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9.2.1 Bode Plot Representation in the Frequency Domain

SOIDAL STEADY-STATE AMPLIFIER RESPONSE

The various capacitances described in Section 9.1, as well as any discrete capacitors specificul
added by the designer, all influence the response of an electronic circuit. Indeed, the body
this chapter deals with methods for dealing with and predicting the effect of capacitance
circuit response. Before embarking on a study of these effects, however, we first review severil
key concepts and definitions that pertain to the Jfrequency domain. In the frequency domuli,
a circuit is assumed to have been excited for some time by a sinusoidal input, such that

natural, transient responses have decayed to zero. Under such sinusoidal steady-state excitatio
every voltage and current signal in the circuit acquires the frequency of the input and can |
represented by a phasor. More importantly, each capacitor in the circuit can be represene
by a frequency-dependent impedance of value 1 /jwC. This feature transforms the different
equations that normally govern capacitive circuits into simple algebraic equations. Any arbitri
input signal can always be represented as a Fourier-series superposition of sinusoids of differe
frequencies and amplitudes. Knowledge of the circuit’s response to the individual sinusoid
Fourier components of the input allows the designer to-predict the circuit’s response to a comple
periodic signal. The next three sections are devoted to a review of concepts that are important |
the frequency domain. The study of actual circuits that contain capacitance begins in Section 9.’

Iy

The input-output response of a circuit in the frequency domain under sinusoidal steady-stula
conditions is called the circuit’s system Jfunction, or sometimes the transfer function.® The systeni
function contains a wealth of information about the circuit’s steady-state behavior under sinusoidl
excitation. This information is neatly expressed in the compact, graphical form of a Bode ploi
(pronounced “Bo-dee”). When a linear circuit has a frequency-dependent system function, botli
the magnitude and phase angle of the response are variables of great interest. It is often usclul
to know their values over very large ranges in frequency spanning several orders of magnitude,
Similarly, it is often desirable to assign equal importance to the lower and higher ends of the
frequency spectrum. The Bode plot consists of a set of straight lines placed on a graph with (l
frequency on the horizontal axis and either the output amplitude or phase angle on the verticul
axis. The straight lines serve as asymptotes that closely represent the actual circuit response, bl
are much easier to manipulate and analyze. We shall first develop the Bode plot for the simple
circuits of Figs. 9.10 and 9.11. These simple circuits highlight the key role of capacitors in many
electronic circuits. We then extend the concept to encompass more complicated circuits having
system functions of arbitrary complexity.

3 More accurately, the term transfer function is used to describe the frequency-domain relationship between inpu
and output signals appearing in different parts of the circuit. The more general term system function includes
transfer functions, but can also be used to describe the impedance or admittance of a single port.
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Solution

H(jw) begins at low frequencies with a solitary factor of jw and an initial slope of
+20 dB/decade. The flat midband region thus begins at the lowest-frequency pole w = 10rad/s.
The upper —3-dB limit of the midband region can be estimated by superimposing the two remain-
ing high-frequency poles:

1
1/10* + 1/(2 x 10%)

wy = |y = ~ 0.67 x 10*rad/s (9.73)

This estimated value for wy is slightly lower than the true value wgy = 0.84 x 10*rad /s obtained
from Eq. (9.58).

i

G

FRCISE 9.8 Find oy, oy, and the midband gain of the system function

-

jw/2

U0 = S 0/ + Ja IO T jo/10)

Answer: g =2rad/s; oy ~9.1 x 10*rad/s; A, = 5 = 14dB

9.7 Find wr, wy, and the midband gain of the system function of Exercise 9.5.
Answer: wp = 2.3 X IO;,rad/s; wy = 10%1ad/s; A, = 1.1 x 10° = 101dB
MNTL
\4

RCUITS CONTAINING

.3 FREQUENCY RESPONSE OF CI
APACITORS

The concepts presented in Section 9.2 provide powerful tools for working in the frequency domain.
With these tools mastered we can now understand the effects of capacitance (and inductance, where
important) on circuit behavior. In the sections that follow, we shall use these tools to analyze
and design real electronic circuits. To facilitate the connection between the abstract concepts of
Section 9.2 and the real circuits of the rest of the chapter, we first provide several key definitions
that help categorize the role of each capacitor in shaping circuit response.

