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A B S T R A C T

Intensifying urban heat extremes require efficient mitigation strategies; therefore, we propose a methodological 
framework for optimizing the implementation of urban green and cool roofs to reduce heat stress while maxi
mizing their cost-effectiveness. In particular, we develop a surrogate model based on the deep learning algorithm 
Multi-ResNet, which is trained on data generated by the physically-based Weather Research and Forecasting 
model coupled with an urban canopy model (WRF-UCM). We applied this framework to the Greater Seoul region 
under the SSP585 climate scenario for 2090–2099 with projected 2100 land cover and evaluated 262,144 sce
narios for cool and green roof allocation across 379 urban grids. Our results showed that, at the current cost of 
green roofs, the Pareto optimal scenario involves implementing cool roofs over 89.2 % of urban areas. This 
scenario would reduce the total effective heat stress index by 8.8 % compared to the business-as-usual scenario 
while decreasing costs by 19.6 %. We identified an optimal cost range of 117.4–146.1 $/m over 40 years for 
green roofs to become cost-effective and more widely adopted. Our approach demonstrates the potential of deep 
learning techniques to provide efficient quantitative assessments with lower computational demands (from 3561 
h with the WRF-UCM to 72 h), potentially supporting climate-resilient urban building planning.

1. Introduction

Urban areas are known to experience unique climatic conditions 
(Clinton and Gong, 2013; Peng et al., 2012), most notably elevated 
temperatures, a phenomenon that is referred to as the urban heat island 
(UHI) effect (Oke, 1973). UHI processes tend to exacerbate heat stress 
during extreme heat events, with a temperature increase of up to 2.8 ◦C 
observed during heat waves (Jiang et al., 2019; Wang et al., 2018). As 
global climate change accelerates and urban populations continue to 
grow (Fischer et al., 2021; Northridge and Sclar, 2003), the frequency 
and severity of urban climatic extremes are projected to increase, 
threatening public health and raising mortality rates in urban areas 
(Huang et al., 2019, 2023). To mitigate this impact of extreme heat and 
the UHI effect, strategic urban planning has become increasingly crit
ical. This often involves the use of physically based numerical modeling, 
which is employed for preemptive experiments and assessments. For 

example, the Weather Research and Forecasting (WRF) model 
(Skamarock et al., 2008) and its variants, coupled with various urban 
canopy schemes, have been extensively used over the past decade to 
estimate the effects of cool roofs (CRs) and green roofs (GRs) on a city or 
regional scale (Georgescu, 2015; Li et al., 2014; Sharma et al., 2016; 
Wang et al., 2022; Zonato et al., 2021). These numerical assessments 
have demonstrated that CRs are more effective than GRs in reducing the 
UHI effect (Georgescu, 2015; Wang et al., 2022; Zonato et al., 2021), 
though this varies depending on their area (Zhong et al., 2021), and 
irrigated GRs provide additional cooling effects (Li et al., 2014; Zonato 
et al., 2021). It has also been suggested that increasing the CR or GR area 
leads to greater reductions in the UHI effect (Li et al., 2014; Sharma 
et al., 2016).

In addition to physically based numerical modeling, a growing 
number of studies have applied machine learning (ML) techniques to 
develop UHI mitigation strategies. These ML techniques can handle 
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large datasets with numerous variables and capture intricate and 
nonlinear relationships that may not be fully represented in physically 
based numerical models. For example, artificial neural networks have 
been used to provide theoretical guidelines for the optimization of fac
tory designs and the proportion of green space to mitigate extreme UHI 
effects in Wuhan, China (Liu et al., 2021, 2023). Additionally, Gaussian 
process regression (Laloy and Jacques, 2019) has been employed to 
develop a surrogate model for the physically based Arizona State Uni
versity (ASU) Single-Layer Urban Canopy Model (version 4.1; Li and 
Wang, 2020), which was subsequently used to determine the optimal 
urban design parameters (e.g., road width, building height, and albedo) 
for the mitigation of both urban heat and carbon emissions (Li et al., 
2022).

