EK307 — Electric Circuit Theory — Fall 2009
Supplemental Notes on Digital Logic and Systems*

DIGITAL CIRCUITS AND APPLICATIONS

Digital signals are binary in nature, in that they have the ability of
takKing on values in one ol two well-dénned ranges. We shall see below that

the set of basic operations that can be performed on digital signals is quite
small, and can easily be mastered by the beginner. Furthermore, the behavior
of any digital system, up to and including the most sophisticated digital
computer, can be represented by appropriate combinations of digital
variables and the digital operations from this small set. Finally, digital
integrated circuits with input-output characteristics that correspond to
each of the basic digital operations are inexpensive and easy to use. Thus, it is
possible for the beginning student to design and successfully construct a
wide variety of digital circuits, including circuits that perform logic and
arithmetic functions, circuits for data storage and transmission, and circuits
that interface between peripheral equipment and the small, commercial
general-purpose digital computers known affectionately as ‘“‘mini-
computers™.!

ALGEBRAIC REPRESENTATIONS OF
DIGITAL VARIABLES

This chapter is concerned with digital system variables that take on only
two values (binary variables). We conventionally denote these values as
*0” and “1,” and then use a special set of rules called Boolean algebra to
summarize the various ways in which digital variables can be combined.
This algebra and much of the notation are adopted directly from mathe-
matical logic. Thus, “logic variable™ or “logic operation™ are commonly used
in place of “digital variable” or “digital operation.”

Definition of the AND operation. Given two input variables, 4 and B, and
an output variable C, the expression

C=4 aNp B (16.1)
means
C=1 if A=1 AND B=1 (16.2a)
otherwise
C=0 (16.2b)

*All reproductions in this course packet fall under the Fair Use Doctrine of US Copyright
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A circuit that performs the AND operation is called an aAND gate. The logic
symbol for a two-input AND gate is shown in Fig. 16.1a.

‘gﬂ?ﬂ—c;—mg —=>-F= 04T G- H=T0

A D F G| H
agfj 00 0 0 0|1

0,110 0 1 1/ 0

1{0 |0 1 1

11111 1 il

{a) AND (b) Or (¢) NOT

Figure 16.1

Logic symbols and function tables for AND, OR, and NOT.

A dot is used as a shorthand for the AND operation, so that Eq. 16.1 may
be written

C=A-B (16.3)
The dot is often omitted simplifying Eq. 16.3 further.

One nice feature of digital operations is that the complete set of input-
output variable values can be written down. Figure 16.1a shows such a
function table, corresponding to Eq. 16.3, which lists all possible combina-
tions of input variables 4 and B together with the corresponding output
variable C. From this function table we see that in algebraic terms the AND
operation is a form of multiplication, with these manipulation rules:

0-0=0
0-1=1:-0=0 (16.5)
1-1=1

Definition of the or operation. Given two input variables D and E, and an
output variable F, the expression

F=D or E (16.6)
means
F=1 if D=1
OR E=1 (16.7)
OR both D=1 and E=1
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The + sign is used as a shorthand for ORr, and is never omitted in algebraic
expressions. Thus, Eq. 16.6 is written algebraically as

F=D+E (16.8)

Figure 16.1b shows the logic symbol used for the two-input Or gate together
with the corresponding function table. Algebraically, the or operation is a
special form of addition performed according to these rules:

04+0=0
04+1=140=1 (16.9)
I14+1=1

Note that the last manipulation, 1 4+ 1 = 1, differs from the ordinary arith-
metic use of the + sign.

As in ordinary algebra, parentheses may be used in Boolean expressions
to group terms and give precedence to operations. If there are no parentheses,
the AND functions in an equation are evaluated first.

Definition of the NOT operation. In some situations, the opposite value of a
particular variable is required. In Boolean algebra, the opposite value of
a variable is called the complement of that variable, and is denoted by a bar

drawn over the variable in question. The complement operation is sum-
marized below using variable G as an example.

IfG =1 then G=0

fG=0 then G=1

The logic operation that produces the complement is called inversion, or
the NOT operation. The logic symbol and function table for an inverter is
shown in Fie. 16.1c.