3.1 High- and Low-Frequency Capacitors

The influence of a given capacitance often occurs at a frequency that lies either above or below
a circuit’s midband region. Conversely, the midband represents the frequency range over which
circuit behavior is unaffected by circuit capacitance. From a frequency-domain point of view, it
is often useful to categorize a given capacitor as either a high-frequency or low-frequency type,
depending on whether its effects are felt above or below the midband range. In an amplifier,
a high-frequency capacitor is defined as one that degrades the gain above the midband range.
Similarly, a low-frequency capacitor is defined as one that degrades the gain below the midband
range. Because capacitive impedance is inversely proportional to frequency, it follows that a
low-frequency capacitor must behave as a short circuit in the midband, while a high-frequency
capacitor must behave as an open circuit in the midband.

As a general rule, a given capacitor will function as a low-frequency type if it appears in
series with a circuit’s input or output terminal. Conversely, a capacitor will function as a high-
frequency type if it shunts an input or output node to small-signal ground. According to this
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In general, the use of Bode plots is limited to linear circuits. Many nonlinear circuits, how-
ever, including the amplifier circuits of this chapter, can be represented by frequency-dependent
piecewise-linear or small-signal circuit models. The Bode-plot formulation is useful for describ-
ing the small-signal frequency response of these circuits as well.
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A complete Bode plot consists of two separate parts. The first shows the magnitude of the
output variable relative to the input variable as a function of frequency. The second part shows
the phase angle of the output variable relative to the input variable as a function of frequency. The
angle of the input variable is arbitrarily (and for convenience) taken as the zero-angle reference.

As an example, consider the Bode plot for the simple circuit of Fig. 9.10, which consists of
a series resistor and a shunt, or parallel, capacitor. The system function of this circuit becomes,
via voltage division

Vout 1/joC 1

Vi R+1/joC 1+ joRC (9.32)

where the capacitor is treated as an element having impedance 1/jwC. As an aid in drawing the
Bode plot, we note the behavior of the system function at three extremes of frequency. In the
low-frequency limit @ <« 1/RC, the imaginary part of the denominator becomes negligible, and
the system function (9.32) reduces to Vou /Vip = 1 so that

Vout
Vin
and X ¥ou =0 (9.34)

=1 9.33)

where the angle of Vi, is taken as the zero-angle reference.
In the high-frequency limit w > 1/RC, the imaginary term in the denominator of Eq. (9.32)
becomes larger than the real term, so that the system function reduces to

Vou - 1 (9.35)
Vi.  jwRC

with Vou| 1 and % Vour = —90° (9.36)
V_in wRC

In this limit of large w, the magnitude |V oy /Vin| decreases by a factor of 10 for every factor-of-10
increase in w.
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Figure 9.12

Plot of the
frequency response
of the circuit of
Fig.9.10:

(a) magnitude plot;
(b) phase-angle
plot.
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At the boundary between high- and low-frequency extremes, which occurs at the point
= 1/RC, the magnitude of the real and imaginary terms of the denominator of Eq.(9.32)
become equal to each other, so that the magnitude and angle of the system function become

out

— = 0.707 9.37)

ll+1

and £ Vom =—4(1+ ]) = —45° (9.38;

