally do not have random assignment or any close approximation to it for these attributes,

and as such the results should be interpreted with caution. Still, the patterns are interesting to consider

as an extension to our main results given that, based on intuition as well as past research, one may

have prior expectations about which groups may have greater sensitivity to pollution salience.

Tech-Savvy Investors: We begin by comparing sensitivity of green investment to pollution

based on whether an investor predominantly makes trades via (a) mobile, (b) internet, or (c) broker

or other “traditional” method. As observed in the introduction, given that the public predominantly

obtained AQI updates via smartphone, it is natural to speculate that more tech savvy investors—who

use their mobile devices to execute trades—would be more exposed to pollution updates.

In Figure 8, panel A (the corresponding regression results are in Appendix Tables A8), we show

event-study plots for responsiveness to air quality information disaggregated by investors’ primary

means of trading. As may readily be seen in the graph, the largest effect is observed among investors

who use mobile devices to trade. The confidence intervals of the other two groups—internet and

physical trading—are largely overlapping, though the effect of monitoring stations is marginally

greater for internet-based traders.

22As already suggested by our graphical results, we do not find any significant effect when AQI transitions from amber to red, which
we show in Appendix Table A7.
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Investor’s Demographic Profiles: We next turn to explore heterogeneity by age. Before

turning to these results, it is worth noting that, while younger investors are more frequently classified

as “mobile” traders, the differences are surprisingly modest relative to middle-aged investors: 13

percent of younger investors are classified as mobile, as compared to 10 percent of middle-aged

investors (elderly investors are indeed far less likely to use mobile devices for trades—only 3.7 percent

of the elderly in our sample are classified as mobile).

More importantly, putting aside technological concerns, there are reasons to expect differential

responsiveness to pollution information by age. First, a vast literature documents a very strong

negative correlation between environmental concerns and age—unsurprising, given that the young

will disproportionately bear the consequences of climate change and environmental degradation.23

Of more direct relevance, recent survey-based evidence finds higher stated interest in ESG amongst

younger investors and lower interest amongst older investors (Haber et al., 2022). An alternative

hypothesis is that the elderly might be more sensitive to information on air pollution, because they

are far more vulnerable to the effects of air pollution (see Gouveia and Fletcher, 2000; Fischer et al.,

2003).

In Figure 8, panel B, we revisit our main event plot, disaggregating the sample into young

(18-29), middle-aged (30-55), and elderly (above 56) investors; the corresponding regression results

are in Appendix Table A9. We observe a substantially greater shift in brown-investment-to-pollution

sensitivity amongst the young, relative to the other two age groups. While we cannot put too strong an

interpretation around this finding, we see this particular result as reinforcing the above-cited evidence

on the age distribution of interest in ESG investing, which may be of direct practical relevance.

Finally, we split the sample by gender. As noted in the introduction, there is an ex ante rationale

for a differential response given past work on a “gender environmentalism gap” (e.g., Xiao and

McCright, 2015). We illustrate the differential response by gender in the event plots in Figure 8 panel

C. The gender difference is striking—women exhibit a responsiveness that is 2-3 times greater than

23See, e.g., Liere and Dunlap (1980), for an early and well-cited review which describes age as the “predominant” individual attribute
that is correlated with environmental concerns; a more recent review article by Sanchez-Sabate and Sabaté (2019) similarly finds an
important role for age, focused specifically on environmental concerns and meat consumption.
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that of men. Observe that the male point estimates are more precisely estimated, and also much closer

to the full-sample estimates, which reflects the fact that most Indian retail investors are men. For

completeness, we also provide the tabular version of the gender split in Appendix Table A10, which

provides the same message as the event plots.

Our final “heterogeneity” test explores whether we see a comparable shift in responsiveness for

institutional investors as observed in our sample of retail investors, which has been our focus to this

point. We present these results in Appendix Figure A6. If anything, institutional investors’ response

to the availability of air quality information moves in the opposite direction to that of retail investors,

though we cannot reject that institutions are simply unaffected by the appearance of real-time pollution

data. There are various potential explanations for this non-result. The most natural is that institutional

investors may be less sensitive to “taste-based” shifts in investing. However, we may also simply have

a less-precise mapping of AQI to relevant location, since the PIN Code for an institutional investor

reflects their place of work rather than residence. More broadly, we interpret this non-result with

caution, relative to our main findings on retail investors.

6 Conclusion
We document that exposing investors to ready information about air pollution heightens the sensitivity

of their “brown” investments to air quality. We interpret these findings through the lens of salience, in

the spirit of Bordalo, Gennaioli and Shleifer (2013) among others — ready access to air quality data

makes this information a more salient input into investment decisions.

As we noted in our discussion of the results, this shift comes despite the fact that returns for

a long-short green-brown portfolio does not generate any excess returns—if investors adjust their

portfolios in the expectation of higher returns, the shift is not justified by realized outcomes. That said,

we cannot identify whether the shift we document is driven by mistaken beliefs, or shifts in investor

tastes as a result of greater attentiveness to environmental problems. Distinguishing between these

two explanations is one important future direction, and one that we plan to pursue going forward.

Finally, our findings highlight a role for salience in driving portfolio allocations. To the extent
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that it is desirable to shift investments away from brown firms (itself a debated point), it may be useful

to implement policies that highlight environmental problems in ways that draw investors’ attention in

particular.

28



References
Agee, Mark D, Scott E Atkinson, Thomas D Crocker, and Jonathan W Williams. 2014. “Non-

separable pollution control: Implications for a CO2 emissions cap and trade system.” Resource and
Energy Economics, 36(1): 64–82.

Alok, Shashwat, Nitin Kumar, and Russ Wermers. 2020. “Do fund managers misestimate climatic
disaster risk.” The Review of Financial Studies, 33(3): 1146–1183.

Armstrong, Timothy B, and Michal Kolesár. 2018. “Optimal inference in a class of regression
models.” Econometrica, 86(2): 655–683.

Baker, Andrew C, David F Larcker, and Charles CY Wang. 2022. “How much should we trust
staggered difference-in-differences estimates?” Journal of Financial Economics, 144(2): 370–395.

Balasubramaniam, Vimal, John Y Campbell, Tarun Ramadorai, and Benjamin Ranish. 2023.
“Who owns what? A factor model for direct stockholding.” The Journal of Finance, 78(3): 1545–
1591.

Baldauf, Markus, Lorenzo Garlappi, and Constantine Yannelis. 2020. “Does climate change affect
real estate prices? Only if you believe in it.” The Review of Financial Studies, 33(3): 1256–1295.

Bansal, Ravi, Dana Kiku, and Marcelo Ochoa. 2016. “Price of long-run temperature shifts in capital
markets.” National Bureau of Economic Research.

Barwick, Panle Jia, Shanjun Li, Liguo Lin, and Eric Zou. 2019. “From fog to smog: The value of
pollution information.” National Bureau of Economic Research.

Bau, Natalie, and Adrien Matray. 2023. “Misallocation and capital market integration: Evidence
from India.” Econometrica, 91(1): 67–106.

Ben-David, Itzhak, and David Hirshleifer. 2012. “Are investors really reluctant to realize their
losses? Trading responses to past returns and the disposition effect.” The Review of Financial
Studies, 25(8): 2485–2532.

Berg, Florian, Julian F Koelbel, Anna Pavlova, and Roberto Rigobon. 2022. “ESG confusion and
stock returns: Tackling the problem of noise.” National Bureau of Economic Research.

Berry, Steven T. 1994. “Estimating discrete-choice models of product differentiation.” The RAND
Journal of Economics, 242–262.

Bordalo, Pedro, Nicola Gennaioli, and Andrei Shleifer. 2013. “Salience and asset prices.” American
Economic Review, 103(3): 623–28.

Callaway, Brantly, and Pedro HC Sant’Anna. 2021. “Difference-in-differences with multiple time
periods.” Journal of Econometrics, 225(2): 200–230.

Cengiz, Doruk, Arindrajit Dube, Attila Lindner, and Ben Zipperer. 2019. “The effect of minimum
wages on low-wage jobs.” The Quarterly Journal of Economics, 134(3): 1405–1454.

29



Choi, Darwin, Zhenyu Gao, and Wenxi Jiang. 2020. “Attention to global warming.” The Review of
Financial Studies, 33(3): 1112–1145.

Cosemans, Mathĳs, and Rik Frehen. 2021. “Salience theory and stock prices: Empirical evidence.”
Journal of Financial Economics, 140(2): 460–483.

