Chapter 1 Review of Linear Circuit Theory

1.1 Plot the v-i characteristic of the following circuit when $V_a = 5 \text{ V}$.

- 1.2 A 2 k Ω resistor is connected across the terminals a-a' in the circuit shown above. Find the operating point of the resistor using the graphical method. Verify the result using 0hm' Law.
- 1.3 Find the Thevenin equivalent of the circuit shown below, as seen from the terminals a-a'.

1.4 In the following circuit, use superposition to find the Thevenin equivalent seen at the terminals b-b'

1.5 The circuit shown below contains a dependent source. Find the Thevenin equivalent of the circuit as seen at the terminals a-a'

1.6 The circuit shown below contains a dependent source. Find the Thevenin equivalent of the circuit as seen at the terminals b-b'.

Use the "test source" method to find R_{Th}.

1.7 The circuit shown below contains a current-dependent current source. Find the equivalent resistance seen looking into the terminals a-a'. Use the "test source" method.

1.8 Find the Norton equivalent of the circuit shown below.

1.9 Find the Norton equivalent of the following circuit:

1.10 The circuit shown below contains a dependent source. Find the Norton equivalent of the circuit as seen at terminals a-a'. This circuit is the same one analyzed in Prob. 1.5.

- 1.11 Measurements with a voltmeter are made at the terminals of a circuit that contains only resistors, dc current sources, and fixed voltage sources. The meter has an internal resistance of 1 M Ω . With no other loads applied, the measured voltage is 12 V. With an additional external 1 M Ω resistance connected in parallel with the meter, the measured voltage is 10 V. Find the Thevenin equivalent of the resistive circuit as seen at the measured terminals.
- 1.12 A circuit is powered from a 10-V voltage supply, as shown below. When the circuit drives a 10 k Ω resistive load at 5 V, it draws 2 mA from this supply. Find the power dissipated in the load; find the power dissipated in the circuit.

SOLUTIONS TO PROBLEMS

Chapter 1

1.1 Since the circuit is resistive (i.e., contains only a resistor and a constant voltage source), it's v-i characteristic is a straight line. The v-i characteristic can be plotted by finding two points.

For i = 0 (open circuit), $v = V_a = 5$ V (v-axis intercept of the v-i characteristic). For v = 0 (short circuit), $i = V_a/R = 5$ mA (i-axis intercept). The resulting v-i characteristic is shown below.

1.2 The v-i characteristic of a 2 kΩ resistor consists of a straight line with slope (1 mA)/(2 V) = 0.5 mA/V passing through the origin:

The point of intersection, i.e., the operating point, is seen to be 3.3 V; 1.6 mA. An analytical solution confirms this result. From Ohm's Law:

$$i = \frac{5 \text{ V}}{1 \text{ k}\Omega + 2 \text{ k}\Omega} = 1.67 \text{ mA}$$

$$v = (1.66 \text{ mA})(2 \text{ k}\Omega) = 3.33 \text{ V}$$

Alternatively, from the voltage divider relation:

$$v = 5 V \frac{2 k\Omega}{1 k\Omega + 2 k\Omega} = 3.33 V$$

1.3 The Thevenin voltage is equal to the voltage at the terminals a-a' under open-circuit conditions (i.e., with no other elements connected to the terminals):

Under open circuit conditions, all of the current I_1 flows through R_1 , causing a voltage drop

 $I_1R_1 = (5\text{mA})\,(10\text{k}\Omega) = 50\text{ V}$ to develop across R_1 . No voltage drop is developed across R_2 , since the current through it is zero. Thus, $v_0C = 50$ V. The Thevenin resistance is equal to the resistance seen at the terminals a-a' with I_1 set to zero (open circuit):

By inspection, $R_{Th} = R_1 + R_2 = 30 \text{ k}\Omega$. • Alternative method for finding R_{Th} : Find the current flowing through a short-circuit applied to the terminals a-a':

The current flowing through the short-circuit is also equal to the current flowing through R_2 . From the current divider relation:

$$i_{SC} = I_1 \frac{R_1}{R_1 + R_2}$$

$$= 5 \text{ mA} \frac{10 \text{ k}\Omega}{10 \text{ k}\Omega + 20 \text{ k}\Omega} = 1.67 \text{ mA}$$

$$R_{Th} = \frac{v_{0C}}{i_{SC}} = \frac{50 \text{ V}}{1.67 \text{ mA}} = 30 \text{ k}\Omega$$