Recent studies have also demonstrated that deep learning (DL) al
gorithms outperform traditional ML techniques when addressing issues 
that are inherently complex and spatially heterogeneous with high 
dimensionality (Johnson and Khoshgoftaar, 2019; LeCun et al., 2015). 
This advantage is particularly evident in geoscience applications, where 
DL algorithms enhance seismic data interpretation and advance mineral 
exploration through the improved analysis of complex geological 
structures (Yu and Ma, 2021). Similarly, in the energy sector, DL algo
rithms have been employed to optimize geothermal resource assessment 
and monitor carbon storage, leading to more precise and efficient 
modeling (Zhong et al., 2019). Furthermore, in the fields of climate 
modeling and pollution detection, DL algorithms have substantially 
increased the accuracy and predictive capabilities of models, enabling 
more robust environmental analysis and forecasts (Rasp et al., 2018). 

However, to date, the majority of studies on urban heat mitigation have 
employed simple ML algorithms to provide uniform optimal parameter 
values for the entire study region rather than applying DL algorithms to 
generate spatially heterogeneous urban planning solutions.

In addition to computational techniques used to assess the potential 
heat reduction that can be achieved through roofing design, compre
hensive consideration of costs and benefits is required for the develop
ment of sustainable and economically viable urban heat mitigation 
strategies. For example, while GRs have the potential to reduce building 
energy consumption by up to 75 % during summer months (Castleton 
et al., 2010), the expenses associated with their installation, mainte
nance, and associated stormwater equipment may exceed the benefits 
gained from energy savings and air pollution removal (Sproul et al., 
2014). In particular, it has been estimated that GRs have a net cost of 
$71/m2, whereas CRs have the potential to achieve net savings of 
$25/m2 (Sproul et al., 2014). Given these economic considerations, it is 
important to identify optimal roofing strategies that balance financial 
costs with heat mitigation effects, particularly when considering the 
implementation of GRs and CRs on a regional scale. However, it is 
important to note that GRs offer aesthetic, ecological, and recreational 
benefits that are not easily quantified using existing methods (Manso 
et al., 2021), while technological advancements in GR implementation 
may reduce associated costs. Therefore, it is worthwhile to investigate 
the optimal cost range at which GRs become a viable solution for urban 
heat mitigation.

In the present study, we developed a DL-based surrogate model to 
determine optimal roof strategies, including the spatial distribution and 

Fig. 1. Workflow for the deep learning-based optimization of the implementation of green and cool roofs for urban heat mitigation. This study involves 
three main steps. First, the process-based Weather Research and Forecasting model coupled with an urban canopy model (WRF-UCM) was established as the base 
model. Second, data were generated using the base model, and a surrogate model was developed using the deep-learning Multi-ResNet model (see Fig. 3). Finally, 
metadata was produced using the surrogate model for multi-type roof scenarios, and the optimal solution was identified based on the trade-off between heat stress 
mitigation and cost savings.
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type (i.e., CRs or GRs), with the objective of maximizing urban heat 
mitigation while minimizing net costs (Fig. 1). As a case study, we 
applied this framework to Seoul, the capital of South Korea (Fig. 2) 
based on its projected climate conditions and land cover changes by the 
end of this century (2090–2099). We employed the WRF regional 
climate model coupled with a single-layer urban canopy model (WRF- 
UCM) to produce the effective heat stress index (eHSI, Eq. (1)) for each 
of four roof schemes: business-as-usual (BAU), 25 % and 100 % CRs 
(CR25 and CR100, respectively), and 100 % GR (GR100) (Table S1). 
After mosaicking the eHSI from each roof scenario (Fig. 3), we trained 
and tested the DL algorithm Multi-ResNet (Abdi and Nahavandi, 2016) 
using the mosaicked eHSI along with ancillary data to develop the sur
rogate model. This DL-based surrogate model was then employed to 
compute the eHSI for 262,144 multi-type roof scenarios. The optimal 
roof scenarios at the current GR cost were determined using Pareto 
optimization (Ngatchou et al., 2005), which identifies a set of solutions 
where no objective can be improved without compromising another, 
thus providing a balanced trade-off between the total eHSI and total 
cost. We then estimated the optimal cost range for GRs that would 
enable coverage of more than half of the urban area. This framework 
represents a state-of-the-art tool that integrates physically based models, 
DL techniques, and multi-objective optimization for use in the devel
opment of urban heat mitigation strategies that address the complexity 
of urban heat stress under future climate scenarios.