Fischer, P, G Hoek, B Brunekreef, A Verhoeff, and J Van Wĳnen. 2003. “Air pollution and
mortality in The Netherlands: are the elderly more at risk?” European respiratory journal, 21(40
suppl): 34s–38s.

Frydman, Cary, Samuel M Hartzmark, and David H Solomon. 2018. “Rolling mental accounts.”
The Review of Financial Studies, 31(1): 362–397.

Goldberg, Pinelopi Koujianou, Amit Kumar Khandelwal, Nina Pavcnik, and Petia Topalova.
2010. “Imported intermediate inputs and domestic product growth: Evidence from India.” The
Quarterly journal of economics, 125(4): 1727–1767.

Goodman-Bacon, Andrew. 2021. “Difference-in-differences with variation in treatment timing.”
Journal of Econometrics, 225(2): 254–277.

Görgen, Maximilian, Andrea Jacob, Martin Nerlinger, Ryan Riordan, Martin Rohleder, and
Marco Wilkens. 2020. “Carbon risk.” Available at SSRN 2930897.

Gouveia, Nelson, and Tony Fletcher. 2000. “Time series analysis of air pollution and mortality:
effects by cause, age and socioeconomic status.” Journal of Epidemiology & Community Health,
54(10): 750–755.

Graff Zivin, Joshua, and Matthew Neidell. 2013. “Environment, health, and human capital.” Journal
of economic literature, 51(3): 689–730.

Greenstone, Michael, Guojun He, Ruixue Jia, and Tong Liu. 2022. “Can technology solve the
principal-agent problem? Evidence from China’s war on air pollution.” American Economic Review:
Insights, 4(1): 54–70.

Gulia, Sunil, Nidhi Shukla, Lavanya Padhi, Parthaa Bosu, SK Goyal, and Rakesh Kumar. 2022.
“Evolution of air pollution management policies and related research in India.” Environmental
Challenges, 6: 100431.

Haber, Stephen, John D Kepler, David F Larcker, Amit Seru, and Brian Tayan. 2022. “ESG
Investing: What Shareholders Do Fund Managers Represent?” Rock Center for Corporate Gover-
nance at Stanford University Working Paper.

Hong, Harrison, and Marcin Kacperczyk. 2009. “The price of sin: The effects of social norms on
markets.” Journal of financial economics, 93(1): 15–36.

Hong, Harrison, Frank Weikai Li, and Jiangmin Xu. 2019. “Climate risks and market efficiency.”
Journal of econometrics, 208(1): 265–281.

Hong, Harrison, G Andrew Karolyi, and José A Scheinkman. 2020. “Climate finance.” The Review
of Financial Studies, 33(3): 1011–1023.

30



Huberman, Gur, and Tomer Regev. 2001. “Contagious speculation and a cure for cancer: A nonevent
that made stock prices soar.” The Journal of Finance, 56(1): 387–396.

Jiang, Han, Le Lexi Kang, Ziye Zoe Nie, and Hui Zhou. 2022. “Can Old Sin Make New Shame?
Stock Market Reactions to the Release of Movies Re-Exposing Past Corporate Scandals.” Available
at SSRN 884269.

Khanna, Tarun, and Krishna Palepu. 2000. “Is group affiliation profitable in emerging markets?
An analysis of diversified Indian business groups.” The journal of finance, 55(2): 867–891.

Krey, Volker, O Masera, G Blanford, T Bruckner, R Cooke, K Fisher-Vanden, H Haberl, E
Hertwich, E Kriegler, D Mueller, et al. 2014. “Annex 2-metrics and methodology.”

Liere, Kent D Van, and Riley E Dunlap. 1980. “The social bases of environmental concern: A review
of hypotheses, explanations and empirical evidence.” Public opinion quarterly, 44(2): 181–197.

Lin, Xiaohui, Ruqi Yang, Wen Zhang, Ning Zeng, Yu Zhao, Guocheng Wang, Tingting Li,
and Qixiang Cai. 2023. “An integrated view of correlated emissions of greenhouse gases and air
pollutants in China.” Carbon Balance and Management, 18(1): 9.

Li, Ye, Eric J Johnson, and Lisa Zaval. 2011. “Local warming: Daily temperature change influences
belief in global warming.” Psychological science, 22(4): 454–459.

Lujala, Päivi, Haakon Lein, and Jan Ketil Rød. 2015. “Climate change, natural hazards, and risk
perception: the role of proximity and personal experience.” Local Environment, 20(4): 489–509.

Moss, Austin, James P Naughton, and Clare Wang. 2023. “The Irrelevance of Environmental,
Social, and Governance Disclosure to Retail Investors.” Management Science.

Murfin, Justin, and Matthew Spiegel. 2020. “Is the risk of sea level rise capitalized in residential
real estate?” The Review of Financial Studies, 33(3): 1217–1255.

Pant, Pallavi, Raj M Lal, Sarath K Guttikunda, Armistead G Russell, Ajay S Nagpure, Anu
Ramaswami, and Richard E Peltier. 2019. “Monitoring particulate matter in India: recent trends
and future outlook.” Air Quality, Atmosphere & Health, 12(1): 45–58.

Pedersen, Lasse Heje, Shaun Fitzgibbons, and Lukasz Pomorski. 2021. “Responsible investing:
The ESG-efficient frontier.” Journal of Financial Economics, 142(2): 572–597.

Pelizzon, Loriana, Aleksandra Rzeznik, and Kathleen Weiss Hanley. 2021. “The salience of ESG
ratings for stock pricing: Evidence from (potentially) confused investors.”

Rees, Nicholas, Amy Wickham, and Lawrence Chandy. 2019. “Silent Suffocation in Africa.”
UNICEF Report.

Roychowdhury, Anumita, Avikal Somvanshi, and Sharanjeet Kaur. 2023. “Status of air quality
monitoring in India: Spatial spread, population coverage and data completeness.” Urban Lab -
Centre for Science and Environment Analysis.

31



Sanchez-Sabate, Ruben, and Joan Sabaté. 2019. “Consumer attitudes towards environmental con-
cerns of meat consumption: A systematic review.” International journal of environmental research
and public health, 16(7): 1220.

Sun, Liyang, and Sarah Abraham. 2021. “Estimating dynamic treatment effects in event studies
with heterogeneous treatment effects.” Journal of Econometrics, 225(2): 175–199.

Tsai, Tzu-Chin, Yung-Jyh Jeng, D Allen Chu, Jen-Ping Chen, and Shuenn-Chin Chang. 2011.
“Analysis of the relationship between MODIS aerosol optical depth and particulate matter from
2006 to 2008.” Atmospheric Environment, 45(27): 4777–4788.

Van Donkelaar, Aaron, Randall V Martin, and Rokjin J Park. 2006. “Estimating ground-level
PM2. 5 using aerosol optical depth determined from satellite remote sensing.” Journal of Geophys-
ical Research: Atmospheres, 111(D21).

Xiao, Chenyang, and Aaron M McCright. 2015. “Gender differences in environmental concern:
Revisiting the institutional trust hypothesis in the USA.” Environment and Behavior, 47(1): 17–37.

Zaval, Lisa, Elizabeth A Keenan, Eric J Johnson, and Elke U Weber. 2014. “How warm days
increase belief in global warming.” Nature Climate Change, 4(2): 143–147.

32



Figure 1: Geographic Distribution and Rollout of Continuous Ambient Air Quality Monitoring Stations

(a) Geographic Distribution of Continuous Ambient Air Quality
Monitoring Stations

(b) Timing of Rollout of Continuous Ambient Air Quality Monitor-
ing Stations

Note: Panel A plots the geographic locations of the Continuous Ambient Air Quality Monitoring Sta-
tions(CAAQMSs) across India. Panel B shows the number of CAAQMSs introduced each year.
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Figure 2: Distribution of Green and Brown Stocks over Time

(a) Brown versus Green Stocks – number of stocks (b) Brown versus Green Stock – market capitalization of stocks

(c) Share of Brown Stocks

Note: This figure plots the distribution of green and brown stock holding over the years in the market. Panel A
presents the number of green and brown stocks over time, while Panel B presents the market capitalization of
green vs brown stocks. Panel C presents the market share of brown stocks (in terms of market capitalization)
among all publicly traded equities in India.
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Figure 3: Pollution Levels Around CAAQMS Installation

Note: This figure plots the trend in pollution following the installation of Continuous Ambient Air Quality
Monitoring Stations. Specifically we plot the coefficient {𝛽𝑖} from the following specification:

𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝 (𝑚) ,𝑡 =
6∑︁

𝑖=−6
𝛽𝑖 × 𝑇𝑟𝑒𝑎𝑡𝑝 × 1(𝑡 = 𝑖) + 𝑋

′
𝑝,𝑡\ + 𝛾𝑝 + _𝑚,𝑡 + Y𝑝,𝑡

where 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝 (𝑚) ,𝑡 denotes the average pollution in PIN Code 𝑝 belonging to a monitoring station area 𝑚 at
time 𝑡. A station area 𝑚 includes treated PIN Codes (those within 20 kilometers of the station) and also control
PIN Codes (40-60 kilometers from the station). 𝑇𝑟𝑒𝑎𝑡𝑝 is an indicator variable which denotes PIN Codes that
are in the treated group. 𝑋𝑝,𝑡 is a set of controls for PIN Code 𝑝 at time 𝑡, including local trading activities(no.
of retail investors, total turnover by retail investors) and weather conditions(rainfall, temperature). 𝛾𝑝 is a set
of PIN Code fixed effects and _𝑚,𝑡 is a set of station area × time fixed effects. The graph shows the estimated
coefficients {𝛽𝑖} as well as 95% confidence intervals obtained from standard errors clustered at the PIN Code
level.
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Figure 4: Correlation of Brown Share and Pollution – Control versus Treated PIN Codes

Note: This figure presents scatter plots relating the share of brown stocks and local pollution for both the control and treated
groups before and after the installation of Continuous Ambient Air Quality Monitoring Stations. We categorize pollution
into 100 buckets and plot the average pollution against the average brown share holdings. The brown share is adjusted for
the time-varying mean in a station area for both the control and treatment groups. The top two panels represent the control
PIN Codes, while the bottom two panels represent the treated PIN Codes. The left two panels show the relationship prior
to the installation of CAAQMS, while the right two panels show the relationship after the installation.
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Figure 5: Sensitivity of Brown Share to Pollution

Note: This figure plots the sensitivity of brown investment to local pollution before and after the installation
of Continuous Ambient Air Quality Monitoring Stations. Specifically we plot the coefficient {𝛽𝑖} from the
following specification:

𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝 (𝑚) ,𝑡 =

6∑︁
𝑖=−6

𝛽𝑖 × 𝑇𝑟𝑒𝑎𝑡𝑝 × 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 × 1(𝑡 ∈ 𝑖)𝑚,𝑡 +
∑︁
𝑘

𝛼𝑘 ×𝑂𝑡ℎ𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠

+𝑋 ′
𝑝,𝑡\ + 𝛾𝑝 + _𝑚,𝑡 + Y𝑝,𝑡

where 𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝 (𝑚) ,𝑡 denotes the average share of brown stocks held by retail investors in PIN Code 𝑝

belonging to a station area 𝑚 at time 𝑡. A station area 𝑚 includes both treated (those within 20 kilometers of
the station) and control PIN Codes (40-60 kilometers from the station). 𝑇𝑟𝑒𝑎𝑡𝑝 is an indicator variable which
denotes PIN Codes that are in the treated group. 𝑋𝑝,𝑡 is a set of controls for PIN Code 𝑝 at time 𝑡, including
local trader and weather characteristics (see text for details). 𝛾𝑝 is a set of PIN Code fixed effects and _𝑚,𝑡

is a set of station area × time fixed effects. The graph shows the estimated coefficients {𝛽𝑖} as well as 95%
confidence intervals obtained from standard errors clustered at the PIN Code level.
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Figure 6: Sensitivity of Brown Share to Pollution – Control versus Treated

Note: This figure plots the sensitivity of brown investment to pollution before and after the installation of Con-
tinuous Ambient Air Quality Monitoring Stations separately for the control and treatment groups. Specifically,
we plot the coefficient {𝛽𝑖} from the following specification separately for the control and treatment groups:

𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝 (𝑚) ,𝑡 =
6∑︁

𝑖=−6
𝛽𝑖 ·𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 ×1(𝑡 ∈ 𝑖)𝑚,𝑡 +

∑︁
𝑘

𝛼𝑘 ×𝑂𝑡ℎ𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠+𝑋 ′
𝑝,𝑡\ +𝛾𝑝 +_𝑡 +Y𝑝,𝑡

where 𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝 (𝑚) ,𝑡 denotes the average share of brown stocks of retail investors in PIN Code 𝑝 belonging
to a station area 𝑚 at time 𝑡. A station area 𝑚 includes treated PIN Codes (those within 20 kilometers of the
station) and also control PIN Codes (40-60 kilometers from the station). 𝑇𝑟𝑒𝑎𝑡𝑝 is an indicator variable which
denotes PIN Codes that are in the treated group. 𝑋𝑝,𝑡 is a set of controls for PIN Code 𝑝 at time 𝑡, including
local trader and weather (see text for details). 𝛾𝑝 is a set of PIN Code fixed effects and _𝑡 is time fixed effects.
The graph shows the estimated coefficients {𝛽𝑖} as well as 95% confidence intervals obtained from standard
errors clustered at the PIN Code level.
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Figure 7: Regression Discontinuity Plots for Brown Share versus Air Quality Readings

(a) Treated PINCodes (b) Control PINCodes

Note: The figure presents RD plots for PIN-Code-day level portfolio brown shares among treated (left panel)
and control(right panel) investors and local AQI readings. We plot the mean value of portfolio brown shares,
binned by AQI, as well as the fitted local linear trend (along with 95% confidence intervals) around the critical
AQI cutoffs, 200, the cutoff between “Moderate” (yellow) and “Poor” (amber) pollution.
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Figure 8: Changes in Brown-Share- Pollution Gradient: Hetergeneity

(a) Heterogeneity by trading technology (b) Heterogeneity by age

(c) Heterogeneity by gender

Note: This figure shows the sensitivity of brown investment to pollution before and after the installation of
Continuous Ambient Air Quality Monitoring Stations for different groups of investors. Specifically we plot the
coefficient {𝛽𝑖} from the following specification in Table 2, splitting the investor sample by various attributes.
Panel A shows heterogeneity by trading technology, Panel B shows heterogeneity by age, and Panel C shows
heterogeneity by gender. In each case, the graph shows the estimated coefficients {𝛽𝑖} as well as 95% confidence
intervals obtained from standard errors clustered at the PIN Code level.

40



Table 1: Summary Statistics

mean sd min p5 p10 p25 p50 p75 p90 p95 max

Average Brown Share Holding% 41.876 9.343 0.000 28.040 32.590 37.670 41.840 45.840 51.190 56.010 100.000

Average Brown Share Holding Female% 41.194 19.085 0.000 4.280 18.080 32.980 41.160 48.400 61.580 76.400 100.000

Average Brown Share Holding Male% 41.935 9.644 0.000 27.640 32.340 37.600 41.900 46.010 51.540 56.580 100.000

Average Brown Share Holding Young% 40.414 17.615 0.000 9.500 20.720 32.030 39.970 47.790 59.270 70.760 100.000

Average Brown Share Holding MidAged% 41.943 11.481 0.000 24.440 30.750 37.180 41.910 46.490 53.100 59.250 100.000

Average Brown Share Holding Old% 42.839 16.066 0.000 15.100 26.390 36.540 42.490 48.450 59.390 70.290 100.000

Pollution AOD 0.543 0.217 0.031 0.264 0.305 0.387 0.505 0.656 0.843 0.954 1.880

No. of Investors(Log) 3.861 1.805 0.693 1.099 1.609 2.485 3.638 4.970 6.541 7.288 10.384

Turnover(Log) 16.846 2.891 0.140 11.407 12.925 15.256 17.195 18.801 20.265 21.028 24.848

Rain 3.171 5.322 0.000 0.000 0.000 0.050 0.940 4.170 9.020 13.140 109.590

Temperature 25.764 4.916 3.290 15.750 18.280 23.410 26.620 29.270 31.230 32.500 36.510

Note: This table reports the summary statistics of the key variable used for the empirical analysis
in this paper. The summary statistics are for the universe of Indian retail investors who trade on the
National Stock Exchange, aggregated at the PIN-Code-month level. We report the average share of
brown stocks for retail investors overall, and also disaggregated by gender and age cohort.
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Table 2: The Impact of Air Quality Information via CAAQMS on the Brown-Share-Pollution
Gradient

(1) (2) (3) (4) (5) (6) (7) (8)
Dep. Var. = Brown Share(%)

Pollution×Treated×Post -1.5319** -2.1017** -1.7251* -2.5007*** -1.3634* -2.0087** -1.5687 -2.4050**
(0.7715) (0.8397) (0.9762) (0.9617) (0.7675) (0.8365) (0.9739) (0.9607)

