

EK 307: Electric Circuits

Fall 2017

Lecture 15 Oct 31, 2017

Prof. Miloš Popović

Department of Electrical and Computer Engineering

Boston University

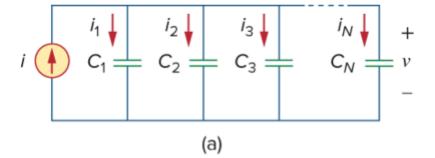
Lecture 15:

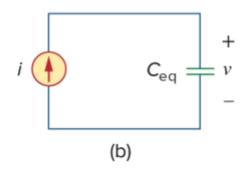
1. Chapter 6: Capacitors/inductors

Series and parallel

_ _ _

$$i = i_1 + i_2 + i_3 + \dots + i_N$$





But $i_k = C_k dv/dt$. Hence,

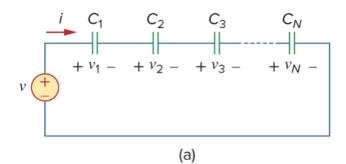
$$i = C_1 \frac{dv}{dt} + C_2 \frac{dv}{dt} + C_3 \frac{dv}{dt} + \dots + C_N \frac{dv}{dt}$$
$$= \left(\sum_{k=1}^{N} C_k\right) \frac{dv}{dt} = C_{eq} \frac{dv}{dt}$$

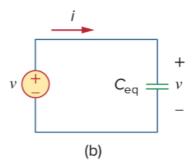
where

$$C_{\text{eq}} = C_1 + C_2 + C_3 + \dots + C_N$$

Series and parallel

$$v = v_1 + v_2 + v_3 + \dots + v_N$$





But
$$v_k = \frac{1}{C_k} \int_{t_0}^t i(\tau) d\tau + v_k(t_0)$$
. Therefore,

$$v = \frac{1}{C_1} \int_{t_0}^t i(\tau) d\tau + v_1(t_0) + \frac{1}{C_2} \int_{t_0}^t i(\tau) d\tau + v_2(t_0)$$

$$+ \dots + \frac{1}{C_N} \int_{t_0}^t i(\tau) d\tau + v_N(t_0)$$

$$= \left(\frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_N}\right) \int_{t_0}^t i(\tau) d\tau + v_1(t_0) + v_2(t_0)$$

$$+ \dots + v_N(t_0)$$

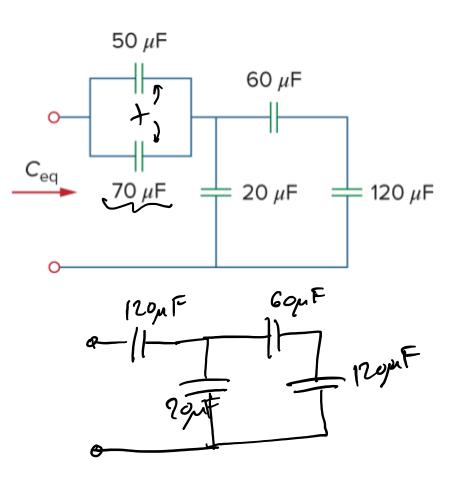
 $=\frac{1}{C_{oa}}\int_{t_0}^t i(\tau)\ d\tau + v(t_0)$