2. Methods

2.1. Study region

The study region included Seoul and its surrounding areas 
(36.4896–38.207 ◦N, 126.0979–128.0743 ◦E), covering a population of 
26 million as of 2023 (https://kosis.kr/) (Fig. 2b). With a land area of 
2.4 Mha, the study region during the 2000–2004 period consisted of 
urban areas (4.7 %, including low and high-intensity residential areas 
and commercial areas), forests (56.9 %, including deciduous, evergreen, 
and mixed forests), and other land cover (including croplands, grass
lands, and wetlands) (https://egis.me.go.kr). The annual mean tem
perature and precipitation in the study region from 2000 to 2021 were 
12.4 ◦C and 1286.6 mm, respectively (https://data.kma.go.kr/).

2.2. Base model: WRF-UCM

As the base model, we employed the WRF with the Advanced 
Research WRF dynamic core (WRF-ARW) regional climate model 
(version 4.3.3; Skamarock et al., 2021), coupled with a single-layer UCM 
(Kusaka et al., 2001; Kusaka and Kimura, 2004). Key urban processes, 
such as shadowing, reflections, and the trapping of radiation and energy 
in the urban canyon via roofs, walls, and roads, are represented in the 
UCM. Therefore, the WRF-UCM has been widely used to investigate the 
effects of climate change and anthropogenic activities in urban areas 
(Vahmani and Hogue, 2015; Wang et al., 2022).

We established three two-way nested grids with spatial resolutions of 
27 km, 9 km, and 3 km (number of grids = 100 × 103, 82 × 91, and 51 ×
60, respectively), with the innermost domain centered over Seoul and 
the surrounding suburban areas (Fig. 2). The vertical grids were set to 
have 45 levels, with the top level at 50 hPa. The physical parameteri
zation schemes were as follows: the WRF Single-Moment 3-Class 
(WSM3) microphysics scheme (Hong et al., 2004), the Rapid Radiative 
Transfer Model (RRTM) for long- and short-wave radiation schemes 
(Mlawer et al., 1997), the revised MM5 surface layer scheme (Jiménez 
et al., 2012), Noah-LSM (Tewari et al., 2004) for land surface processes, 
the Yonsei University planetary boundary layer scheme (YSU) (Hong 
et al., 2006), the Kain–Fritsch cumulus scheme (Kain and Fritsch, 1990) 
with no cumulus parameterization for domain 3, and the UCM (Kusaka 
et al., 2001; Kusaka and Kimura, 2004) for urban surface processes.

We generated two land cover maps at a resolution of 3 km: a his
torical map to evaluate the WRF-UCM and a future map to assess the 
effects of the roof scenarios. The historical map was generated by 
rescaling the level-2 map from the Ministry of Environment of South 
Korea, https://egis.me.go.kr, 5-m resolution) and then reclassifying it 
following the U.S. Geological Survey (USGS) 24 land cover classification 
categories with three urban categories (low and high-intensity residen
tial areas and commercial areas) (Fig. 2b). The future map was taken 
from the land cover change scenario for 2100 under the SSP585 scenario 
(Chae et al., 2017), which we reclassified following the USGS 24 land 
cover classification categories (Fig. 2c). Urban parameters for the urban 
grids are summarized in Table S2.

