5.1 An n-channel MOSFET has the set of v-i characteristics shown below.

- a) Is this an enhancement-mode or depletion-mode device?
- b) What are the values of K and V_{TR} ?
- c) If $v_{GS} = 5.5 \text{ V}$, what will the value of ip be in the constant-current region?
- d) What must be the minimum value of v_{DS} for constant-current region operation at $v_{GS} = 5.5 \text{ V}$?

5.2 An n-channel MOSFET has the set of v-i characteristics shown below.

- a) Is this an enhancement-mode or depletion-mode device?
- b) What are the values of K and V_{TR} ?
- c) If the alternative representation is used for this FET, what are the values of I_{DSS} and V_P ?

- An n-channel enhancement-mode MOSFET has a threshold voltage of 0.8 V. At one operating point in the constant-current region, $i_D = 2.5$ mA when $v_{GS} = 4$ V. What will the value of i_D become if v_{GS} is increased to 7 V and the MOSFET continues to operate in the constant current region?
- 5.4 The MOSFET of Problem 5.1 is connected to the circuit shown below. Using graphical techniques, plot the vIN-vOUT transfer characteristic over the range -2 V \langle vIN \langle 6 V.

5.5 A BJT with the indicated v-i characteristics is connected to the circuit shown. Using graphical techniques, plot the v_{IN} - v_{OUT} transfer characteristic.

- 5.6 a) An enhancement-mode MOSFET has parameters $V_{TR} = 1.5 \text{ V}$ and $K = 1 \text{ mA/V}^2$. Is this transistor an n-channel or a p-channel device?
 - b) If $v_{GS} = 4$ V, how large must v_{DS} be for constant-current operation? What current flows in this case?
 - c) Repeat part b) for $v_{GS} = 2 \text{ V}$; 5 V.
- 5.7 a) An n-channel MOSFET has parameters $V_{TR} = -1 \text{ V}$ and $K = 1 \text{ mA/V}^2$. Is this transistor an enhancement-mode or depletion-mode device?
 - b) What is the minimum v_{DS} that will ensure constant-current operation when $v_{GS} = 1$ V? What current flows in this case?
 - c) Repeat part b) for vGS = 0; 10 V.
- 5.8 An n-channel MOSFET has the set of v-i characteristics shown below. Plot ip versus vgs in the constant-current region.

5.9 Use the plot of Prob. 5.8 to find the current in the circuit shown below.

- 5.10 A BJT with V_f = 0.7 V and V_{sat} \simeq 0.3 V is connected to the circuit shown below. As v_{IN} increases, v_{OUT} will decrease.
 - a) How small can v_{0UT} become before the BJT leaves the constant current region?
 - b) What will be the value of the collector-base voltage $v_{\mbox{CB}}$ when $v_{\mbox{OUT}}$ reaches this transition value?

- 5.11 A non-ideal BJT has the set of v-i characteristics shown below.
 - a) Plot ic as a function of iB in the constant current region
 - b) Plot β_F as a function of ic.

5.12 The BJT of Prob. 5.11 is installed in the circuit shown below. Use the graphical technique to plot v_{OUT} versus i_{TN} .

5.13 The BJT in the following circuit has a β_F of 100. Find V_B , V_C , and V_E .

- 5.14 An n-channel depletion mode MOSFET is connected as shown.
 - a) Show that Q_1 will never operate in cutoff.
 - b) For what values of v_{DS} will Q_1 operate in the constant-current region? Find a relationship between v_{DS} and ip over this region.

- 5.15 Consider the depletion-mode MOSFET shown above. If K = 0.5 mA/V² and V_{TR} = -2 V, find the value of iD in the constant-current region.
- 5.16 Two enhancement-mode MOSFETs are connected in the configuration shown below:

- a) Prove that \mathbf{Q}_2 always operates in the constant-current region.
- b) Show that the $v_{IN}-v_{OUT}$ transfer characteristic is a straight line as long as Q_1 operates in the constant current region.
- c) Over what range of vIN values will Q1 operate in the constant-current region?
- 5.17 Repeat Prob. 5.16 for the CMOS circuit shown below.