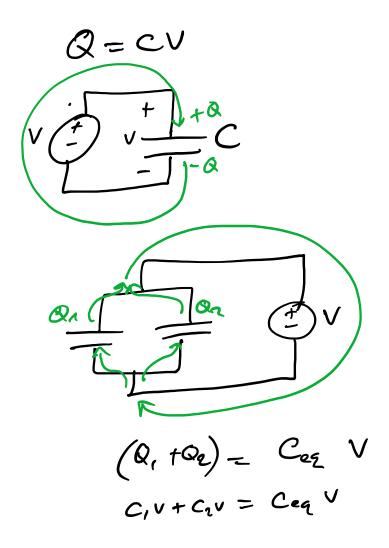
where

$$\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_N}$$

Practice Problem 6.6

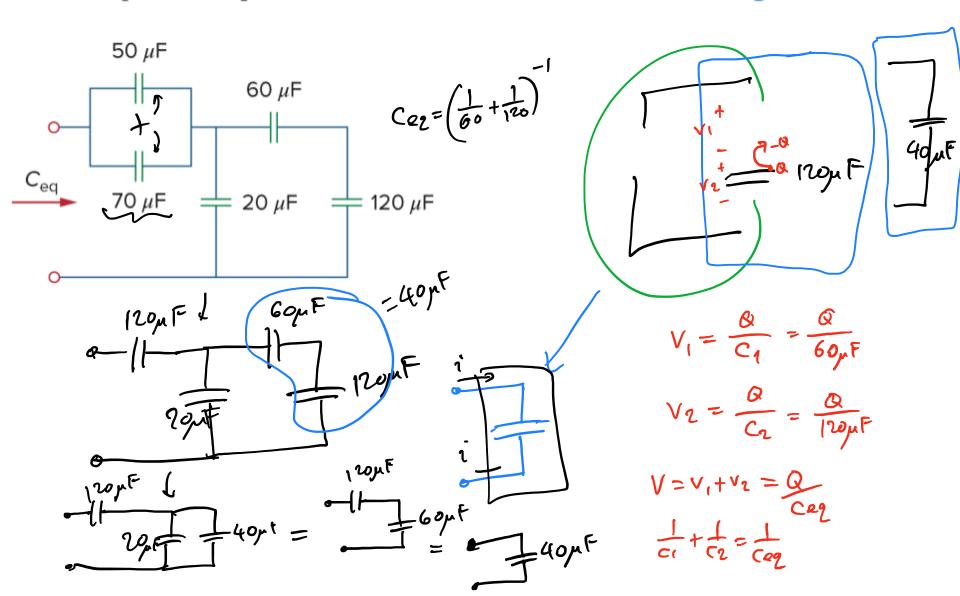
Find the equivalent capacitance seen at the terminals of the circuit in Fig. 6.17.