Pollution×Treated 0.7576* 1.1183*** 0.9427* 1.2966*** 0.6620* 1.0331** 0.8627* 1.2234**
(0.3914) (0.4283) (0.4958) (0.4835) (0.3893) (0.4270) (0.4945) (0.4826)

Pollution×Post 0.2348 0.8557 0.7933 2.0042 -0.0026 0.7614 0.7592 1.8593
(0.5419) (0.6750) (0.6974) (1.6520) (0.5387) (0.6729) (0.6951) (1.6451)

Treat×Post 0.9842*** 0.6365** 0.5494 0.6440** 0.5404** 0.3639 0.3871 0.3974
(0.2711) (0.2733) (0.3393) (0.3027) (0.2670) (0.2704) (0.3367) (0.2995)

Pollution -0.2475 -0.6442* -0.4243 -1.0167 -0.1799 -0.5311 -0.4084 -0.9371
(0.2557) (0.3894) (0.7409) (0.7642) (0.2530) (0.3883) (0.7372) (0.7607)

Post -0.2702 -0.0112 -0.0175 -0.1455 0.0196 -0.0172
(0.1658) (0.1946) (0.2513) (0.1645) (0.1942) (0.2509)

No. of Investors(Log) -2.1658*** -1.6583*** -1.3128*** -1.5185***
(0.1905) (0.1987) (0.2034) (0.2034)

Turnover(Log) -0.0971** -0.1069*** -0.0955** -0.1023**
(0.0406) (0.0407) (0.0413) (0.0409)

Rainfall -0.0024 -0.0079 -0.0011 -0.0114
(0.0040) (0.0054) (0.0084) (0.0101)

Temperature 0.0100 -0.0561* -0.1447** -0.0566
(0.0066) (0.0312) (0.0572) (0.0734)

Pincode Y Y Y Y Y Y Y Y
Year-month Y Y
State×Year-month Y Y
District×Year-Month Y Y
Station×Year-month Y Y

Observations 499,036 499,036 488,681 498,310 499,036 499,036 488,681 498,310
R-squared 0.537 0.546 0.599 0.560 0.540 0.548 0.600 0.561

Note: This table studies the elasticity of the share of brown stocks held in investors’ portfolios with respect to information on pollution
following the installation of Continuous Ambient Air Quality Monitoring Stations. Specifically we report the coefficient 𝛽 from the
following specification:

𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝(𝑚),𝑡 = 𝛽 × 𝑇𝑟𝑒𝑎𝑡𝑝 × 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 × 𝑃𝑜𝑠𝑡𝑚,𝑡 +
∑︁
𝑘

𝛼𝑘 ×𝑂𝑡ℎ𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑋
′
𝑝,𝑡\ + 𝛾𝑝 + _𝑚,𝑡 + Y𝑝,𝑡

where 𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝(𝑚),𝑡 denotes the average share of brown stocks of retail investors in PIN Code 𝑝 belonging to a station area 𝑚

at time 𝑡. A station area 𝑚 includes treated PIN Codes (those within 20 kilometers of the station) and also control PIN Codes (40-60
kilometers from the station. 𝑇𝑟𝑒𝑎𝑡𝑝 is an indicator variable which denotes PIN Codes that are in the treated group.The binary variable
𝑃𝑜𝑠𝑡𝑚,𝑡 represents the information shock and is equal to one after the installation of a local monitoring station. We demean the pollution
variable to enhance the interpretability of the coefficient. 𝑋𝑝,𝑡 is a set of controls for PIN Code 𝑝 at time 𝑡, including local trader and
weather characteristics (see text for details). 𝛾𝑝 is a set of PIN Code fixed effects and _𝑚,𝑡 is a set of station area × time fixed effects.
Columns 1-4 report results without controls 𝑋𝑝,𝑡 while columns 5-8 report results with these controls. Standard errors are clustered at
the PIN Code level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 3: Regression Discontinuity Estimates: AQI Transition from "Moderate" to "Poor"

(1) (2) (3) (4) (5) (6)

smoothness constant M band-width estimate Lower CI Upper CI

Panel A Treated PIN Codes
Kernel = Uniform

0.1*M_rot 0.0001 41 -0.65 -0.8297 -0.4703
0.5*M_rot 0.0007 21 -0.9145 -1.1638 -0.6652
M_rot 0.0014 16 -0.8878 -1.1747 -0.6009
5*M_rot 0.0071 8 -0.6721 -1.0825 -0.2616
10*M_rot 0.0143 6 -0.9334 -1.4149 -0.4519

Kernel = Triangle

0.1*M_rot 0.0001 52.36 -0.6813 -0.8565 -0.5061
0.5*M_rot 0.0007 27.85 -0.8361 -1.0793 -0.593
M_rot 0.0014 20.92 -0.8513 -1.1321 -0.5705
5*M_rot 0.0071 11.20 -0.7361 -1.1386 -0.3337
10*M_rot 0.0143 8.38 -0.7461 -1.2204 -0.2718

Panel B Control PIN Codes
Kernel = Uniform

0.1*M_rot 0.0001 40 -0.117 -0.2712 0.0372
0.5*M_rot 0.0007 21 -0.1156 -0.3298 0.0986
M_rot 0.0013 15 -0.0892 -0.3372 0.1588
5*M_rot 0.0067 8 -0.0001 -0.3511 0.3509
10*M_rot 0.0134 6 -0.167 -0.5776 0.2436

Kernel = Triangle

0.1*M_rot 0.0001 50.64 -0.1372 -0.2874 0.013
0.5*M_rot 0.0007 26.94 -0.0812 -0.2898 0.1275
M_rot 0.0013 20.24 -0.0999 -0.3412 0.1413
5*M_rot 0.0067 10.83 -0.1169 -0.4601 0.2263
10*M_rot 0.0134 8.16 -0.1439 -0.5453 0.2575

Note: The values reported here are RD estimates around the AQI cutoff of 200 at which the air quality index category
switch from “Moderate”(yellow) to “Poor”(amber) Panel A and B presents the esimstate for the treated and control
PINCodes, respectively. We follow the inference procedure of Armstrong and Kolesár (2018) to select the optimal
bandwidth and to construct the confidence interval. 𝑀𝑟𝑜𝑡 indicates the rule-of-thumb choice of the smoothness constant,
M. We also vary M as form of sensitivity analysis. The unit of observation is PIN-Code-day.
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Figure A1: Geography of NSE investors

Note: This figure shows the geographic distribution of retail investors across districts who trade on the National
Stock Exchange from January 2004 to June 2020.
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Figure A2: Illustrative Cases of Treatment and Control Assignment

(a) Single-station Example (b) Two-station Example

Note: This figure illustrates our treatment and control assignments in the ‘simple’ case of Jodhpur (which has
a single monitoring station) and the more complicated case of two overlapping stations in Delhi. PIN Codes
within the inner 20 kilometer circles are “treated”, while those between 40 and 60 kilometers are “control” units.
In the case of overlapping treatment regions, treatment assignment is to the first monitoring station installed (the
right one in this case); we use a similar approach for overlapping control areas. If a treatment and control areas
overlap, assignment is to the treatment area.
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Figure A3: Correlation between AQI and AOD

Note: This figure plots the average air quality index(AQI) by 100 equal bins of Aerosol Optical Depth (AOD)
after the installation of monitoring stations (when both measures are available).
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Figure A4: RD Plots for Brown Share versus AQI: Transition from Amber to Red

(a) Treated PINCodes (b) Control PINCodes

Note: The figure presents RD plots for PIN-Code-day level portfolio brown shares among treated (left panel)
and control(right panel) investors and local AQI readings. We plot the mean value of portfolio brown shares,
binned by AQI, as well as the fitted local linear trend (along with 95% confidence intervals) around the critical
AQI cutoffs, 300, the cutoff between “Poor” (amber) and “Very Poor” (red) pollution.
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Figure A5: Returns on value-weighted green and brown portfolios

Note: This figure plots the green and brown portfolios’ cumulative returns over January 2000 to December
2019.