(16.10)

The composite operations NAND and NOR. Two combinations of basic
operations arise so often that they are given individual names and logic
symbols. The NOrR operation is the complement of the or operation (the
name is simply a contraction of “*NoT or™), and is defined by

C=(4+ B (16.13)
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Two equivalent symbols for the NOR gate, representing Eqs. 16.13 and 16.14
respectively, are shown in Fig. 16.2a along with the NoRr function table.
Note that the small circle adjacent to the input or output of the basic gate
symbols produces the INVERSION of the variable in each case.

The complement of the AND operation is called the NAND operation
(from “NOT AND"'), and is defined by the two equivalent forms

F=D-E (16.15)

A — D —
C=A+E F=D-E

B E —
T

B —q

(a) ~om (B) NAND

Figure 16.2
The principal importance of NOR and NAND 1s that they are the simplest
logic functions to construct in integrated circuit form. Thus, while i1t may be
easier for the beginner to learn to “think™ with or and AND, he should also
practice thinking with NOR and NAND as these functions are likely to be used
in the final circuit realization. Also, it is possible to synthesize all of the logic
functions using only NOR gates or only NAND gates.

A Simple Example

Let us formulate a simple everyday situation in terms of digital vanables and
Boolean operations. Suppose you are driving home and become thirsty for a
hot drink. You see a diner ahead and pull in. Let us develop a Boolean equa-
tion for whether or not you obtain a drink.

The first step is to assign variables for the problem:

The diner is open for business =D = I, or simply D

(=> means implies)
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The diner sells coffee ==C
The diner sells tea =T

You get a drink =X

The next step is to use AND and OR operations to construct this Boolean equa-

tion
X =(C +1T) - D
Obtain _ sells __ sells _ open for (16.17)
drink < coffee ™® tea *™ business
or omitting the dot
X=(C+T)D (16.18)

which is equivalent to
X=CD+TD (16.19)

The final step is to construct a logic flow diagram using gate symbols.
Two possible logic flow diagrams, corresponding to Egs. 16.18 and 16.19,
are shown in Fig. 16.3. As an illustration of how only NOR gates or only
NAND gates can be used to synthesize any function. two additional implemen-
tations of this same example are shown in Fig. 16.4. Notice that when both
inputs of the two-input NOR gate are connected together, as in Fig. 16.4a, the
gate becomes an inverter.

C cC+T
T }x::cnw
D

(a) Implementation of Eq. 16.18

¢ — C-D

D—E X=CD+TD
T-D

T

(b) Implementation Eq. 16.19

Figure 16.3
Logic flow diagrams for text example using AND and OR gates.
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c (C+T)
T c D
D _ (C+T)
D

(a) wor only

cD
:D_mm

TD

c—-} -
D,

(b) NAND only

Figure 16.4
Implementation of text example using (a) only Nor gates and (b) only NAND gates.

- SUMMARY OF GATE CHARACTERISTICS
1) The NOT Gate

Symbol Boolean Equation Truth Table

Input  Output

- A X
A~[>:k)( X=A 0 : 1
1 1 0

Because the NOT gate has only one input, the truth table has two rows. Mareover
the output inverts the logic level of the input. In addition to the overhead bar shows

above (read as "X = A-bar"), notation for logical inversion includes the following
A, TA, -SA, A%
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2)

3)

The NAND Gate
Symbol Boolean Equation Truth Table
Inputs Output
A B Y
A . . 0 0 1
1 0 1
1 1 0

The behavior of a NAND gate can be summarized as follows: The output is LOW
only when all the inputs are HIGH. 1f one or more inputs are LOW (false or logic
0), the output will be HIGH. Comparing the truth table for the NAND gate with that
of the AND gate, you will find out that each output of a NAND gate is exactly the
opposite (inverted) logic value of the corresponding output of an AND gate. In fact.
a NAND gate is functionally equivalent to an AND gate cascaded with a NOT gate

as shown below.