- 5.18 The complementary MOSFET (CMOS) circuit shown below contains both an n-channel and a p-channel device.
 - a) Over what ranges of v_{IN} will \mathbf{Q}_1 and \mathbf{Q}_2 operate out of cutoff?
 - b) Over what ranges of v_{0UT} will $\bar{\mathbf{Q}}_1$ and $\bar{\mathbf{Q}}_2$ operate in the constant current region?

Solutions

Chapter 5

- 5.1 a) The $v_{GS} = 3$ V curve lies on the v_{DS} -axis, hence $V_{TR} = 3$ V. An n-channel MOSFET with a positive value of V_{TR} is an enhancement-mode device.
- b) As noted in part a), $V_{TR} = 3 \text{ V}$. The value of K can be found by evaluating the v-i characteristics at one or more test points. On the constant-current portion of the $v_{CS} = 5 \text{ V}$ curve, for example, $i_D = 4 \text{ mA}$. The constant-current v-i relation is $i_D = K(v_{CS} V_{TR})^2$, hence $K = V_{TR}$

$$\frac{i_D}{(v_{GS} - V_{TR})^2} = \frac{4 \text{ mA}}{(5V - 3V)^2} = 1 \text{ mA/V}^2$$

Similarly, at $v_{GS} = 6 \text{ V}$, K =

$$\frac{i_D}{(v_{GS} - V_{TR})^2} = \frac{9 \text{ mA}}{(6V - 3V)^2} = 1 \text{ mA/V}^2$$

c) For the computed value of K, $i_D = (1mA/V^2)(5.5 \text{ V} - 3 \text{ V})^2 = 6.25 \text{ mA}$ in the constant-current region.

- d) The condition for constant-current operation is $v_{DS} > v_{GS} V_{TR}$. For $v_{GS} = 5.5$ V, v_{DS} must be greater than 5.5 V 3 V = 2.5 V.
- 5.2 a) The $v_{GS} = -3$ V curve lies on the v_{DS} -axis, hence $V_{TR} = -3$ V. An n-channel MOSFET with a negative value of V_{TR} is a depletion-mode device.
- b) As noted in part b), $V_{TR} = 3 \text{ V}$. The value of K can be found by evaluating the v-i characteristics at one or more test points. On the constant-current portion of the vgs = 0 curve, for example, ip = 18 mA. The constant-current v-i relation is ip = $K(v_{GS} V_{TR})^2$, hence K =

 $\frac{iD}{(v_{GS} - V_{TR})^2} = \frac{18 \text{ mA}}{[0 - (-3V)]^2} = 2 \text{ mA/V}^2$ Similarly, at $v_{GS} = -2 \text{ V}$, iD will be equal to 2 mA, and

$$K = \frac{2 \text{ mA}}{[-2V - (-3V)]^2} = 2 \text{ mA/V}^2$$

- c) IDSS is equal to the value of ip on the constant-current region portion of the $v_{GS} = 0$ curve. In this case, $I_{DSS} = 18$ mA. Vp is equivalent to V_{TR} . For this device, $V_{P} = -3$ V.
- 5.3 In the constant-current region, the MOSFET v-i characteristic is ip = K(vgs VTR)²
 From the given data, the value of K can be found:

$$K = \frac{i_D}{(v_{GS} - V_{TR})^2} = \frac{2.5 \text{ mA}}{(4 \text{ V} - 0.8 \text{ V})^2}$$

$$= 0.24 \text{ mA/V}^2. \quad \text{When } v_{GS} = 7 \text{ V, } i_D$$
becomes $(0.24 \text{ mA/V}^2) (7 \text{ V} - 0.8 \text{ V})^2 \simeq 9.4 \text{ mA}.$

5.4 A load line consisting of $V_{DD} = 12 \text{ V}$ and $R_D = 1.2 \text{ k}\Omega$ (isc = 10 mA) can be plotted over the device v-i characteristics, as shown below.

The resulting transfer characteristic can be found by plotting the points (a) - (f), as shown below. Note that for $v_{IN} < v_{TR} = 3$ V, $i_D = 0$ and $v_{OUT} = v_{DD} = 12$ V.