49



Figure A6: Changes in Brown-Share-Pollution Gradient: Institutional Investors

Note: This figure plots the sensitivity of trading in brown stocks by institutional investors to pollution before
and after the installation of Continuous Ambient Air Quality Monitoring Stations. We plot the coefficient {𝛽𝑖}
from the following specification:

𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝 (𝑚) ,𝑡 =

6∑︁
𝑖=−6

𝛽𝑖 × 𝑇𝑟𝑒𝑎𝑡𝑝 × 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 × 𝐷 (𝑡 ∈ 𝑖)𝑚,𝑡 +
∑︁
𝑘

𝛼𝑘 ×𝑂𝑡ℎ𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠

+𝑋 ′
𝑝,𝑡\ + 𝛾𝑝 + _𝑚,𝑡 + Y𝑝,𝑡

where 𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝 (𝑚) ,𝑡 denotes the average share of brown stocks of institutional investors in PIN Code 𝑝

belonging to a station area 𝑚 at time 𝑡. A station area 𝑚 includes treated PIN Codes (those within 20 kilometers
of the station) and also control PIN Codes (40-60 kilometers from the station). 𝑇𝑟𝑒𝑎𝑡𝑝 is an indicator variable
which denotes PIN Codes that are in the treated group. 𝑋𝑝,𝑡 is a set of controls for PIN Code 𝑝 at time 𝑡,
including local trader and weather characteristics (see text for details). 𝛾𝑝 is a set of PIN Code fixed effects and
_𝑚,𝑡 is a set of station area × time fixed effects. The graph shows the estimated coefficients {𝛽𝑖} as well as 95%
confidence intervals obtained from standard errors clustered at the PIN Code level.
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Table A1: The Impact of Monitoring Stations on Local Pollution

(1) (2) (3) (4) (5) (6)
Treated Control Full Sample

Pollution Log(Pollution) Pollution Log(Pollution) Pollution Log(Pollution)

Post 0.0004 0.0004 0.0063 0.0036
(0.0056) (0.0034) (0.0050) (0.0029)

Treat×Post 0.0002 0.0000
(0.0003) (0.0002)

Station FE Y Y Y Y
PIN Code FE Y Y
Year-month FE Y Y Y Y
Station×Year-month Y Y
Observations 11,489 11,489 14,801 14,801 1,237,258 1,237,258
R-squared 0.619 0.636 0.660 0.686 0.968 0.971

Note: This table presents the results of balance tests for local pollution levels before and after the opening of
a Continuous Air Quality Monitoring Station. The outcome variable in Columns 1-4 is the average pollution
measured by Aerosol Optical Depth, at the monitoring station on a monthly basis. Columns 5-6 examine the
impact on average pollution based on the PIN Code-month pair. Standard errors are clustered at the station
level for the first set of analysis and at the PIN Code level for the latter set. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.
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Table A2: Changes in Local Economic Condition and local investor composition Before and After
CAAQMS Rollout

(1) (2) (3) (4)
Panel A Local Economic Condition

Firm Entry NightLight Density

Treat×Post -0.0208 -0.0399 -0.0943 0.1823
(0.0420) (0.0484) (0.1462) (0.1416)

Post 0.0983*** 1.2520***
(0.0346) (0.0851)

Observations 32,278 31,904 100,429 100,222
R-squared 0.891 0.908 0.978 0.988

Panel B local investor composition

Investor Growth Rate(%) Number of New Traders

Treat×Post -0.0174 0.0043 -0.0016 -0.0028
(0.0398) (0.0427) (0.0095) (0.0099)

Post -0.1200*** 0.0150***
(0.0292) (0.0036)

Observations 498,624 497,898 499,036 498,310
R-squared 0.129 0.165 0.954 0.957

PIN Code Y Y Y Y
Year-month Y Y
Station×Year-month Y Y

Note: This table presents the balance tests on (a) local economic condition and (b) local
investor composition, before and after the opening of a Continuous Air Quality Monitoring
Station. Specifically we report the coefficient 𝛽 from the following specification:

𝑌𝑝 (𝑚) ,𝑡 = 𝛽 × 𝑇𝑟𝑒𝑎𝑡𝑝 × 𝑃𝑜𝑠𝑡 (𝑚, 𝑡) + 𝛾 × 𝑃𝑜𝑠𝑡 (𝑝, 𝑡) + 𝛼𝑝 + 𝛼𝑡 + Y𝑝,𝑡

In Panel A we focus on two proxies for economic conditions: firm entry and nighttime light
density (as a high-frequency proxy for local economic activity) and the estimation is done
at the PIN Code-year level. In Panel B, the estimation is at the PIN Code by month level,
and We test whether the composition of local investors (measured as the growth rate of local
equity investors) and the logarithm of the number of new traders correlate with the arrival
of a monitoring station. Standard errors are clustered at the PIN Code level.***, **, and *
indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table A3: Stacked Regression Approaches

(1) (2) (3) (4) (5) (6) (7) (8)
Dep. Var. = Brown Share(%)

Control = Never-Treated Control = Not-Yet-Treated + Never-Treated

Pollution*Treated*Post -3.3690** -3.6248* -3.5628** -3.8097* -2.3407** -2.0066* -2.1467* -1.8594*
(1.6315) (1.9720) (1.7316) (2.1071) (1.0859) (1.0633) (1.1176) (1.0940)

Pollution*Treated 1.0997 1.0297 1.1804 1.0972 -0.4553 1.0650* -0.4307 0.9837
(1.0649) (1.1089) (1.0868) (1.1472) (0.8996) (0.6339) (0.9334) (0.6466)

Pollution*Post 2.4620 2.6959 2.6609 2.9002 0.3993 0.4959 0.4474 0.5194
(1.5002) (1.8771) (1.6349) (2.0560) (0.7494) (0.8100) (0.7925) (0.8579)

Treat*Post -0.6727* -0.6058 -0.6986* -0.6333 0.2737 0.2060 0.2020 0.1308
(0.3978) (0.3992) (0.4106) (0.4081) (0.3402) (0.3615) (0.3491) (0.3721)

Pollution -0.9946 -0.8722 -1.1067 -0.9871 -0.4830 -0.5546 -0.5221 -0.5738
(1.0251) (1.0804) (1.0636) (1.1434) (0.5136) (0.5296) (0.5344) (0.5544)

Post 0.1742** 0.1903* -0.2289* 0.0354
(0.0810) (0.1025) (0.1235) (0.0453)

Treated -0.6620 -0.8945
(0.4554) (0.5645)

No. of Investors(Log) -1.5907** -1.5165** -1.5956** -1.5245** -0.4951 -0.1936 -0.4891 -0.1893
(0.7585) (0.6194) (0.7628) (0.6240) (0.3987) (0.3542) (0.3994) (0.3548)

Turnover -0.0821 -0.0172 -0.0816 -0.0168 -0.0848 -0.0382 -0.0850 -0.0384
(0.1822) (0.1629) (0.1828) (0.1634) (0.0964) (0.0896) (0.0965) (0.0897)

Rainfall -0.0094 -0.0040 -0.0096 -0.0041 -0.0044 -0.0025 -0.0041 -0.0025
(0.0120) (0.0100) (0.0123) (0.0102) (0.0071) (0.0064) (0.0071) (0.0064)

Temperature -0.0374 -0.0339 -0.0378 -0.0343 -0.0214 -0.0205 -0.0216 -0.0207
(0.0246) (0.0236) (0.0251) (0.0241) (0.0138) (0.0135) (0.0139) (0.0137)

Pincode Y Y Y Y
Year-month Y Y Y Y
Pincode*Policy Vintage Y Y Y Y
Year-month*Policy Vintage Y Y Y Y

Observations 2,449,087 2,449,081 2,449,087 2,449,081 832,578 832,576 832,578 832,576
R-squared 0.398 0.451 0.399 0.451 0.463 0.541 0.464 0.542

Note: This table reports the impact of access to pollution information, the installation of Continuous Ambient Air Quality
Monitoring Stations, on the elasticity of the brown share of investor’s portfolio using the stacked regression approach in prior
literature (Cengiz et al., 2019; Baker, Larcker and Wang, 2022). The methodology involves creating cohort-specific "clean 2×2"
datasets that combines the nearby PIN Codes (those within 20 kilometers of the station) for each treated cohort, with other nearby
PIN Codes serving as controls. Two different approaches are considered to construct the "clean controls" within the treatment
window for each treated cohort. In Columns (1) - (4), We only include observations for "never-treated" PIN Codes that were not
treated during our sample period (those that are only treated within one year after our sample period ends) as comparison groups
in a given event window. In Columns (5) - (8), we further include "not-yet-treated" PIN Codes (those do not get treated within
4 years for each treated cohort), in addition to the "never-treated" units. Then we estimate the coefficient 𝛽 from the following
specification:

𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝,𝑐,𝑡 = 𝛽 × 𝑇𝑟𝑒𝑎𝑡𝑝 × 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 × 𝑃𝑜𝑠𝑡𝑐,𝑡 +
∑︁
𝑘