InFig. 9.12, the magnitude and phase angle of the circuit of Fig. 9.10 are plotted as functions
of frequency -on logarithmic scales. The plots include the three limiting region cases described
above. Both magnitude and frequency are plotted logarithmically, so that the high and low ends
of the axes are given equal graphical weighting. Note that a logarithmic scale has no zero point
and a logarithmic graph has no origin; hence the point at which the vertical and horizontal axes

cross on the magnitude plot is arbitrary.
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For w <« 1/RC, the magnitude plot approaches the horizontal asymptote |Vou/Vin] = 1
given by Eq.(9.33). For @ > 1/RC, the plot approaches the asymptote given by Eq. (9.36).
These asymptotes together constitute the circuit’s magnitude Bode plot. Above their point of
intersection at w = 1/RC, the right-hand asymptote slopes downward by a factor of 10 for every
factor-of-10 increase in w. It can be shown that at the breakpoint w = 1/RC, the actual magnitude
curve falls by 1/+/2 from the value at the point of intersection. The phase-angle plot has two
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Plot of the
frequency response
of the circuit of
Fig.9.11:

(1) magnitude plot:
(b) phase-angle
plot.
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horizontal asymptotes—one for w <« 1/RC and one for w 3> 1/RC—Ilocated at 0° and —90°,
respectively. The phase-angle plot passes through the —45° point at the breakpoint w = 1/RC.

It is often convenient to express the logarithmic magnitude scale of the Bode plot with a
unit called the magnitude decibel, defined by

Vout

n

dB = 20 logg

(9.39)

The decibel is a logarithmic unit; hence a dB scale used in a logarithmic plot appears linear, as in
Fig.9.12(a).

We next consider the circuit of Fig.9.11, which consists of a series capacitor and a shunt
resistor. The system function of this circuit is given, again using voltage division, by

Vout _ R _ ijC
Vin R4+1/jwC ™ 1+ joRC

(9.40)
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The Bode-plot asymptotes can be found from the three limits at w <« 1/RC, w > 1/RC,
andw = 1/RC:

JoRC

At ® < 1/RC: |¥% N | ! | — wRC  and « Voy — +90° ©.41)
At o> 1/RC: “";’;‘ N l%] =1 and ¥ Vo — 0° (9.42)
At w= 1/RC: }3{7—‘ - ‘T_%‘ =% and  Vou = 90° — 45° =45°  (9.43)

The low-frequency limit (9.41) has a factor of @ in the numerator. For w <« 1/RC, the
magnitude plot thus approaches an asymptote with an upward slope of 20dB per factor-of-10
change in w, as shown in Fig. 9.13. Similarly, for @ > 1/RC, the magnitude plot asymptotically
approaches a constant value of unity. It can be shown for this system function that the low- and
high-frequency asymptotes cross at the breakpoint w = 1/RC, where the actual magnitude plot
passes 1/+/2 below the breakpoint crossing. The factor of 1/+/2 = 0.707 can also be expressed
in decibels as

' dB = 20 log;o 0.707 ~ —~3dB (9.44)

At low frequencies, the Bode plot of Fig. 9.13 has an upward slope of +20dB per decade
in w. This slope results because the low-frequency limit (9.41) has a factor of w in the numerator.
Suppose, for example, that at some low frequency w; <« 1/RC, the magnitude has a decibel

value of
dB; = 20 logio |Vour/Vin] = 20 logjo w1 RC (9.45)

where [Vou/Vin| is expressed using the limiting case (9.41). Atsome higher frequency w, = 10w,
that still satisfies the limit w; <« 1/RC, the decibel value becomes

dB2 = 20 logip 10w RC = 20 logjo w1 RC + 20 logyp 10 = dB; + 20 (9.46)

This value is 20 decibels more than the decibel value at w;.

EXERCISE 9.1

8.2

Draw the magnitude and angle Bode plots for the circuits of Figs. 9.10 and 9.11 if the capacitor
is replaced by an inductor of value L.

Show that the slopes of the nonhorizontal portions of the magnitude plots of Figs. 9.12 and 9.13
have values equal to +6 dB per octave, where an octave is a factor-of-2 change in frequency.