For the initial and boundary conditions, we used a global dataset 
(horizontal grid spacing of 1.25◦ × 1.25◦ at 6-h intervals for the 
1979–2100 period) based on the mean climate and interannual variance 
of the European Centre for Medium-Range Weather Forecasts Reanalysis 
5 (ERA5), the bias of which was corrected using a nonlinear trend from 

Fig. 2. Study region. (a) Weather Research and Forecasting model coupled with an urban canopy model (WRF-UCM) applied to three nested domains: d01 
(23.2431–50.8376 ◦N, 109.363–147.6499 ◦E), d02 (31.7593–39.9859 ◦N, 122.6212–131.9247 ◦E), and d03 (36.4896–38.207 ◦N, 126.0979–128.0743 ◦E). (b) Study 
region (d03) encompassing Seoul and its surroundings, with land cover data for 2000–2004 obtained from the Environmental Geographic Information Service (https 
://egis.me.go.kr). (c) Projected land cover map for the year 2100 generated based on the Shared Socioeconomic Pathway 585 (SSP585) scenario1.
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the ensemble mean of 18 Coupled Model Intercomparison Project Phase 
6 (CMIP6) models (Xu et al., 2021) (Table S3). The simulation period 
covered the summer season from June to August (JJA), when heat stress 
is strongest within the study region. The model was initialized on 1 May 
with a one-month spin-up for each simulation year during the model 
evaluation period (2000–2009) and the future scenario period 
(2090–2099). We evaluated the model performance based on the 
Pearson correlation coefficient (r) and the root-mean-squared error 
(RMSE) for the comparison between the simulation results (2-m air 
temperature, relative humidity, and precipitation) and the measurement 
data at five meteorological stations from the National Climate Data 
Portal of the Korea Meteorological Administration (http://data.kma.go. 
kr) during the historical period (i.e., JJA of 2000–2009).

2.3. Sample data generation

Using the WRF-UCM with the future SSP585 climate scenario and a 
land cover scenario for 2100 (Chae et al., 2017) (Fig. 2c), we generated a 
sample dataset by setting all of the roofs in the urban grids as a 
mono-type roof scheme for the four options: BAU, CR25, CR100, and 

GR100 (Table S1). For each roof scheme, the albedo parameter for the 
urban grids was set to the value representing each roof type. For the 
GR100 scheme, the GR option in the WRF-UCM model was employed 
instead of altering the albedo.

We calculated the objective variable HSI (Ha et al., 2022; Rothfusz, 
1990) using simulated 3-h outputs (temperature, water vapor mixing 
ratio, and surface pressure) with each mono-type roof scheme (HSImono). 
Because an HSI higher than 105 is considered to represent extreme 
caution or even danger (Ha et al., 2022), we added together the HSImono 
exceeding this threshold during JJA each year to produce the eHSI 
(eHSImono, Eq. (1)). 

eHSImono =
∑N

h=1

(
HSImono,h − θHSI

)
(Eq. 1) 

where HSImono,h indicates the 3-h HSI for the roof scheme, θHSI is the 
threshold (105), and N is the number of data points (i.e., 736 over the 
three months).

Fig. 3. Schematic diagram of the sample data generation and mosaic process. The Weather Research and Forecasting model coupled with an urban canopy 
model (WRF-UCM) was employed to generate sample data to calculate the total effective heat stress index (eHSI) for four mono-type roof scenarios: business-as-usual 
(BAU), 25 % cool roofs (CR25), 100 % cool roofs (CR100), and 100 % green roofs (GR100) (Table S1). To construct training and testing datasets for the Multi-ResNet 
model, we mosaicked the roof schemes, ancillary datasets, time-variant forcings, and the response variable (i.e., eHSImono from the WRF-UCM). The ancillary datasets 
were static attributes (elevation, soil type, leaf area index, and projected land cover), which were replicated four times. Time-variant forcings (temperature, relative 
humidity, and wind) were monthly averages from June to August over two five-year periods (2090–2094 and 2095–2099). The eHSImono values represented the 10- 
year averages for each roof scheme and meteorological forcing set.
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2.4. Deep learning model: Multi-ResNet