𝛼𝑘 ×𝑂𝑡ℎ𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑋
′
𝑝,𝑡\ + 𝛾𝑝,𝑐 + _𝑐,𝑡 + Y𝑝,𝑐,𝑡

where 𝛾𝑝,𝑐 and _𝑐,𝑡 represent the PIN Code × Cohort and Cohort × Year-Month fixed effects. We demean the pollution variable
to enhance the interpretability of the coefficient. Standard errors are clustered at the PIN Code level.***, **, and * indicate
statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table A4: Pollution Information and the Brown-Share-Pollution Gradient: Alternative Cutoffs for
Treated Investors

(1) (2) (3) (4) (5) (6)

Dep. Var. = Brown Share(%)

0-15km 0-10km 0-5km

Pollution×Treated×Post -2.1838** -2.1799** -2.4685** -2.4384** -2.3415* -2.4247*
(0.9939) (0.9913) (1.0791) (1.0727) (1.2780) (1.2783)

Pollution×Treated 1.0363** 0.9984** 1.2463** 1.2000** 0.8964 0.9264
(0.5068) (0.5057) (0.5723) (0.5705) (0.6618) (0.6636)

Pollution×Post 1.8972 1.7127 1.6945 1.4959 1.4172 1.1641
(1.6933) (1.6860) (1.6886) (1.6834) (1.6985) (1.6941)

Treat×Post 0.8637*** 0.5411* 0.9114*** 0.5446 1.7612*** 1.3103***
(0.3153) (0.3115) (0.3399) (0.3348) (0.3749) (0.3706)

Pollution -1.0428 -0.9582 -1.0248 -0.9346 -0.8011 -0.6944
(0.7856) (0.7816) (0.7845) (0.7813) (0.7843) (0.7818)

No. of Investors(Log) -1.5607*** -1.6086*** -1.6410***
(0.2099) (0.2143) (0.2194)

Turnover -0.1010** -0.0794* -0.0794*
(0.0424) (0.0429) (0.0436)

Rainfall -0.0110 -0.0103 -0.0056
(0.0104) (0.0105) (0.0106)

Temperature -0.0309 -0.0152 -0.0189
(0.0756) (0.0773) (0.0797)

Pincode Y Y Y Y Y Y
Station×Year-month Y Y Y Y Y Y

Observations 472,453 472,453 449,136 449,136 424,637 424,637
R-squared 0.560 0.562 0.559 0.561 0.559 0.560

Note: This table presents robustness checks that parallel our main analyses, but use different cutoffs to
define treated PIN Codes. Specifically we report the coefficient 𝛽 from the following specification with three
different cutoffs of treatment group:

𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝(𝑚),𝑡 = 𝛽 × 𝑇𝑟𝑒𝑎𝑡𝑝 × 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 × 𝑃𝑜𝑠𝑡𝑚,𝑡 +
∑︁
𝑘

𝛼𝑘 ×𝑂𝑡ℎ𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠+𝑋 ′
𝑝,𝑡\+𝛾𝑝+_𝑚,𝑡+Y𝑝,𝑡

where 𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝(𝑚),𝑡 denotes the average share of brown stocks of retail investors in PIN Code 𝑝

belonging to a station area 𝑚 at time 𝑡. A station area 𝑚 includes treated PIN Codes and control PIN Codes.
Treated pincodes are defined in three alternate ways – 0-15 kms of the station (columns 1 and 2), 0-10kms
of the station (columns 3 and 4), 0-5kms of the station (columns 5 and 6). Control pincodes are the pincodes
located 40-60 kilometers from the station. 𝑇𝑟𝑒𝑎𝑡𝑝 is an indicator variable which denotes PIN Codes that are
in the treated group.The binary variable 𝑃𝑜𝑠𝑡𝑚,𝑡 represents the information shock and is equal to one after the
installation of a local monitoring station. We demean the pollution variable to enhance the interpretability
of the coefficient. 𝑋𝑝,𝑡 is a set of controls for PIN Code 𝑝 at time 𝑡, including local trader and weather
characteristics (see text for details). 𝛾𝑝 is a set of PIN Code fixed effects and _𝑚,𝑡 is a set of station area ×
time fixed effects. Standard errors are clustered at the PIN Code level. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.
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Table A5: Robustness: Removing Large Metropolitan Cities

(1) (2) (3) (4) (5) (6) (7) (8)
Dep. Var. = Brown Share(%)

Pollution×Treated×Post -2.1120** -2.4027*** -2.2073** -2.7009*** -1.9294** -2.2359** -2.0348* -2.5553**
(0.8453) (0.8945) (1.0572) (1.0153) (0.8392) (0.8907) (1.0551) (1.0140)

Pollution×Treated 0.9969** 1.2614*** 1.0387* 1.3680*** 0.9004** 1.1522** 0.9532* 1.2803**
(0.4221) (0.4503) (0.5301) (0.5049) (0.4192) (0.4487) (0.5286) (0.5038)

Pollution×Post 0.1721 0.9363 0.7994 2.0449 -0.0588 0.8390 0.7824 1.9175
(0.5628) (0.7067) (0.7514) (1.7408) (0.5585) (0.7041) (0.7490) (1.7352)

Treat×Post 0.9223*** 0.5433* 0.4528 0.5814* 0.4792* 0.2852 0.2891 0.3448
(0.2820) (0.2843) (0.3537) (0.3135) (0.2774) (0.2812) (0.3508) (0.3102)

Pollution -0.2487 -0.8179** -0.8067 -1.2876 -0.1796 -0.7043* -0.7760 -1.2134
(0.2595) (0.3988) (0.7667) (0.7874) (0.2566) (0.3978) (0.7626) (0.7845)

Post -0.2147 0.0265 0.0622 -0.0978 0.0544 0.0609
(0.1705) (0.1999) (0.2619) (0.1693) (0.1994) (0.2616)

No. of Investors(Log) -2.2615*** -1.7023*** -1.3085*** -1.5524***
(0.1931) (0.2018) (0.2066) (0.2063)

Turnover -0.0901** -0.1019** -0.0923** -0.0959**
(0.0413) (0.0413) (0.0419) (0.0416)

Rainfall -0.0026 -0.0078 -0.0022 -0.0109
(0.0040) (0.0054) (0.0085) (0.0101)

Temperature 0.0067 -0.0645** -0.1489*** -0.0947
(0.0068) (0.0313) (0.0577) (0.0739)

Pincode Y Y Y Y Y Y Y Y
Year-month Y Y
State×Year-month Y Y
District×Year-Month Y Y
Station×Year-month Y Y
Observations 473,794 473,794 463,091 473,392 473,794 473,794 463,091 473,392
R-squared 0.543 0.552 0.604 0.565 0.545 0.553 0.605 0.566

Note: This table presents robustness checks that parallel our main analyses, but omits India’s three largest cities: Delhi, Kolkata, and
Mumbai. Specifically, we report the coefficient 𝛽 from the following specification after removing Delhi, Kolkata, and Mumbai from the
sample :

𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝(𝑚),𝑡 = 𝛽 × 𝑇𝑟𝑒𝑎𝑡𝑝 × 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 × 𝑃𝑜𝑠𝑡𝑚,𝑡 +
∑︁
𝑘

𝛼𝑘 ×𝑂𝑡ℎ𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑋
′
𝑝,𝑡\ + 𝛾𝑝 + _𝑚,𝑡 + Y𝑝,𝑡

where 𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝(𝑚),𝑡 denotes the average share of brown stocks of retail investors in PIN Code 𝑝 belonging to a station area 𝑚

at time 𝑡. A station area 𝑚 includes treated PIN Codes (those within 20 kilometers of the station) and also control PIN Codes (40-60
kilometers from the station. 𝑇𝑟𝑒𝑎𝑡𝑝 is an indicator variable which denotes PIN Codes that are in the treated group.The binary variable
𝑃𝑜𝑠𝑡𝑚,𝑡 represents the information shock and is equal to one after the installation of a local monitoring station. We demean the pollution
variable to enhance the interpretability of the coefficient. 𝑋𝑝,𝑡 is a set of controls for PIN Code 𝑝 at time 𝑡, including local trader and
weather characteristics (see text for details). 𝛾𝑝 is a set of PIN Code fixed effects and _𝑚,𝑡 is a set of station area × time fixed effects.
Columns 1-4 report results without controls 𝑋𝑝,𝑡 while columns 5-8 report results with these controls. Standard errors are clustered at the
PIN Code level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table A6: Placebo Tests: Other stock characteristics

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A Large Stock Share(%)
Pollution×Treated×Post -0.2754 -0.5548 0.1986 -0.6441 -0.2968 -0.5647 0.1635 -0.6613

(0.3567) (0.4068) (0.4538) (0.4631) (0.3577) (0.4078) (0.4553) (0.4645)