9.2.2
Complexity

Bode-Plot Representation of System Functions of Arbitrary

In later sections of this chapter, we will examine circuits with system functions that are far morc
complex than those of Egs. (9.32) and (9.40). Fortunately, the task of constructing the Bode plot
of any circuit, no matter how complex, is greatly simplified if its system function can be expresse«
in the general form

Jo(l+ jo/w)(1 + jo/ws)---

H{jw)= A ¥yl
U0) = AT Jojond + jojon)( + jwjas) - ©47)

The numbered frequencies w; - - - w, are the breakpoints of the system function, and A is a
constant. The solitary factor of jw in the numerator is not present for all circuits. If the binomial
containing a given breakpoint frequency w, appears in the numerator, then w, is called a zero
of the system function. If the binomial appears in the denominator, then w, is called a pole.
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Regardless of its type, a binomial term containing w,, will affect the circuit’s magnitude and phase
response as the driving frequency approaches and passes through the value w,,.

Suppose that the frequency w of the input signal driving the circuit initially lies well below
wy. In such a case, the binomial term containing w, will alter neither the magnitude nor the phase
of the system function, but will simply multiply the system function by unity. This statement can
be verified by observing the characteristics of a single binomial term for frequencies well below
Wp!

‘1 + 22151 for w<o, (9.48)
Wy
and p (1 + £> ~ 0° (9.49)

Conversely, if the driving frequency w lies well above a given breakpoint frequency w,, the
binomial term associated with w, will contribute a factor of w/w, to the magnitude of the system
function and an angle factor of 90°. This statement can be verified by noting that

jo w
Il + =~ — for w > wy (9.50)
Wy Wy
and » (1 + ﬂ) ~ 472 = o0° (9.51)
n Wy,

If the binomial appears in the numerator as a zero, the factor of @/, will appear in the numerator,
and the angle contribution of 90° will be added to the overall angle. If the binomial appears in
the denominator as a pole, the contributed factor of w/w, will appear in the denominator, and the
angle contribution of 90° will be subtracted from the overall angle.

The transition between the extremes w <« w, and @ > w, occurs at @ = w,. At this
frequency, the binomial of w, contributes a factor of /2 to the magnitude of the system function
and an angle of 45°. The validity of this statement can be shown by noting that at v = w,,

l”iﬂ SNt jl=VEr =2 9.52)
jo e
and X (1—{—;0——): x(1+j)=45 (9.53) -
n

When the numerator of the system function contains a single non-binomial factor of jw, a
factor of @ will be contributed to the magnitude and a constant factor of 90° will be contributed
to the phase angle at all values of the driving frequency .

Given these guidelines, the Bode-plot asymptotes that describe the magnitude and phase
response of a system function of the form (9.47) are easily constructed. We briefly review the
procedure here. The process begins by considering frequencies well below the lowest break-
point of the system function. ‘At such frequencies, the response will be flat (zero slope) with
magnitude A and phase angle zero. (If the numerator contains a solitary factor of jw, the re-
sponse at low frequencies will instead have a magnitude of Aw, a phase angle of 90°, and an
initial slope of +20 dB/decade.) The system function is next evaluated as the frequency is in-
creased. As the frequency passes through a given breakpoint w,, its binomial term will begin
to contribute a factor of w/w, to the magnitude of the system function. If the binomial appears
in the numerator, the slope of the asymptote describing the magnitude response will increase by
+20 dB/decade. If the binomial term appears in the denominator, the slope of the asymptote will
decrease by —20 dB/decade.
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The angle portion of the Bode plot can be constructed in a similar fashion. When t
binomial term appears in the numerator, the angle of the system function will undergo a pha
shift of +90° as the frequency passes through the breakpoint. If the binomial term appears in t
denominator, the phase shift will be —90°. The phase shift contributed az the breakpoint will |
equal to +45° or —45°, respectively. If a solitary factor of jw appears in the numerator of t|
system function, the Bode plot will begin with an upward slope of +20dB/decade and a pha
angle of +90° at low frequencies.