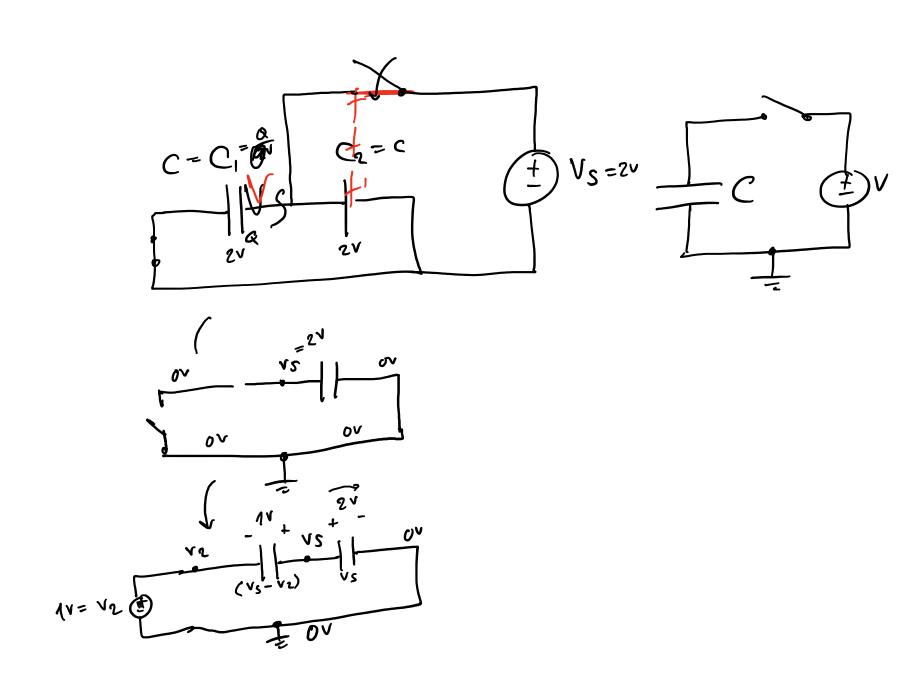




Practice Problem 6.6

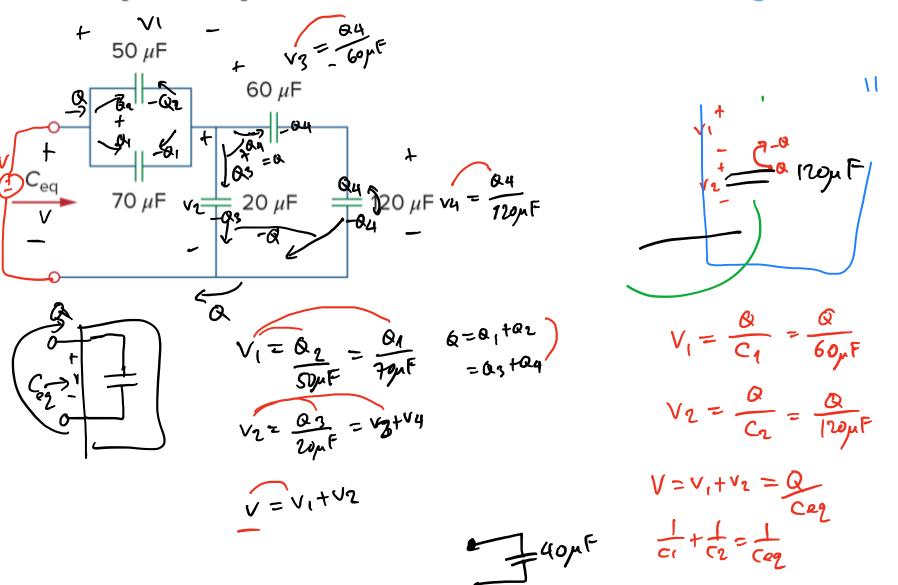
Find the equivalent capacitance seen at the terminals of the circuit in Fig. 6.17.





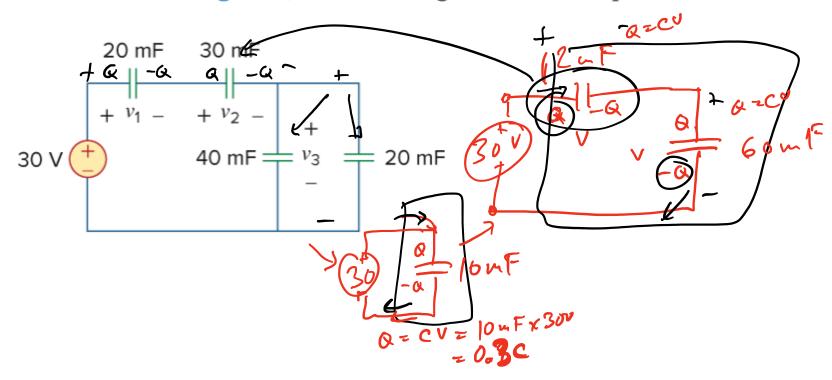
Practice Problem 6.6

Find the equivalent capacitance seen at the terminals of the circuit in Fig. 6.17.



Example 6.7

For the circuit in Fig. 6.18, find the voltage across each capacitor.



$$C_{\text{eq}} = \frac{1}{\frac{1}{60} + \frac{1}{30} + \frac{1}{20}} \,\text{mF} = 10 \,\text{mF}$$

The total charge is

$$q = C_{\text{eq}} v = 10 \times 10^{-3} \times 30 = 0.3 \text{ C}$$

This is the charge on the 20-mF and 30-mF capacitors, because they are in series with the 30-V source. (A crude way to see this is to imagine that charge acts like current, since i = dq/dt.) Therefore,

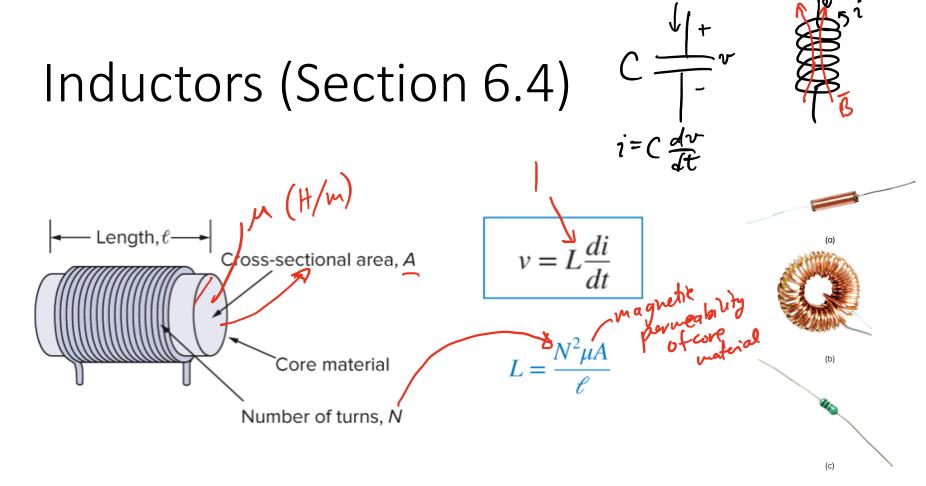
$$v_1 = \frac{q}{C_1} = \frac{0.3}{20 \times 10^{-3}} = 15 \text{ V}$$
 $v_2 = \frac{q}{C_2} = \frac{0.3}{30 \times 10^{-3}} = 10 \text{ V}$