A:[ \__1>&Y
B S

The NOR Gate
Symbol Boolean Equation Truth Table

Inputs Output
A —_— A B Z -
D Z= A+ B 0 | 0 1

0 1 0

1 0 0

| ] 1 0 |

As seen from the above truth table, the output of a NOR gate is HIGH only when
all the inputs are LOW. If one or more of the inputs are HIGH, then the output is

LOW.

Similarly, a NOR gate can be constructed using an OR gate cascaded with a NOT
gate. In other words, a NOR gate is functionally equivalent to an OR gate followed

by an inverter.
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Digital Systems and Information Representation

Almost all digital systems utilize circuits with binary logic. In binary digital logic, data
is represented by a voltage (or occasionally a current) switching between one of two
possible levels, a low level called a logic 0, and a high level called a logic 1. This process
is termed “asserted positive logic.” The system could be implemented using the opposite
convention where the high level is considered a logic 0 and the low level a logic 1, and
such a system is said to use “asserted negative logic.” Positive logic is by far the mos
common.

The single unit of digital information, the bit, is represented by the transmission of
a 1 or a 0. The bit has been found to be a very useful means of quantizing information
Information theory, a subspecialty within the field of communications, has developed
expressions for calculating the number of equivalent bits of information contained in
various signals.

Each bit conveys to us whether the information or value is in the top half or lower
half of its possible range. For example, if we consider a signal, v, which we know has
values in the range 0 < v < 2, one bit of information would tell us the following: if the
voltage is in the range 0 < v < I, then the bit status could be 0, and if the voltage is in
the range 1 < v < 2, the bit status would be 1.

This is very coarse information about this signal, v. We originally knew its value was
between zero and two, and now we have started to “pin it down” by breaking the total
range into two zones. We use this first bit, the most significant bit (MSB), to tell us whether
we are in the upper 50% or lower 50% of the entire range.

‘We can add a second bit to tell us whether we are in the top half or lower half of the
smaller range just selected by the previous bit. We are now capable of quantifying the
signal to within four possible “zones” using the following correspondence:

Range Bit status
MSB LSB
00<v<05 0 0
05<v<10 0 1
1.0<v<15 1 0
1.5<v<20 1 1

Where MSB = most significant bit and LSB = least significant bit.

We could now add a third bit which would give us a resolution of eight possible ranges.
or zones. Note that in the binary system, the number of zones of resolution, Z, is related
to the number of bits, n, by the expression

Z=2 (1.5

The series of bits that represent a particular analog level is termed a digital word. If
this series of bits is presented at the same time via parallel conductors, that is, a parallel
bus, we receive a parallel word; if they appear one after the other via a single conductor.
that is, a serial data bus, then we receive a serial word. Eight-bit word segments are
normally referred to as a byte.
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EXAMPLE
Let us determine the voltage resolution that can be achieved if a signal with a maximum
value of 12 volts and minimum value of 0 volts is represented by 10 bits.

The number of zones defined by 10 bits is:

Z=2n=2"= 1024 zones

Resolution = l?_ﬂ = (0.0117 volts/zone |

1024

D7.3. A 4-bit parallel data bus can transmit 8 bits of information in 40 microseconds.
If the same technology were used to transmit data serially over a single conductor, how
many bits could be transmitted in the same 40 microseconds?

Ans: 2 bits,

D7.4. A signal that can have values between —10 to +10 volts is represented by a
12-bit digital word; what is the voltage resolution obtainable with this system?

Ans: 49 mV.

A/D and D/A Converters
Electronic circuits, which are designed to automatically convert an analog voltage into a
digital or binary representation of that voltage, are called Analog to Digital Converters,
or A/D Converters. Circuits that convert a digital word into an analog voltage level are
called Digital to Analog Converters, or D/A converters. Both converters are shown sym-
bolically in Fig. 7.9. A timing signal is used to specify the point in time at which a sample
is taken.

An 8-bit A/D converter, for example, converts a continuously variable voltage within
a specified range at its input, into an 8-bit digital word at its output which represents the

Dagital
output
Analog —|..——1 D,
input AD —— D,
converter —— D,
—— ),
Timing signal
Digital
input
D, —» - Anzlog
'DI DA oulput
D, —trr— converter
Dy ————

Timing signal
Figure 7.9 A/D and D/A converters.
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quantized value of the input voltage at a specific point in time. Therefore, we are told
which of 256 zones the input voltage is contained within (2% = 256) at the time of the
sample. A/D and D/A converters are available from many manufacturers integrated on a
single 1C chip.