In the following examples, the techniques for constructing a Bode plot are illustrated f
two cases. The first involves a system function whose response is flat at low frequencies. Tt
second involves a system function with a factor of Jw in the numerator.

EXAMPLE 9.1

Figure 9.14
Magnitude plot of
the system function
of Eq. (9.54).

Draw the magnitude and angle Bode plots of a circuit that has a frequency-domain system functic
given by

Vou 100

Vin  (1+ jo/102)(1 + jo, 105

H(jo) = (9.5

Solution

The system function (9.54) has one poleat w = 10? rad/s and one at 106 rad /s. Atfrequencies wel
below the lowest pole at w = 102 rad /s, the magnitude of the system function is flat and approache
the limit |[H| = 100 = +40dB, as shown in Fig.9.14. Above the pole at w = 102 rad/s, th
asymptote describing the magnitude response acquires a slope of —20dB/decade. The actua
magnitude curve lies —3 dB below the asymptote intersection at point A. Above the second pol
at w = 10%rad /s, the asymptote acquires an additional slope of —20 dB/decade, for a total slop
of —40 dB/decade. With no other poles or zeros in the system function, this new slope continue;
indefinitely for all higher frequencies. The actual magnitude curve again lies —3 dB below the
asymptote intersection at point B. ‘

IVou/Vinl dB
40" frmemmcncmomcasnion, i Low-frequency asymptote (0 dB/dec)
200 !
! —20 dB/dec asymptote
o i
!
1
20 ! ,
E . . - High-frequency asymptote
]
—40'— !
| AN
—60°- ! I\ —40 dB/dec
| A
80 | [ I [ | LN\ !
1 10 100 1000 10* 10° 108 107 \ 108 o (radfs)

The angle plot of Eq. (9.54) is shown in Fig.9.15. Well below w = 10%rad/s, the angle
of the system function approaches zero. As the first pole at w = 10%rad/s is passed, the angle
undergoes a net phase shift of —90°, with its value precisely at @ = 10?rad/s equal to —45°,
As the second pole at w = 108rad/s is passed, it contributes an additional phase shift of -90%,
for a total phase shift of —180° well above & = 105 rad/s. The total phase shift precisely #
w = 10%rad/s is —135°, with —90° contributed from the pole at w = 102 rad/s and ~48"
contributed by the pole at w = 106 rad /s
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Construct the Bode plot of a circuit whose input—output system function is given by

You _ o, Jo(1+ jw/10)

Hiw) = 5 = 0 0100 + joyioh

(9.55)

This system function has a solitary factor of jw in the numerator.
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Breakpoints

Solution

The magnitude Bode plot of [Voy/Via| for the system function (9.55) is shown in Fig.9.16.
The point of intersection of the two axes is arbitrary. The system function contains a solitary
factor of jw in the numerator, hence the plot begins with a positive slope of -+20 dB/decade for
frequencies below the lowest breakpoint @ = 10rad/s. At the frequency w = 10, the zero in
the numerator takes effect and the slope of the Bode-plot asymptote acquires an additional factor
of +-20 dB/decade to become +40 dB/decade. At the frequency w = 10%*rad/s, the first pole in
the denominator is encountered, and the asymptote slope is reduced by —20 dB/decade to again
become +20dB/decade. Finally, at the second pole frequency @ = 107 rad/s, the asymptote
acquires another factor of —20 dB/decade and becomes horizontal for all frequencies greater than
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w = 107 rad /s, which is the highest breakpoint of the system function. At each of the breakpoints
in the system function (9.55), the actual frequency-response curve falls +3 dB or —3 dB above
or below the intersection points of the asymptotes.

Well above the highest breakpoint frequency w = 107, the magnitude of the system function
can be approximated by

(107
Woul o @@/10) _ 50(10%)(107)

= 1y
Vil (@/109(w/107) 10 =5(10"") = 234dB (9.56)

Note that the factors of w? cancel out in the numerator and denominator in Eq. (9.56), leaving a
term that is constant with frequency.