1.4 To find v_{Th} , find the separate contributions of V_1 and V_2 to v_{0C} . Here is the circuit with V_1 set to zero and V_2 "on":

From the voltage divider relation

$$v_{0C1} = V_2 \frac{R_4}{R_2 + R_4}$$

Here is the circuit with V_2 set to zero and V_1 "on":

Because a short circuit appears directly across the series combination of R_2 and R_4 (voltage drop equal to zero), $v_{0C2} = 0$. Thus v_{Th} is equal to v_{0C1} alone:

$$v_{Th} = v_{0C1} = V_2 \frac{R_4}{R_2 + R_4}$$

To find R_{Th} , set both V_1 and V_2 to zero (short circuits) and find the resistance seen at the terminals b-b'

By inspection, $R_{Th} = R_4 || R_2$. Note that the $R_3 || R_1$ combination is bypassed by the V_2 =0 short circuit.

Alternatively, R_{Th} could be found by applying a short circuit to the terminals b-b' and using superposition to find the contributions of V_1 and V_2 to isc.

1.5 | Find the open-circuit voltage at the terminals a-a'.

The dependent source pulls a current β i2 up from ground through R₃, so that $v_{0C} = -\beta$ i $_2$ R₃. Find i $_2$ by applying KVL to the "input loop" of the circuit. Note that a total current of $(\beta + 1)$ i $_2$ flows through R₄, with i $_2$ entering R₄ via R $_2$ and β i $_2$ entering R₄ via the dependent source. From KVL:

 $V_1 = (R_1 + R_2)i_2 + R_4(\beta + 1)i_2$ Solving for i_2 yields

$$i_2 = \frac{V_1}{R_1 + R_2 + (\beta + 1)R_4}$$

so that

$$v_{0C} = -\beta i_2 R_3 = V_1 \frac{-\beta R_3}{R_1 + R_2 + (\beta + 1)R_4}$$

where $v_{Th} \equiv v_{0C}$.

To find R_{Th} , set V_1 to zero (short circuit) and find the resistance seen looking into the terminals a-a'.

From KVL around the input loop,

 $(R_1 + R_2)i_2 + R_4(\beta + 1)i_2 = 0$ Solving for i_2 yields $i_2 = 0$. Consequently, the dependent source is set to zero as well (open circuit), and R_{Th} in the remaining circuit becomes just R_3 .

• Alternative method:

With V_1 on, the current flowing through a short circuit applied to the a-a' terminals becomes $-\beta i_2$, so that $v_1 = v_2 = v_3 = v_4 = v_4$

 $R_{Th} = \frac{v_{0C}}{i_{SC}} = \frac{-\beta i_{2}R_{3}}{-\beta i_{2}} = R_{3}$

1.6 Step 1: Represent v_S , R_1 , and R_2 by a simpler Thevenin circuit consisting of one resistor and one voltage source:

Next find v_{OC} (i.e., v_{Th} at the terminals b-b') by applying KVL to the "input loop". Note that no current flows through the open

circuit at the terminals where v_1 is defined, hence no current flows through $R_1 \mid \mid R_2$, and the voltage drop across the resistance $R_1 \mid \mid R_2$ is zero. Applying KVL yields

or
$$v_{S} = \frac{R_{2}}{R_{1} + R_{2}} = v_{1} + g_{m}v_{1}R_{3}$$

$$v_{1} = v_{S} = \frac{R_{2}}{R_{1} + R_{2}} = \frac{1}{(1 + g_{m}R_{3})}$$

The open-circuit voltage thus becomes

$$v_{0C} = g_m v_1 R_3 = v_S \frac{R_2}{R_1 + R_2} \frac{g_m R_3}{(1 + g_m R_3)}$$

To find R_{Th}, set v_S to zero and apply a "test" voltage source to b-b'. The value of R_{Th} is determined by v_{test}/i_{test}. Note that a test current source could also be used, but a test voltage source simplifies the computation because it directly fixes v₁ to a known value.

Since $i_1 = 0$, the voltage drop across $R_1 | | R_2$ is zero, so that $v_1 = -v_{test}$.