Multi-ResNet (Abdi and Nahavandi, 2016) was employed as the 
surrogate model in this study. This selection was based on its proficiency 
in processing high-dimensional data with spatial heterogeneity (LeCun 
et al., 2015), making it particularly suitable for handling complex 
datasets derived from WRF-UCM outputs. Multi-ResNet extends the 
concept of ResNet by introducing multiple residual functions in each 
block (MultiResBlock, Fig. S1, Table S4) in parallel or in a hierarchical 
manner with varying kernel sizes (e.g., 1 × 1, 3× 3, 5× 5, and 7× 7) to 
capture different levels of features or representations from the input 
data, such as urban grid attributes and meteorological forcings. These 
features are integrated through concatenation, batch normalization, and 
ReLU activation to integrate and refine features across scales, with re
sidual connections ensuring robust gradient flow through the network. 
The architecture progressively reduces the spatial dimensions while 
deepening the feature representations through successive blocks. It then 
employs global average pooling to aggregate spatial information and 
fully connected layers for the prediction of the output (eHSI in this 
study). This structure facilitates the efficient and accurate modeling of 
complex urban heat mitigation scenarios.

In this study, the hyperparameters of Multi-ResNet were optimized 
using grid search method to enhance its urban heat stress prediction 
performance. In particular, a learning rate of 0.001, the Adam optimizer, 
a batch size of 32, training over 200 epochs, and seven MultiResBlocks 
were employed (Fig. S1). A dropout rate of 0.3 was used to prevent 
overfitting, while ReLU activation with batch normalization was 
employed within each MultiResBlock to capture multi-scale features 
from the urban grid data and meteorological forcings, ensuring the ac
curate prediction of the eHSI across multiple roof scenarios.

To train and test a single Multi-ResNet with the four mono-type roof 
scenarios simultaneously, we generated mosaic sets of both the input 
data (i.e., the roof schemes, static attributes, and time-variant meteo
rological forcings) and output data (i.e., eHSI) (Fig. 3). The mosaic for 
the roof schemes was created by aligning BAU, CR25, CR100, and 
GR100. Static attributes (e.g., elevation, soil type, leaf area index, and 
future land cover map) were duplicated four times. Each time-variant 
meteorological forcing variable (e.g., monthly median temperature, 
relative humidity, and wind) was averaged over two five-year periods 
(2090–2094 and 2095–2099) and then duplicated. As a result, two 
mosaic sets were produced for each variable each month: the first set 
corresponding to the years 2090–2094 and the second set corresponding 
to the years 2095–2099. The eHSImono derived from WRF-UCM was 
averaged for the 2090–2099 period for each mono-type roof scheme. We 
then aligned these four eHSImono values with the order of the roof 
schemes in the mosaic. The 12,240 grids in the mosaic sets (51 × 60 
grids in the domain with the four roof schemes) were divided into two 
groups, with 70 % of the grids used for training over 200 epochs and 30 
% used for testing (Ghorbanzadeh et al., 2022). During the training 
process, 10 % of the data was used for validation to avoid overfitting 
(Srivastava et al., 2014).

The performance of Multi-ResNet was assessed based on its accuracy 
(ACC) and average F1-score derived from the testing data (Eqs. (3) and 
(4), respectively): 

ACC=(TP + TN)/(P + N)
(Eq. 3) 

F1=2 ×

[

(precision × recall)/(precision + recall)

]

(Eq. 4) 

where TP and TN represent true positives and true negatives (i.e., 
correctly predicted positive and negative classes, respectively), while P 
and N are the actual positive and negative classes, respectively. We also 
evaluated Multi-ResNet based on r and RMSE to allow a comparison 
between the eHSI predictions from Multi-ResNet and those from the 
WRF-UCM for the four mono-type roof scenarios (i.e., BAU, CR25, 

CR100, and GR100). After validating its performance, Multi-ResNet was 
employed as the surrogate model for the simulation of the eHSI under 
the multi-type roof scenarios.