15.4 ANALOG-TO-DIGITAL INTERFACING

A complete treatment of digital circuits must also include a discussion of digital-to-analog (D/A
and analog-to-digital (A/D) conversion. Although physical measurement usually involves analog
variables, most data collection, information transmission, and signal analysis are performed dig-
tally. Analog-to-digital and digital-to-analog circuits provide the all-important interfaces betweer
the analog and the digital worlds.

15.4.1 Digital-to-Analog Conversion

A digital-to-analog (D/A) converter produces a single analog output voltage from a multibit digital
input. The decoding can be performed using a variety of D/A algorithms. One common algorithm
produces an analog output proportional to a fixed reference voltage, as determined by the equation

n

2V -1

vouTt = VReF (15.25)

In this equation, N is the number of bits in the digital input word, and » is the decimal integer
represented by the input bits that are set to 1. The voltage Vggr can be either positive or negative.
Other D/A converters, which produce output voltages over a bipolar voltage range, employ the
two’s complement decoding scheme, to be described in Section 15.4.3,

ZXAMPLE 15.1 The input to a 10-bit D/A converter with a reference voltage of 5V is (00 1001 0001). Find the
resulting analog output.

Solution

The decimal integer n represented by the specified digital input is 128 4+ 16 4 1 = 145. In this
case, N = 10 and 2! is equal to 1024; hence the output given by Eq. (15.25) becomes

145

- — = . 5|
vouT 1023 (5V) =070V (15.26)

Summing Amplifier D/A Converter

One circuit that can perform D/A conversion using the algorithm of Eq. (15.25) utilizes the op-amp
summation amplifier of Chapter2. In a summing converter, the digital input bits to be decoded
control the parallel input nodes of a summation amplifier, as depicted in Fig. 15.30. The input
terminals of this circuit are connected to either ground or to Vrgr by a set of two-position switches
labeled Dg through D4. The status of each switch is determined by the value of its corresponding
digital input bit. If a given input bit is equal to 1, the switch represented by the bit is connected to
Vrer; if the bit is equal to 0, the switch is connected to ground. In practice, switches Dy through
D5 are made from MOSFET devices driven by the digital input signals. An 8-bit converter is
shown in Fig. 15.30; a converter with any number of bits could be made by changing the number
of input channels.

-10-
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Figure 15.30
Eight-bit D/A
converter made
from summation
amplifier. This
converter
essentially
implements the
decoding algorithm
given by

Eg. (15.25) but
creates a negative
output due to the
inversion of the
summation
amplifier.

The D/A decoding performed by this circuit is realized by selecting proper values for the
resistors. Specifically, beginning with the most significant bit, the input resistor of each successive
channel must be made two times larger than its predecessor as the weighting of the corresponding
binary bit is decreased. The arrangement is illustrated in Fig. 15.30, where, for example, the input
resistor to D7 has value R,, the input resistor to Dg is 2R, the resistor to D5 is 4R;, and so on.
This ordering of resistor values allows the bit with the highest weighting (the D; bit) to amplify
Vrer by the largest gain, and the bit with the smallest weighting (the Dy bit) to amplify Vigr
by the smallest gain. An 8-bit converter like the one shown in Fig. 15.30 has input resistors that
vary between the values R; and 128 R;. Given this geometrical progression of resistor values, the
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Fgure 15.31
Four-bil resistive
Imdider D/A
moverter.

output of the circuit can be expressed by the equation

Ry D¢ Ds Dy, Dy =
===+ 22+ 22 L. £ 1L "\ 15.27
wour R1( T3ty 64 128) REF (1527)
The variables Dy through D7 in this equation represent integers with values of 1 or 0, as determined
by the status of the cight digital input bits.