The current itest has two components, one through R₃ and one through the dependent source:

$$i_{test} = \frac{v_{test}}{R_3} - g_{m}v_1 = \frac{v_{test}}{R_3} + g_{m}v_{test}$$

The ratio of v_{test} to i_{test} can be computed from this equation, i.e.,

$$R_{Th} = \frac{v_{test}}{i_{test}} = \left[\frac{1}{R_3} + g_m\right]^{-1} \equiv R_3 \left| \frac{1}{g_m} \right|$$

1.7 Find R_{Th} by applying a test source to the terminals a-a'. In this case, a test current source works best because it directly fixes in to the value itest.

Applying KCL to node "a" yields $i_{test} = i_2 - \beta i_1 = i_2 - \beta i_{test}$ Solving for i_2 results in

 $i_2 = (\beta + 1)i_{test}$ Adding up the drops across R₁ and R₂ yields

$$v_{test} = i_1R_1 + i_2R_2$$

$$= i_{test}R_1 + (\beta + 1)i_{test}R_2$$
so that

$$R_{Th} = \frac{v_{test}}{i_{test}} = R_1 + (\beta + 1)R_2$$

The value of R_2 as seen from a-a' has essentially been multiplied by the factor $(\beta + 1)$ via the action of the dependent source.

of a current source and parallel resistance. The value of the source is equal to the short-circuit current measured at terminals a-a':

$$V_{a} \stackrel{?}{\stackrel{+}{=}} 9 V \qquad \qquad V_{a} \stackrel{?}{\stackrel{+}{=}} 18C = \frac{V_{a}}{R}$$

where is $C = V_a/R = (9 \text{ V})/(22 \text{ k}\Omega) = 0.41 \text{ mA/V}$. The Norton resistance is found by setting the V_a source to zero (short circuit), yielding $R_N = R = 22 \text{ k}\Omega$.

The complete Norton equivalent circuit is shown below.

1.9 The Norton current is found by applying a short-circuit to the a-a' terminals:

From current division:

$$i_{SC} = \frac{R_1}{R_1 + R_2} I_1 = \frac{12 \text{ k}\Omega}{17 \text{ k}\Omega} 8 \text{ mA} = 5.65 \text{ mA}$$

The Norton resistance is found by setting I_1 to zero (open circuit) and observing the net resistance at the terminals a-a:

$$I_{1} = 0$$

$$R_{1} = 12 \text{ k}\Omega \iff R_{N}$$

$$R_{1} = 12 \text{ k}\Omega \iff R_{N}$$

 $R_N = R_1 + R_2 = 5 \quad k\Omega + 12 \quad k\Omega = 17 \quad k\Omega$. The complete Norton equivalent of the circuit is shown below.

1.10 | The open-circuit voltage of this circuit was found in Prob. 1.5:

$$v_{0C} = -\beta i_2 R_3 = V_1 \frac{-\beta R_3}{R_1 + R_2 + (\beta + 1)R_4}$$

Similarly, the Thevenin resistance, computed with V_1 set to zero, was found to be $R_{Th}=R_3$. These elements of the Thevenin equivalent circuit can be used to find the element values of the Norton equivalent circuit. Specifically, $R_N=R_3$, and

$$I_N = \frac{v_{0C}}{R_3} = \frac{-\beta V_1}{R_1 + R_2 + (\beta + 1)R_4}$$

The Norton equivalent of the original circuit can be represented in the following form:

$$\frac{\beta V_1}{R_1 + R_2 + (\beta + 1)R_4} \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle R_3$$

1.11 Here is a summary of the measurements. With the meter alone, the current out of the resistive circuit is $(12 \text{ V})/(1 \text{ M}\Omega) = 12 \mu\text{A}$:

With an additional 1 $M\Omega$ resistor connected, the current out of the resistive circuit becomes

For the general Thevenin equivalent shown below, $v = v_{Th} - iR_{Th}$.

Applying the known data results in:

12 V = v_{Th} - (12 μ A) R_{Th} , and

10 V = v_{Th} - (20 μ A) R_{Th} .

Simultaneous solution of these equations yields v_{Th} = 15 V; R_{Th} = 250 k Ω

1.12 The power extracted from the supply is equal to (10 V)(2 mA) = 20 mW. The power dissipated in the load is $(5 \text{ V})^2/(10 \text{ k}\Omega) = 2.5 \text{ mW}$. (Alternatively, (5 V)(0.5 mA) = 2.5 mW). The power dissipated in the circuit is equal to the difference: 20 mW - 2.5 mW