The angle portion of the Bode plot of Eq. (9.55) is shown in Fig.9.17. In this case, the
solitary factor of jw in the numerator contributes an initial angle of +90° to the plot. Above
the zero at @ = 10rad/s, an additional angle of +90° is contributed, making the total angle
+180°. Above the next breakpoint at @ = 10%, which is a pole, the angle is reduced by —90° to
+90°. Above the highest pole at w = 107, the total system function angle is again reduced by
—90° to zero, which is a result consistent with the horizontal slope of the magnitude plot at high
frequencies. Note that precisely at the location of each of the breakpoints, the system function
angle is shifted by half the overall 90° angle shift contributed by the breakpoint.

Figure 9.17 A Vou/Vig |
Angle plot of the
system function of
Eq. (9.55). +150°
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OD
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110 100 103 10* 10° 105 107 10% 10° @ (radss)
Breakpoints
EXERCISE 9.3 Draw the magnitude and angle Bode plots of the circuits of Figs. 9.10 and 9.11 if R = 5k$ and
C =10 uF.
8.4 A circuit has a system function with poles at @ = 500rad/s and 3 x 10°rad/s. At w = 0, the
system function has a value of 50. Draw its magnitude and angle Bode plots.
9.5 Draw the magnitude and angle Bode plots of the system function

s jo( + jw/50)
T+ jw/(B x 10)][1 + jo/2 x 103)][1 + jw,/106]

H(jo) =9
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High-, Low-, and Midband-Frequency Limits

Many signal-processing applications require a circuit or system to have a flat, constant response
over a specified range of frequencies called the midband. If the frequency components of the
input signal are confined to this range, the output will replicate the form of the input and have the
same spectral content. For such circuits, the locations of the specific poles and zeros of the system
function are of less interest than the frequency range over which the response may be considered
flat.

The flat-response region is usually the portion of the Bode plot with maximum magnitude.
Its limits are therefore defined as those frequencies wr, and wy at which the magnitude of the
system function first falls by a factor of 1/+/2, or —3dB, from the horizontal. A magnitude
reduction of 1/+/2 corresponds to halving of the power delivered to a resistive load.

The limits of the midband region may not always coincide with individual poles. Multiple
poles may contribute simultaneously to the degradation of the circuit’s output amplitude. This
concept is illustrated in Fig.9.18, which depicts the magnitude Bode plot of the system function:

jo/10
(1 + jw/10)(1 + jo/109[1 + jo /(2 X 104]

H(jw) = 1000 (9.57)

Equation (9.57) has a low-frequency pole at w, = 10tad/s and two high-frequency poles—one
at w; = 10%rad/s and one at wp = 2 X 10*rad/s.

|H}(dB
{lgi . ( )4k Low-frequency limit High-frequency limit
ot .
:1: ?unct(i)on 60 - __i__' Flat midband region
>wing two
raced w50l .
Wy = Oy,
rad/s and ’ 0 Bl :" :
:10% rad/s. +40 ec i
i | |

The low- and high-frequency limits w; and wy are used to designate the ends of the flat
midband region, which has a magnitude of [H| = 1000 = +60 dB. One might assume from the
discussion of Section 9.2.1 that w; = 10*rad/s, the first pole to be encountered above the midband,
represents wy . The system function (9.57) has another nearby poleatw, = 2x 10 rad /s, however,
which also contributes to the reduction of the Bode plot magnitude at @r.

The exact value of wy can be computed by solving for the frequency wy at which |H| falls
by 1/ /2 from its midband value of 1000:

Hlus = 100wy _ 1000 4 cg)
w=01 = T (@ /1021201 + (0 /IO + (@i /2 x 1092172 2
This equation can be solved for wy to yield

wg ~ 0.84 x 10*rad/s (9.59)

This frequency is lower than the breakpoint w; = 10* because the nearby pole at wy = 2 X

wnd 11 1. 3eindan tla aviatar racnnancs at frannenciet near ms .
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9.2.4 Superposition of Poles

For a system function like Eq. (9.57), which exhibits a clearly defined midband region, the lo-
cations of wy and w;, can always be found exactly by solving an equation of the form (9.58).
Such calculations, however, become tedious for system functions with many closely spaced poles.
In such cases, a simplifying technique called the superposition-of-poles approximation provides
reasonable estimates of w; and wy while eliminating much of the tedious algebra.