Having determined v_1 and v_2 , we now use KVL to determine v_3 by

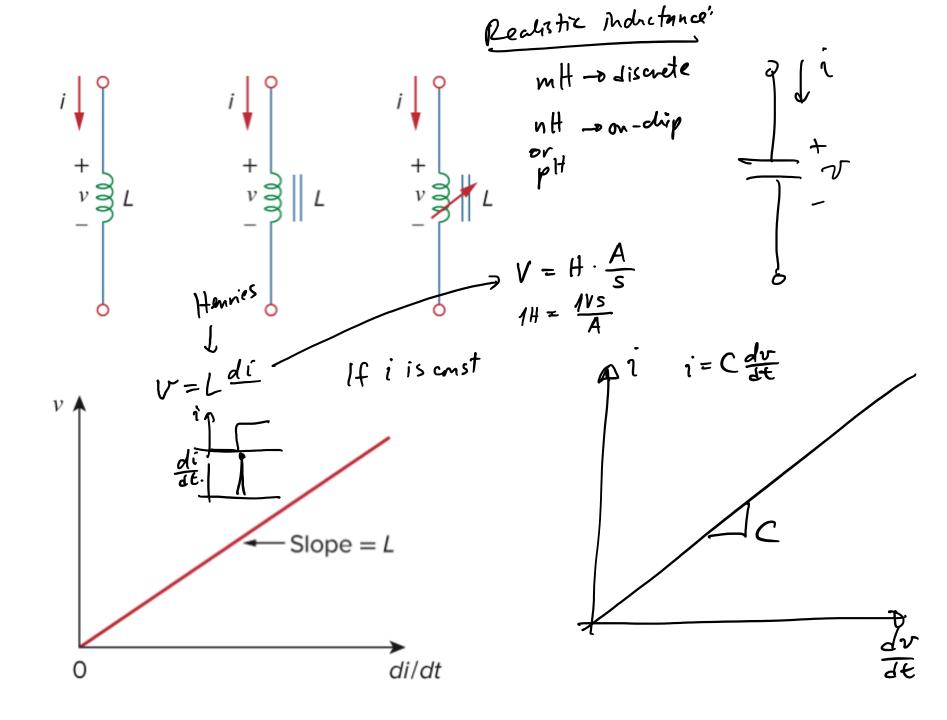
$$v_3 = 30 - v_1 - v_2 = 5 \text{ V}$$

Alternatively, since the 40-mF and 20-mF capacitors are in parallel, they have the same voltage v_3 and their combined capacitance is 40 + 20 = 60 mF. This combined capacitance is in series with the 20-mF and 30-mF capacitors and consequently has the same charge on it. Hence,

$$v_3 = \frac{q}{60 \text{ mF}} = \frac{0.3}{60 \times 10^{-3}} = 5 \text{ V}$$



Inductance is the property whereby an inductor exhibits opposition to the change of current flowing through it, measured in henrys (H).