Observations 498,999 498,999 488,648 498,273 498,999 498,999 488,648 498,273
R-squared 0.511 0.518 0.583 0.532 0.511 0.518 0.583 0.532

Panel B Old Stock Share(%)
Pollution×Treated×Post 0.5144 0.6475 0.5491 0.9227 0.5413 0.6620 0.5850 0.9418

(0.5017) (0.5734) (0.5866) (0.6503) (0.5022) (0.5727) (0.5864) (0.6497)

Observations 498,999 498,999 488,648 498,273 498,999 498,999 488,648 498,273
R-squared 0.619 0.623 0.677 0.633 0.619 0.623 0.677 0.633

Panel C Value Stock Share(%)
Pollution×Treated×Post 0.2156 0.1902 -0.4151 0.1792 0.2333 0.2117 -0.3860 0.1988

(0.5267) (0.5873) (0.6552) (0.6679) (0.5267) (0.5873) (0.6549) (0.6673)

Observations 498,999 498,999 488,648 498,273 498,999 498,999 488,648 498,273
R-squared 0.747 0.752 0.788 0.760 0.747 0.752 0.788 0.760

Lower Order Interactions Y Y Y Y Y Y Y Y
Local Trading Controls(No. of Investors, Turnover) N N N N Y Y Y Y
Local Weather Controls(Rainfall, Temperature) N N N N Y Y Y Y
PIN Code Y Y Y Y Y Y Y Y
Year-month Y Y
State×Year-month Y Y
District×Year-Month Y Y
Station×Year-month Y Y

Note: This table parallels the results we present in our main analysis in Table 2, replacing brown share as the dependent variable with other
stock characteristics, including size (Panel A), age (Panel B), and market-to-book (Panel C). We report the coefficient 𝛽 from the following
specification:

𝑌𝑝(𝑚),𝑡 = 𝛽 × 𝑇𝑟𝑒𝑎𝑡𝑝 × 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 × 𝑃𝑜𝑠𝑡𝑚,𝑡 +
∑︁
𝑘

𝛼𝑘 ×𝑂𝑡ℎ𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑋
′
𝑝,𝑡\ + 𝛾𝑝 + _𝑚,𝑡 + Y𝑝,𝑡

where 𝑌𝑝(𝑚),𝑡 denotes the average share of different characteristics of stocks of retail investors in PIN Code 𝑝 belonging to a station area 𝑚 at
time 𝑡. A station area 𝑚 includes treated PIN Codes (those within 20 kilometers of the station) and also control PIN Codes (40-60 kilometers
from the station. 𝑇𝑟𝑒𝑎𝑡𝑝 is an indicator variable which denotes PIN Codes that are in the treated group.The binary variable 𝑃𝑜𝑠𝑡𝑚,𝑡 represents
the information shock and is equal to one after the installation of a local monitoring station. We demean the pollution variable to enhance the
interpretability of the coefficient. 𝑋𝑝,𝑡 is a set of controls for PIN Code 𝑝 at time 𝑡, including local trader and weather characteristics (see text for
details). 𝛾𝑝 is a set of PIN Code fixed effects and _𝑚,𝑡 is a set of station area × time fixed effects. Columns 1-4 report results without controls
𝑋𝑝,𝑡 while columns 5-8 report results with these controls. Standard errors are clustered at the PIN Code level. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.
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Table A7: Regression Discontinuity Estimates: AQI Transition from "Poor" to "Very Poor"

(1) (2) (3) (4) (5) (6)

smoothness constant M band-width estimate Lower CI Upper CI

Panel A Treated PIN Codes
Kernel = Uniform

0.1*M_rot 0.0005 30 0.5145 0.1781 0.8509
0.5*M_rot 0.0026 15 0.3495 -0.118 0.817
M_rot 0.0051 12 0.4253 -0.1006 0.9512
5*M_rot 0.0257 6 -0.0826 -0.8178 0.6525
10*M_rot 0.0514 5 -0.1876 -1.0608 0.6856

Kernel = Triangle

0.1*M_rot 0.0005 38.83 0.4949 0.17 0.8199
0.5*M_rot 0.0026 20.16 0.2828 -0.1599 0.7256
M_rot 0.0051 15.44 0.1536 -0.3497 0.6569
5*M_rot 0.0257 8.45 -0.4824 -1.1936 0.2287
10*M_rot 0.0514 6.21 -0.8709 -1.7046 -0.0373

Panel B Control PINCodes
Kernel = Uniform

0.1*M_rot 0.0003 36 0.2219 -0.0864 0.5302
0.5*M_rot 0.0016 19 0.1794 -0.2417 0.6005
M_rot 0.0032 14 0.3732 -0.1082 0.8547
5*M_rot 0.0161 8 0.1606 -0.5152 0.8364
10*M_rot 0.0321 5 0.2996 -0.4697 1.0688

Kernel = Triangle

0.1*M_rot 0.0003 46.29 0.3709 0.0732 0.6686
0.5*M_rot 0.0016 24.20 0.2494 -0.1568 0.6556
M_rot 0.0032 18.46 0.2374 -0.2277 0.7024
5*M_rot 0.0161 9.87 -0.0176 -0.6578 0.6226
10*M_rot 0.0321 7.56 -0.1711 -0.9144 0.5722

Note: The values reported here are RD estimates around the AQI cutoff of 300 at which the air quality index category switch from “Poor”(amber) to “Very
Poor”(red). Panel A and B presents the estimate for the treated and control PINCodes, respectively. We follow the inference procedure of Armstrong and
Kolesár (2018) to select the optimal bandwidth and to construct the confidence interval. 𝑀𝑟𝑜𝑡 indicates the rule-of-thumb choice of the smoothness constant,
M. We also vary M as form of sensitivity analysis. The unit of observation is PIN-Code-day.
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Table A8: Heterogeneous Response by Trading Technology

(1) (2) (3) (4) (5) (6) (7) (8)
Dep. Var. = Brown Share(%)

Panel A Mobile
Pollution×Treated×Post -10.7735*** -9.4363*** -5.1107** -10.0833*** -9.8264*** -8.1616*** -3.5364* -8.7934***

(1.9153) (1.9185) (2.1207) (2.0372) (1.7966) (1.8201) (2.0493) (1.9375)

Observations 458,195 458,195 449,041 457,475 458,195 458,195 449,041 457,475
R-squared 0.537 0.544 0.584 0.558 0.551 0.556 0.593 0.569

Panel B Internet
Pollution×Treated×Post -2.3938* -2.0753 -0.1046 -2.1225 -1.3632 -0.6745 1.6337 -0.7254

(1.3431) (1.3713) (1.6224) (1.5657) (1.2542) (1.2931) (1.5453) (1.4907)

Observations 458,195 458,195 449,041 457,475 458,195 458,195 449,041 457,475
R-squared 0.318 0.326 0.384 0.344 0.346 0.351 0.404 0.367

Panel C Others
Pollution×Treated×Post -3.7532*** -3.3125*** -3.1694*** -3.9838*** -3.5697*** -3.1159*** -2.9570*** -3.7997***

(0.9025) (0.9118) (1.0471) (1.0536) (0.8917) (0.9052) (1.0414) (1.0505)

Observations 458,195 458,195 449,041 457,475 458,195 458,195 449,041 457,475
R-squared 0.579 0.587 0.632 0.599 0.581 0.588 0.632 0.600

Lower Order Interactions Y Y Y Y Y Y Y Y
Local Trading Controls(No. of Investors, Turnover) N N N N Y Y Y Y
Local Weather Controls(Rainfall, Temperature) N N N N Y Y Y Y
PIN Code Y Y Y Y Y Y Y Y
Year-month Y Y
State×Year-month Y Y
District×Year-Month Y Y
Station×Year-month Y Y

Note: This table parallels the results we present in our main analysis in Table 2, splitting the sample based on whether they use mobile (Panel A), internet (Panel B), or
other means (Panel C) to trade. Specifically, we report the coefficient 𝛽 from the following specification separately for panels A, B, and C respectively:

𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝(𝑚),𝑡 = 𝛽 × 𝑇𝑟𝑒𝑎𝑡𝑝 × 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 × 𝑃𝑜𝑠𝑡𝑚,𝑡 +
∑︁
𝑘