The superposition-of-poles approximation can be applied to any system function that can
be put in the form of a midband-gain multiplied by separate low-frequency and high-frequency
system functions. Such a system function will have the overall form

H(jw)= A, - H, - Hy
_a [ (Jw/wa) (Jw/wp) (jo/wm) ]

(1+ jowjwg) A+ jojwy) (1 + jo/on)

1
9.60
8 [(l—i—jw/a)l)(l—{—jw/wz)---(l-}—ja)/wn):' G50

L ]

Hy L*- Hy

Here A, is a constant equal to the magnitude of the system function in the flat midband region,
and Hp and Hy constitute the low- and high-frequency contributions, respectively, to H (jw).
The breakpoints w, - - - @y, of Hy jointly define the low-frequency limit of the midband. The
breakpoints w; - - - w, of Hy define the high-frequency limit of the midband. Note that Eq. (9.57)
is of the form (9.60), with A, = 1000, w, = 10, w; = 10%, and @, = 2 x 10%.

High-Frequency Limit
At the high-frequency end of the midband, the poles of Hj, have no effect on the response. At
® = wy, for example, each of the binomials in the denominator of H;, approaches the value
J@Hn [, canceling the corresponding factor jwp /wy, in the numerator of Hy, so that |Hy| — 1.
At frequencies near wy, H(jw) therefore can be approximately expressed by

A,

iw) ~ A, = i oy
H(jo) Ha 1+ jo/w)(1 + jo/w) - (1 + jo/w,) e

The denominator of Eq. (9.61) consists of a product of binomials that can be multiplied out
and put in the form

. 1 1 1 .\ 1 1 1 1
l+jo{—+—+ -+ — ]+ (o)’ | + + +
w w? Wy w1y Wiy w2y Wjwnp

: 9.62)
+ (jw)? (terms of the form

WjWin W1+ Wy

The second term in Eq. (9.62) contains the factor jw/w, from each binomial; the third term
contains all possible combinations of w? /w; wy; the fourth term contains all possible combinations
of order w?, and so on. The final term is equal to (Jw)* /(wiwy - - - wy).

By definition, all of the poles w; through w, of Eq.(9.61) are higher than the midband
endpoint wg. Thus, at frequencies near wy, terms of order w? or higher in Eq. (9.62) may be
ignored, because these terms will be much smaller than terms of order w. This approximation is
weakest when two poles coincide exactly near wy, but can be shown to yield moderately good
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results even in such a case (see Problem 9.36). Neglecting terms of order w? or higher in the
denominator of equation (9.62) allows the approximate high-frequency system function (9.61) to
be further approximated by

A,

1 1

H(jo) ~ ———
1+Jw(;u—l+w—2+---+a,7)

(9.63)

The denominator of Eq. (9.63) contains a single binomial term that causes |H| to fall by
—3dB when the imaginary part of the denominator equals the real part. The high-frequency
—3dB point wy of the system function (9.60), which constitutes the upper limit of the midband
region, will thus be given approximately by

11 1\
og=[—+—+-+— (9.64)
W] [420) Wy
As Eq. (9.64) suggests, wy can be expressed in “parallel combination” notation as w; fjw; - - - [@n

and can be thought of as the “parallel” superposition of all the individual high-frequency poles
wi through w,. Equation (9.64) is known as the superposition-of-poles approximation at the
high-frequency end of the midband. ,

According to (9.64), the high-frequency poles with the lowest frequency will make the most
contribution to wg . If one pole is significantly lower in frequency, it will dominate wy. Similarly,
poles located near each other will make nearly equal contributions to wy. Any poles located well
above wy will make little contribution to the value of wy.