The load line imposed on the input port is determined by vIN and RB. Because the iB-vBE v-i

characteristic is so steep, v_{BE} will essentially equal V_f = 0.65 V for all values of v_{IN} above V_f , so that

$$i_B = \frac{v_{IN} - V_f}{R_B} = (10 \ \mu A/V) v_{IN} - 6.5 \ \mu A$$

or $v_{IN} = (100 \text{ k}\Omega)i_B + 0.65 \text{ V}$ The load line imposed on the output port of the BJT consists of $V_{CC} = 12 \text{ V}$ and $i_{SC} = V_{CC}/R_C = (12 \text{ V})/(1.5 \text{ k}\Omega) = 8 \text{ mA}$. This load line is plotted below.

The transfer characteristic of the circuit, found by plotting the points (a) - (e), is shown below. For $v_{IN} < V_f$, iB is zero (cutoff), so that iC = 0 and $v_{OUT} = V_{CC} = 12 \text{ V}$. For $v_{IN} \simeq 4.2 \text{ V}$ (iB $\simeq 36 \mu$ A), the BJT enters saturation, and $v_{OUT} \simeq 1 \text{ V}$.

- 5.6 a) An enhancement-mode MOSFET with a positive V_{TR} is an n-channel device.
- b) The condition for constant current region operation is $v_{DS} > v_{GS} V_{TR}$. For $v_{GS} = 4 \text{ V}$ and $V_{TR} = 1.5 \text{ V}$, v_{DS} must exceed 4 V 1.5 V = 2.5 V. For $v_{GS} = 4 \text{ V}$ in the constant current region, ip = $K(v_{GS} V_{TR})^2 = (1 \text{ mA/V}^2)(4 \text{ V} 1.5 \text{ V})^2 = 6.25 \text{ mA}$.
- c) Similarly, $v_{DS} > 0.5 \text{ V}$; 3.5 V. ip = 0.25 mA; 12.25 mA.
- 5.7 a) An n-channel MOSFET with a negative VTR is a depletion-mode device.
- b) The condition for constant-current region operation is $v_{DS} > v_{GS} V_{TR}$. For $v_{GS} = 1$ V and $V_{TR} = -1$ V, v_{DS} must exceed [1 V (-1 V)] = 2 V. For $v_{GS} = 1$ V in the constant-current region, ip = $K(v_{GS} V_{TR})^2 = (1 \text{ mA/V}^2)[1 \text{ V} (-1 \text{ V})]^2 = 4 \text{ mA}$.
- c) Similarly, v_{DS} > 1 V; 11 V. i_D = 1 mA; 121 mA (large).

ip varies as the square of the excess gate voltage v_{GS} - V_{TR}. For the v-i characteristics shown, V_{TR} is equal to 2 V. Here are two representative points on the ip-v_{GS} curve:

iD = 2 mA at vGS = 4 V iD = 4.5 mA at vGS = 5 V From either of these two representative points,

$$K = \frac{i_D}{(v_{GS} - V_{TR})^2} = 0.5 \text{ mA/V}^2$$

A plot of ip versus vgs for the complete range of vgs is shown below.

indicated circuit, plot the load line imposed by V_{DD} and R_D on the v_{DS} -ip v-i characteristic of Q_1 . The v_{QS} -ip plot found in Prob. 5.8 can be used because the gate of Q_1 is connected to its drain, so that $v_{QS} = v_{DS}$. In essence, Q_1 functions as a two-terminal square-law device. From the plot shown, ip $\simeq 0.75$ mA; $v_{QS} \simeq 3.2$ V.

5.10 a) When $i_B > 0$, the BJT will operate in the constant-current region for $v_{CE} > v_{sat}$, where v_{CE} is identical to v_{OUT} . The latter voltage is measured relative to ground. The BJT will thus operate in the constant current region for $v_{OUT} > v_{sat} = 0.3 \text{ V}$.

b) When vIN > Vf, current will flow into the base of the BJT, so that v_{BE} = V_f. Since the emitter is grounded, the voltage to ground at the base of the BJT will be fixed at $V_f \simeq 0.7 \text{ V}$ for all values of v_{TN} > V_f. This statement assumes the v-i characteristic of the BJT base-emitter port to be so steep that vBE ~ Vf whenever i_B > 0. When the BJT leaves the constant current region, the collector voltage vc (to ground), which is identical to VOUT, will equal V_{sat}. Thus v_{CB} will equal v_C - v_B = V_{sat} - $V_f = 0.3 V - 0.7 V = -0.4 V$. Note that v_{CB} is negative when the BJT leaves the constant current region.