For the general case of an N-bit converter, Eq. (15.27) becomes

R=D
bouT = — = ¥ —= VReF (15.28)
R &2
where K = 2V-1-n,

The principal disadvantage of the summing D/A converter shown in Fig. 15.30 is its sen-
sitivity to the input resistor values. These resistors must be fabricated to close tolerances over a
wide range of values. If the converter is fabricated on an integrated circuit, adequate control of
resistor values may not be possible,

Resistive Ladder Converter

The D/A converter shown in Fig. 15.31 is called a resistive ladder converter. Its central component
is a ladder network in which horizontally drawn resistors have a value of R and vertically drawn
resistors have a value of 2R. This network is sometimes called an R-2R network. The output
buffer in Fig. 15.31 (usually an op-amp voltage follower) minimizes the current drawn from the
ladder network, thereby reducing the loading at the v node (node 3). For simplicity, a 4-bit
converter is shown in Fig. 15.31. The number of bits could be increased to any number by

extending the length of the ladder network.
UIN
—0 II>_O vour

Output’
2R buffer

Bit=1—>

VREF O— !
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The digitally controlled switches in the circuit connect the lower resistor terminals to either
Vrer or ground. Each of the switches is controlled by one bit of the digital input word, with Dg
representing the least significant bit. In practice, the entire converter is fabricated on a single
integrated circuit, and the switches are constructed from digitally driven MOSFETs.

An examination of the circuit reveals one of its more interesting characteristics. With all
switches connected to ground, each of the numbered nodes 0 through 3 is connected directly to
ground via a resistor of value 2R. At the same time, the equivalent resistance to ground seen to
either the right or to the left of each numbered node is equal to 2R. For example, the resistance
seen to the right of node 3 consists of a single resistor 2R. The resistance seen to the right of
node 2 (including the resistance 2R between node 3 and ground) becomes the sum of R plus the
parallel combination of 2R and 2R. Altogether, this combination is equal to 2R. The resistance
seen 10 the right of node 1 then becomes R plus the parallel combination of 2R and 2R, which
again is equal to 2R. This same reasoning can be applied to node 0 and can also be applied when
computing the resistance seen to the left of any node.

If the nth switch is connected to Vggg, with all other switches connected to ground, the
voltage v, appearing at the node directly above it can be determined by applying the voliage-
divider relation, that is,

-V 2R|2R  Vrer
~ 2R+ 2RI2R T 3
The factor 2R||2R in Eq. (15.29) represents the parallel combination of resistances seen to the
right and to the left of the nth node; the single factor of 2R in the denominator represents the
resistance between the nth switch and its associated node.

The fraction of v, that appears as vy at the input to the buffer depends on the node’s position
along the ladder. The node voltage v, for example, is applied directly to the vyy terminal. The
voltage vz, however, is attenuated by a voltage divider formed by R and 2R ||2R, so that vy = v,/2.
A similar consideration shows that vy is attenuated at node 2 by a voltage divider formed from
the resistance R and the combination 2R||(R + 2R ||2R). The latter combination is equivalent to
a resistance of value R, so that

(15.29)

Up

R [H]
=— 15.30+
R+R 2 (

The fraction of v, that appears at vy thus becomes

Uz =g

vz [
=— = — 15.31:
NET TG (153
Applying this attenuation algorithm to all the nodes in the ladder, together with the superposition

principle and Eq.(15.29), yields the total output voltage of the circuit as a function of all the

switch values: v D . D
REF 2 1 0
D4+ =4 4=
( 3+ ) + 7 + 3 )
Equation (15.32) assumes that voyr is equal to vy, that is, that the output buffer has unity gain.
Each of the variables Dy through D3 in this expression is equal to either 0 or 1. As Eq.(15.32+
suggests, the ladder network applies appropriate weighting to each digital bit in determining the
analog output voltage.
For a ladder converter with N input bits, Eq. (15.32) can be generalized to the expression

Dy_» D, Dq )

VREF
UOUT=‘—(DN—1+ 2 +'-‘+m+m

3

(15.32-

(15.32
In contrast to the summing converter, which is sensitive to the absolute values of its resistors.

the ladder converter is sensitive only to the ratio of the resistors R and 2R. In the environment of
an integrated circuit, resistors with precisely fixed ratios of 2:1 are easily fabricated.
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