𝛼𝑘 ×𝑂𝑡ℎ𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑋
′
𝑝,𝑡\ + 𝛾𝑝 + _𝑚,𝑡 + Y𝑝,𝑡

where 𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝(𝑚),𝑡 denotes the average share of brown stocks of retail investors in PIN Code 𝑝 belonging to a station area 𝑚 at time 𝑡. A station area 𝑚 includes
treated PIN Codes and control PIN Codes. Treated pincodes are defined in three alternate ways – 0-15 kms of the station (columns 1 and 2), 0-10kms of the station
(columns 3 and 4), 0-5kms of the station (columns 5 and 6). Control pincodes are the pincodes located 40-60 kilometers from the station. 𝑇𝑟𝑒𝑎𝑡𝑝 is an indicator variable
which denotes PIN Codes that are in the treated group.The binary variable 𝑃𝑜𝑠𝑡𝑚,𝑡 represents the information shock and is equal to one after the installation of a local
monitoring station. We demean the pollution variable to enhance the interpretability of the coefficient. 𝑋𝑝,𝑡 is a set of controls for PIN Code 𝑝 at time 𝑡, including local
trader and weather characteristics (see text for details). 𝛾𝑝 is a set of PIN Code fixed effects and _𝑚,𝑡 is a set of station area × time fixed effects. Columns 1-4 report
results without controls 𝑋𝑝,𝑡 while columns 5-8 report results with these controls. Standard errors are clustered at the PIN Code level. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.
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Table A9: Heterogeneity by Age

(1) (2) (3) (4) (5) (6) (7) (8)
Dep. Var. = Brown Share(%)

Panel A: Young
Pollution×Treated×Post -7.6956*** -7.5119*** -4.0558* -7.4996*** -7.2385*** -7.2501*** -3.5523* -7.2053***

(1.7136) (1.8791) (2.0766) (2.1505) (1.6967) (1.8679) (2.0804) (2.1402)

Observations 499,036 499,036 488,681 498,310 499,036 499,036 488,681 498,310
R-squared 0.413 0.421 0.475 0.436 0.419 0.425 0.478 0.440

Panel B: Middle-Aged
Pollution×Treated×Post -4.3099*** -4.2561*** -3.3478** -4.6076*** -4.1376*** -4.1517*** -3.1677** -4.5061***

(1.0383) (1.2334) (1.3268) (1.4315) (1.0372) (1.2323) (1.3265) (1.4323)

Observations 499,036 499,036 488,681 498,310 499,036 499,036 488,681 498,310
R-squared 0.517 0.523 0.577 0.537 0.519 0.524 0.578 0.538

Panel C: Elderly
Pollution×Treated×Post -3.0747** -2.8609* -2.3076 -2.3993 -2.8516** -2.7450* -2.1144 -2.2736

(1.3565) (1.5133) (1.7195) (1.7483) (1.3486) (1.5055) (1.7148) (1.7401)

Observations 499,036 499,036 488,681 498,310 499,036 499,036 488,681 498,310
R-squared 0.686 0.690 0.726 0.699 0.688 0.691 0.727 0.700

Lower Order Interactions Y Y Y Y Y Y Y Y
Local Trading Controls(No. of Investors, Turnover) N N N N Y Y Y Y
Local Weather Controls(Rainfall, Temperature) N N N N Y Y Y Y
PIN Code Y Y Y Y Y Y Y Y
Year-month Y Y
State×Year-month Y Y
District×Year-Month Y Y
Station×Year-month Y Y

Note: This table parallels the results we present in our main analysis in Table 2, splitting the sample based on whether they are young (Panel A), middle-aged (Panel
B), or elderly (Panel C) to trade. Specifically, we report the coefficient 𝛽 from the following specification separately for panels A, B, and C respectively:

𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝(𝑚),𝑡 = 𝛽 × 𝑇𝑟𝑒𝑎𝑡𝑝 × 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 × 𝑃𝑜𝑠𝑡𝑚,𝑡 +
∑︁
𝑘

𝛼𝑘 ×𝑂𝑡ℎ𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑋
′
𝑝,𝑡\ + 𝛾𝑝 + _𝑚,𝑡 + Y𝑝,𝑡

where 𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝(𝑚),𝑡 denotes the average share of brown stocks of retail investors in PIN Code 𝑝 belonging to a station area 𝑚 at time 𝑡. A station area 𝑚

includes treated PIN Codes and control PIN Codes. Treated pincodes are defined in three alternate ways – 0-15 kms of the station (columns 1 and 2), 0-10kms of
the station (columns 3 and 4), 0-5kms of the station (columns 5 and 6). Control pincodes are the pincodes located 40-60 kilometers from the station. 𝑇𝑟𝑒𝑎𝑡𝑝 is an
indicator variable which denotes PIN Codes that are in the treated group.The binary variable 𝑃𝑜𝑠𝑡𝑚,𝑡 represents the information shock and is equal to one after the
installation of a local monitoring station. We demean the pollution variable to enhance the interpretability of the coefficient. 𝑋𝑝,𝑡 is a set of controls for PIN Code 𝑝

at time 𝑡, including local trader and weather characteristics (see text for details). 𝛾𝑝 is a set of PIN Code fixed effects and _𝑚,𝑡 is a set of station area × time fixed
effects. Columns 1-4 report results without controls 𝑋𝑝,𝑡 while columns 5-8 report results with these controls. Standard errors are clustered at the PIN Code level.
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table A10: Heterogeneity by Gender

(1) (2) (3) (4) (5) (6) (7) (8)
Dep. Var. = Brown Share(%)

Panel A Female
Pollution×Treated×Post -5.5557*** -5.9249*** -5.3078** -6.8918*** -5.0272*** -5.6203*** -4.6996** -6.5368***

(1.6487) (1.8170) (2.0709) (2.1762) (1.6136) (1.7939) (2.0457) (2.1486)

Observations 499,036 499,036 488,681 498,310 499,036 499,036 488,681 498,310
R-squared 0.664 0.669 0.701 0.679 0.670 0.674 0.703 0.683

Panel B Male
Pollution×Treated×Post -1.8036** -2.1735*** -2.0207** -2.4068** -1.6314** -2.0787** -1.8625* -2.3108**

(0.7722) (0.8349) (0.9716) (0.9539) (0.7676) (0.8314) (0.9695) (0.9519)

Observations 499,036 499,036 488,681 498,310 499,036 499,036 488,681 498,310
R-squared 0.538 0.547 0.599 0.560 0.541 0.548 0.600 0.562

Lower Order Interactions Y Y Y Y Y Y Y Y
Local Trading Controls(No. of Investors, Turnover) N N N N Y Y Y Y
Local Weather Controls(Rainfall, Temperature) N N N N Y Y Y Y
PIN Code Y Y Y Y Y Y Y Y
Year-month Y Y
State×Year-month Y Y
District×Year-Month Y Y
Station×Year-month Y Y

Note: This table parallels the results we present in our main analysis in Table 2, splitting the sample based on whether they are male (Panel A) or female (Panel B)
Specifically, we report the coefficient 𝛽 from the following specification separately for panels A and B respectively:

𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝(𝑚),𝑡 = 𝛽 × 𝑇𝑟𝑒𝑎𝑡𝑝 × 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑝,𝑡 × 𝑃𝑜𝑠𝑡𝑚,𝑡 +
∑︁
𝑘

𝛼𝑘 ×𝑂𝑡ℎ𝑒𝑟 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑋
′
𝑝,𝑡\ + 𝛾𝑝 + _𝑚,𝑡 + Y𝑝,𝑡

where 𝐵𝑟𝑜𝑤𝑛 𝑆ℎ𝑎𝑟𝑒𝑝(𝑚),𝑡 denotes the average share of brown stocks of retail investors in PIN Code 𝑝 belonging to a station area 𝑚 at time 𝑡. A station area 𝑚

includes treated PIN Codes and control PIN Codes. Treated pincodes are defined in three alternate ways – 0-15 kms of the station (columns 1 and 2), 0-10kms of
the station (columns 3 and 4), 0-5kms of the station (columns 5 and 6). Control pincodes are the pincodes located 40-60 kilometers from the station. 𝑇𝑟𝑒𝑎𝑡𝑝 is an
indicator variable which denotes PIN Codes that are in the treated group.The binary variable 𝑃𝑜𝑠𝑡𝑚,𝑡 represents the information shock and is equal to one after the
installation of a local monitoring station. We demean the pollution variable to enhance the interpretability of the coefficient. 𝑋𝑝,𝑡 is a set of controls for PIN Code 𝑝

at time 𝑡, including local trader and weather characteristics (see text for details). 𝛾𝑝 is a set of PIN Code fixed effects and _𝑚,𝑡 is a set of station area × time fixed
effects. Columns 1-4 report results without controls 𝑋𝑝,𝑡 while columns 5-8 report results with these controls. Standard errors are clustered at the PIN Code level.
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively..
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