5.11 a) Since the BJT v-i characteristics are horizontal in the constant current region, the speci-

fied plot of ic versus is can be made at any representative value of vce. A table of is and ic values, as obtained from the graph, is given below. The value of β_F is found from the ratio ic/is.

<u>i_B(μA)</u>	$B(\mu A) i_C(mA) \beta_F$		i _B (μA)	ic(mA) β _F	
20	0.5	25	60	7	117
30	1.6	53	70	9	129
40	3.2	80	. 80	11	138
50	5	100	90	13	144

Here is a plot of ic versus iB; a plot of β_F versus ic follows:

connected to a Thevenin circuit consisting of $V_{CC}=3$ V and $R_C=250$ Ω . The load line corresponding to these element values $[v_{DC}=3$ V; $i_{SC}=(3\text{ V})/(250\ \Omega)=12$ mA] can be superimposed over the BJT v-i characteristics:

The base current i_B corresponds to the input current i_{IN} . The points of intersection of the load line with the various BJT v-i curves can thus be used to plot v_{OUT} versus i_{IN} :

fixed at the value 1 mA by the independent current source. If Q_1 operates in the constant-current region, the following must be true: $I_E = I_B + I_C = I_B + \beta_F I_B = (\beta_F + 1) I_B$ For $\beta_F = 100$, I_B must thus equal

$$\frac{I_E}{\beta_F + 1} = \frac{1 \text{ mA}}{101} = 9.9 \ \mu A$$

so that, via KVL, $V_B = 0 - I_B R_B =$ $-(9.9 \ \mu\text{A})(10 \text{k}\Omega) = -0.099 \ \text{V} \simeq -0.1 \ \text{V}$ For $V_f = 0.7 \ \text{V}$, V_E becomes $V_B - V_f = 0.1 \ \text{V} - 0.7 \ \text{V} = -0.8 \ \text{V}$.
Finally, V_C becomes $V_{CC} - I_C R_C$, where $I_C = \beta_F I_B = 100(9.9 \mu\text{A}) = 0.99 \ \text{mA}$ ==> $V_C = 6 \text{V} - (0.99 \text{mA})(3 \text{k}\Omega) = 3.03 \ \text{V}$

5.14 a) An n-channel depletion-mode MOSFET has a negative threshold voltage. The device is connected so

that $v_{GS} = 0$, hence the conduction condition $v_{GS} > V_{TR}$ is always met.

b) Constant-current region operation requires that v_{DS} be larger than v_{GS} - V_{TR} . When v_{GS} = 0, this condition reduces to v_{DS} > - V_{TR} . As long as v_{DS} is large enough, ip will be constant and equal to KV_{TR}^2 .

5.15 In the constant current region with $v_{GS} = 0$, $i_D = K(v_{GS} - V_{TR})^2 = KV_{TR}^2$. For the parameters given, $i_D = (0.5 \text{ mA/V}^2)(2 \text{ V})^2 = 2 \text{ mA}$.

5.16 a) The condition for constantcurrent region operation of an nchannel MOSFET is $v_{DS} > v_{GS} - V_{TR}$. In the circuit shown, Q_2 is connected in such a way that $v_{DS2} = v_{GS2}$. Thus for Q_2 , the constant-current region condition becomes

VGS2 > VGS2 - VTR2
For an enhancement-mode, n-channel MOSFET, VTR is a positive voltage, hence the above constant-current region condition is met for all values of vGS2.

b) The current ip through both devices is the same, hence if Q_1 operates in the constant current region, the following condition must be met: $K_1(v_{QS1} - V_{TR1})^2 = K_2(v_{QS2} - V_{TR2})^2$ In this case, $v_{QS1} = v_{IN}$ and $v_{QS2} = v_{DD} - v_{OUT}$. Thus the above becomes $K_1(v_{IN} - v_{TR1})^2 = K_2(v_{DD} - v_{OUT} - v_{TR2})^2$ Solving for v_{OUT} as a function of v_{IN} results in

$$v_{OUT} = V_{DD} - V_{TR2} - \sqrt{\frac{K_1}{K_2}} (v_{IN} - V_{TR1})$$
or
$$v_{OUT} = -\sqrt{\frac{K_1}{K_2}} v_{IN} + \sqrt{\frac{K_1}{K_2}} V_{TR1} - V_{TR2} + V_{DD}$$