Low-Frequency Limit

A similar approach applies at the low-frequency end of the midband. Near the low-frequency
end of H(jw), the poles of the high-frequency function Hy have little effect on the response. At
such frequencies, each of the binomial terms in Hy approaches unity. At frequencies near the

Jlow-frequency limit wy , the system function H (jw) given by Eq. (9.60) thus can be approximately
expressed by

(o/wa)  (o/wp)  (jo/on)

H(jw)~ AHr = A, o
) % AoHlL = Ao o lon) A+ jolan) L+ jofom)

(8.65)

If each of the factors jw/w, through jw/wy, is divided into numerator and denominator,
Eq. (9.65) becomes

1

H(jw)~ A,H, = A 9.66
(o) % Aot = Ao s Do+ D onffo ¥ D 00
The denominator of Eq. (9.66) can be expressed in polynomial form as
1 1
14+ —(wg+wp + -+ @p) + —T'—‘Q‘(wawb + W0y + OpWy + -+ WjOR)+
Jjo (jo) 9.67)

1
-+« + | terms of the form——= (wjwrwp) |+ + (watp * - W)
(jw)?

1
(JoL)"
By definition, all the poles w, - - - wy, are lower in frequency than the actual low-frequency

midband endpoint wz. Hence, at frequencies near @ = wp, the terms of order 1/w? or higher
may be ignored. These terms are presumed to be much smaller than terms of order 1/w. This
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approximation is weakest when two poles coincide exactly near wy. It can be shown, however,
that the approximation yields good results even in such a case (see Problem 9.36).

Neglecting terms of order (1/w)? or higher allows the approximate low-frequency system
function (9.65) to be further approximated by

1
"1+ (1/jw)(ws + wp + - - - + wp)

H(jw) ~ A

Multiplying numerator and denominator by jw and dividing both by (w, +wp + - - - + wy,) results

in .
H(jo) = I/ @at O o+ o) (9.68)

L+ [jo/(ws + wp + - + wm)]
The denominator of this expression contains a single complex binomial that describes the
lower —3-dB endpoint of the system function (9.60). According to Eq. (9.68), the value of this

low-frequency limit will be given approximately by

WL N wg+wp+ -+ O (9.69)

As this expression suggests, the low-frequency —3-dB limit of the midband region may
be expressed as an additive “series” superposition of all the low-frequency poles (wg -« - ).
As indicated by Eq. (9.69), the low-frequency poles with the highest value will make the most
contribution to wy . If one pole is significantly higher in frequency, it will dominate. Poles located
near each other will contribute in nearly equal amounts to w,. Similarly, any poles located well
below w;, will make little contribution to the value of ;..

Summary of Method

In summary, when a system function has a clearly defined midband region, the superposition-
of-poles approximation may be applied by classifying all poles as either high- or low-frequency
types. The upper —3-dB point wy of the flat midband region can be estimated by a parallel
superposition of poles:

1

~ = el 9.70
Veor+ /o + -+ 1/w, oy o, ( )

wg

The lower ~3-dB point wy, of the flat midband region can be estimated by a series superposition
of poles:
WL R wgF+wp+ -+ Wy ‘ (9.71)

If multiple poles exist at either end of the midband, the superposition-of-poles approximation will
always slightly underestimate the actual value of wy and slightly overestimate the actual value
of wy. :

EXAMPLE 9.3

Use the superposition-of-poles approximation to estimate the upper —3-dB endpoint wy of the
system function:

jw/10

HUe) = 1000 e 0 4 F 7w 109  Jo/ G % 109

(9.72)

Compare the result to the true value (9.59) obtained from Eq.(9.58). (This system function
contains only one low-frequency pole, hence the superposition-of-poles approximation is not
needed to find wy.)