2.5. Urban grid clustering

The mini-batch K-means method is a variant of the widely used K- 
means method (Lloyd, 1982), which has some disadvantages, such as its 
sensitivity to initial centers, outliers, and the number of clusters 
(Sculley, 2010). Mini-batch K-means clustering assigns the dataset to 
small random batches with a fixed size and calculates the centroid in 
each batch. New batch assignments and centroid calculations are iter
ated until convergence or a preset number of iterations is reached (100 
in the present study).

For clustering purposes, we normalized nine variables related to 
three attributes of urban grids: geospatial information (i.e., latitude and 
longitude), background climate forcings (i.e., median temperature, 
relative humidity, and wind speed for the 2090–2099 period), and the 
response variable (i.e., mean eHSImono for BAU, CR25, CR100, and 
GR100 during the 2090–2099 period).

We calculated cost function J (Eq. (5)) while increasing the number 
of clusters (Nc = 0 … 10) and selected the optimal number of clusters 
(Nopt) using the elbow method (Nainggolan et al., 2019; Syakur et al., 
2018), which identifies the point around which changes in the cost 
function decrease rapidly. 

JNc =
∑Nc

c=1

∑Nd

d=1

∑Na

a=1

⃒
⃒xc,d,a − Cc,a

⃒
⃒2 (Eq. 5) 

where JNc is the cost function with the cluster number (Nc), Nd is the 
number of data points in cluster c, Na is the number of the attributes 
considered (nine in this study), xc,d,a is the normalized value of the data 
point in cluster c with attribute a, and Cc,a is the center value of cluster c 
with attribute a.

2.6. Metadata generation and Pareto optimization

Once the optimal number of clusters of urban grids (Nopt) was 
determined, we produced multi-type roof scenario maps by assigning 
one roof scheme to one cluster and changing the roof schemes in a 
sequential manner, resulting in a total of 4Nopt multi-type roof scenarios. 
We implemented the surrogate Multi-ResNet model for each roof sce
nario with the other input data (i.e., future climate projections and 
ancillary data), generating eHSImulti. The economic net cost of each roof 
scheme over 40 years was calculated as the sum of costs (e.g., installa
tion and maintenance) minus the sum of the benefits (e.g., avoided CO2, 
NOx, and SO2 emissions) after considering inflation and discount rates 
(Table S5), and the total cost was calculated by multiplying the net cost 
with the area of the roof scheme.

To identify the optimal roof scenarios that provided a balance be
tween the reduction in the heat stress and the total cost, we searched for 
Pareto solutions (Ngatchou et al., 2005) from the 4Nopt scenarios where 
eHSImulti could not be reduced further without increasing the total cost. 
In this study, we opted for Pareto optimization due to its superior effi
ciency in identifying non-dominated solution sets. This approach offers 
distinct advantages over alternative methods, such as the weighted-sum 
technique, which requires the arbitrary assignment of weights to various 
objectives, and multi-objective evolutionary algorithms, which are 
computationally intensive (Gunantara, 2018). Both eHSImulti and the 
total cost were normalized prior to searching for the Pareto solutions. 
We also identified the optimal roof scenarios under the assumption that 
the GR cost would continue to decrease. The Pareto solutions were 
assessed as the net cost of the GR scheme decreased in increments of $1 
from the current cost. We then proposed an optimal cost range for the 
GR scheme that would enable coverage of more than half of the urban 
areas, making it the optimal scenario for heat reduction and cost savings.
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3. Results and discussion

3.1. Surrogate model development

The performance of WRF-UCM, the physically based model used to 
generate data for the surrogate model, was evaluated using measure
ments at five meteorological stations (Table S6). The Pearson correlation 
coefficient (r) was 0.75–0.86 for the 2-m air temperature, 0.56–0.83 for 
the 2-m relative humidity, and 0.55–0.61 for precipitation, while the 
RMSE was within an acceptable range (1.2–1.5 ◦C, 41.1–183.4 mm, and 
7.2–10.0 %, respectively). These metrics were comparable to previous 
studies (Ding and Chen, 2024; Du et al., 2022; Wang et al., 2017), 
indicating a reasonable consistency between model simulations and 
measurements.