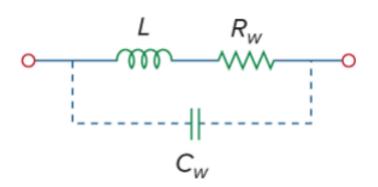


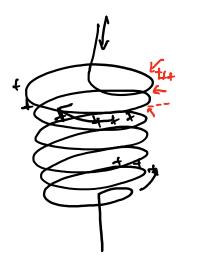
Properties

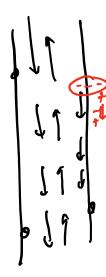
- 1. An inductor acts like a short circuit to dc.
- 2. The current through an inductor cannot change instantaneously.
- 3. No dissipation



Non-ideal inductor







$$p = v \cdot i$$

$$=\frac{d}{dt}\left(\frac{1}{2}Li^{2}\right)$$

$$\frac{d}{dt}i^2 = 2i\frac{d}{dt}i$$

$$w_{2}(t) = \int_{0}^{t} p(t') dt' = \frac{1}{2} Li^{2}$$

$$i = \frac{1}{L} \int_{-\infty}^{t} v(\tau) \, d\tau$$

$$p = vi = \left(L\frac{di}{dt}\right)i$$

$$w = \frac{1}{2}Li^2 \qquad v_C = \frac{1}{2}CV^2$$

Example 6.8

10× t -5t = - 1/2 = e

The current through a 0.1-H inductor is $i(t) = 10te^{-5t}$ A. Find the voltage across the inductor and the energy stored in it.

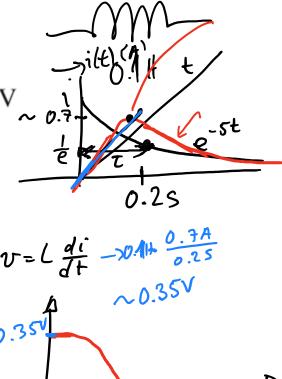
Solution:

Since $v = L \frac{di}{dt}$ and L = 0.1 H,

$$v = 0.1 \frac{d}{dt} (10te^{-5t}) = e^{-5t} + t(-5)e^{-5t} = e^{-5t} (1 - 5t) \text{ V}$$