The terms on the right containing V_{TR1} , V_{TR2} , and V_{DD} are constant, hence the graphical plot of v_{OUT} versus v_{IN} will be a straight line with constant slope

$$\frac{dv_{DUT}}{dv_{IN}} = -\sqrt{\frac{K_1}{K_2}}$$

c) Q₁ will operate in the constantcurrent region as long as

i.e. VDS1 > VGS1 - VTR1, VOUT > VIN - VTR1

or $v_{IN} < v_{OUT} + V_{TR1}$ In light of the above $v_{IN} - v_{OUT}$ relation, this condition becomes $v_{IN} <$

$$-\sqrt{\frac{K_{1}}{K_{2}}}v_{IN} + \left[\sqrt{\frac{K_{1}}{K_{2}}} + 1\right]v_{TR1} - v_{TR2} + v_{DD}$$
or
$$v_{IN} < \frac{(\sqrt{K_{1}/K_{2}} + 1)v_{TR1} - v_{TR2} + v_{DD}}{\sqrt{K_{1}/K_{2}} + 1}$$

5.17 a) The condition for constant-current region operation of a p-channel MOSFET is v_{DS} $\langle v_{GS} - V_{TR} \rangle$. In the circuit shown, Q_2 is connected with gate to drain, so that the above condition becomes

VGS2 < VGS2 - VTR
For an enhancement-mode p-channel device, VTR is negative, hence the right-hand side of this inequality will always be greater than the left-hand side. The constant-current condition is always met for Q2.

b) The current through both devices is the same, with $i_{D2} = -i_{D1}$ (the current i_{D2} is defined as positive *into* the drain of Q_2 , i.e. "up"). If Q_1 operates in the constant-current region, then

$$K_1(v_{GS1} - V_{TR1})^2 = K_2(-v_{GS2} + V_{TR2})^2$$

where $v_{GS1} = v_{IN}$, v_{TR2} is negative, and $v_{GS2} = v_{OUT} - v_{DD}$. The above equation then becomes

 $K_1(v_{IN} - v_{TR1})^2$ = $K_2(v_{DD} - v_{OUT} + v_{TR2})^2$ Solving for v_{OUT} results in

$$v_{OUT} = V_{DD} + V_{TR2} - \sqrt{\frac{K_1}{K_2}}(v_{IN} - V_{TR1})$$

This equation is similar to that derived in Prob. 5.16. It has a constant slope given by

$$\frac{dv_{0UT}}{dv_{IN}} = -\sqrt{\frac{K_1}{K_2}}$$

c) The answer to Prob. 5.16, part c) also applies here if V_{TR2} is replaced with (- V_{TR2}).

above cutoff requires that v_{GS} exceed V_{TR} . The source of Q_1 is connected to $V_{SS} = -10$ V, hence the condition $v_{GS1} > V_{TR1} = 1$ V will be met for $v_{IN} > -9$ V. Similarly, the source of Q_2 is connected to $V_{DD} = 10$ V. The p-channel device condition $v_{GS2} < V_{TR2}$ (v_{GS} more negative than V_{TR}) will be met for $v_{IN} < 8$ V.

The range of vIN over which both devices will conduct is thus

-9 V < vIN < 8 V

b) Operation of an n-channel device in the constant-current region requires that v_{DS} exceed v_{GS} - V_{TR} . This condition will be met in Q_1 for v_{DS1} > v_{GS1} - v_{TR1} , or

 v_{OUT} - v_{SS} > v_{IN} - v_{SS} - v_{TR1} This condition can be simplified to

 $v_{0UT} > v_{IN} - V_{TR1} = v_{IN} - 1 V$. For the p-channel device Q_2 , the constant-current condition becomes

where v_{DS2} , v_{GS2} , and v_{TR2} are all negative voltages. With the source of q_2 connected to v_{DD} , this condition becomes

 v_{0UT} - V_{DD} < v_{IN} - V_{DD} - V_{TR2} This condition can be simplified to

VOUT $\langle vIN - V_{TR2} = vIN + 2 V \rangle$ For a given vIN, the range of v_{OUT} over which both devices will operate in the constant-current region thus becomes $vIN - 1 V \langle v_{OUT} \langle vIN + 2 V \rangle$.