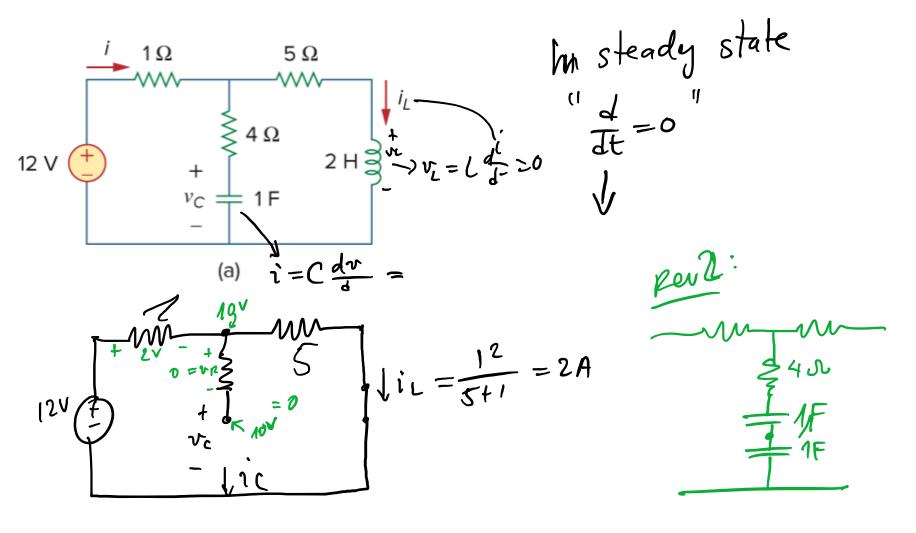
The energy stored is

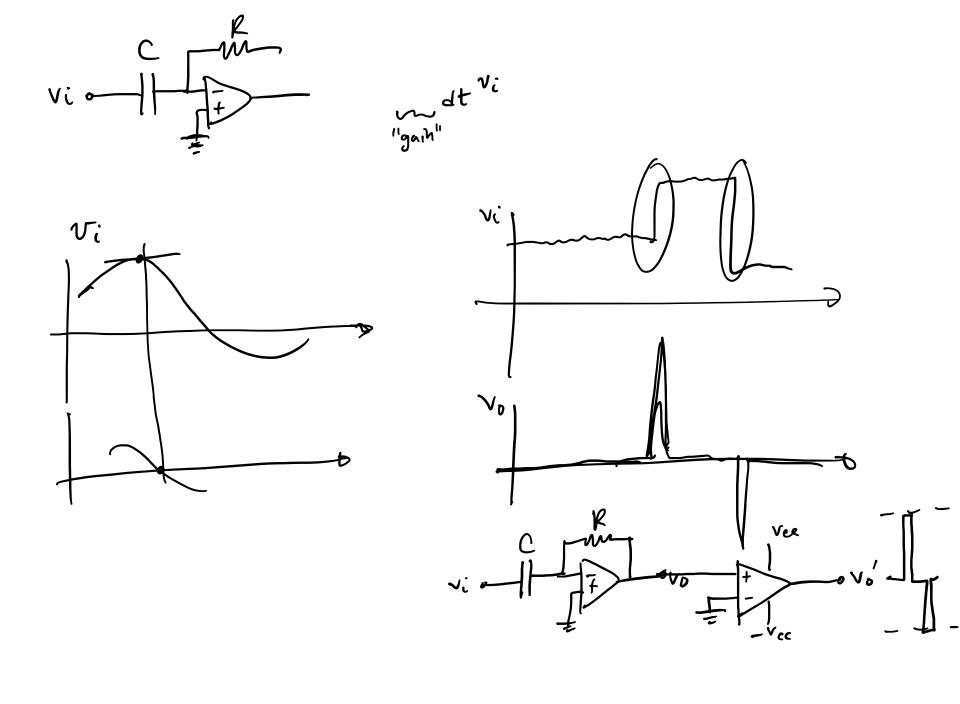
$$w = \frac{1}{2}Li^2 = \frac{1}{2}(0.1)100t^2e^{-10t} = 5t^2e^{-10t} J$$

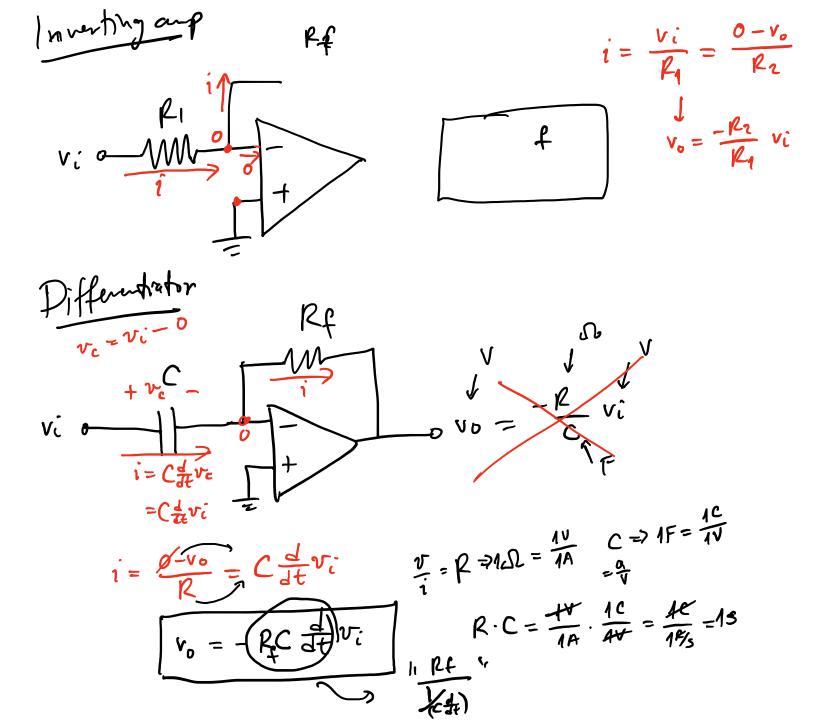


Example 6.10

Consider the circuit in Fig. 6.27(a). Under dc conditions, find: (a) i, v_C , and i_L , (b) the energy stored in the capacitor and inductor.







$$\frac{-V_0}{Rf} = \frac{V_1}{R_1} + \frac{V_2}{R_2}$$

$$V_0 = -\left(\frac{Rf}{R_1}V_1 + \frac{Rf}{R_2}V_2\right)$$

$$i = \frac{v_i - o}{R} = C \frac{d}{dt} \left(o - v_o \right)$$

$$\frac{d}{dt}v_o(t) = -\frac{1}{pc}v_i(t)$$

$$\int_{0}^{t} dt' v_{o}(t') = \int_{0}^{t} -\frac{1}{pc} v_{o}(t') dt'$$

$$\frac{\int_{0}^{\infty} \int_{0}^{\infty} \int$$