Using Multi-ResNet, the accuracy of both the training and validation 
groups gradually converged after approximately 100 epochs (Fig. S2). 
The overall accuracy (0.84) indicated that 84 % of the model predictions 
were correct, while the F1-score (0.84) suggested that the model reliably 
identified high eHSI values despite their rarity, thus it could handle an 
imbalanced dataset. Similarly, r and RMSE were 0.73 and 53.5 
(approximately 10 % of the maximum eHSI), respectively, supporting 
the reliability of Multi-ResNet as a surrogate model for the roof scenario 
simulations.

3.2. Metadata analysis and optimal scenarios

Running simulations for all four roof schemes (i.e., CR25, CR100, 
GR100, and BAU) on each of the urban grids (N = 379) would require 
the analysis of 4379 scenarios (about 1.52 × 10,228), which is prohibitive 
in terms of computing power and time. Therefore, to reduce the total 
number of scenarios, we clustered the urban grids using the mini-batch 
K-means method (Chavan et al., 2015; Sculley, 2010). Based on the peak 
curvature for the cost function (J) (Fig. 4a), the optimal number of urban 
clusters was determined to be nine, where there was a steep decline in 

the rate of change of the cost function (Nopt = 9, Fig. 4a). This optimal 
cluster number represents an ideal balance between maximizing 
computational efficiency (achieved through fewer clusters) and model 
performance (minimizing within-cluster variance). The smallest cluster 
(#3) consisted of 16 grids scattered across the northeastern area, while 
the largest cluster (#4) included 70 grids and was located in the mid
western region (Fig. 4b). Each of the four roof schemes was systemati
cally applied to each of the nine clusters, starting with a baseline 
scenario where the BAU scheme was applied to all clusters. In subse
quent scenarios, other roof schemes (i.e., CR25, CR100, and GR100) 
were applied to individual clusters while maintaining BAU for the 
others. This systematic variation continued, exploring all possible 
combinations of roof schemes across the clusters, generating a total of 
262,144 unique scenarios (i.e., 49; see the four examples in Fig. S3).

We found that there was considerable variation in the total eHSI 
derived from the surrogate model across these roof scenarios (Fig. 5a). 
This indicated that there is significant potential for heat stress mitigation 
within the study region by implementing appropriate roof schemes in 
the designated areas. Notably, when applied across all urban areas, the 
GR100 scheme led to the largest reduction in heat stress, with a 15.8 % 
decrease in the total eHSI compared to the BAU scheme. Similarly, the 
total costs associated with each of the roof scenarios varied substan
tially. Implementing the GR100 scheme across all urban areas generated 
the highest cost ($339.6 billion), 43.5 % higher than the total cost of the 
BAU scheme ($236.7 billion), while the scenarios associated with the 
CR100 scheme generated the lowest total cost ($190.2 billion). The 
majority of the roof scenarios were characterized by an inverse rela
tionship between total cost and heat stress, with higher costs leading to a 
stronger mitigation effect. Overall, the considerable differences in the 
total eHSI and total cost highlight the importance of considering both 
environmental and economic factors when developing urban heat 
mitigation strategies.

Our analysis of 262,144 scenarios yielded 46 Pareto solutions that 
balanced a reduction in heat stress with a reduction in cost (Fig. 5b). The 

Fig. 4. Clustering urban grids. (a) Cost function (J, Eq. (5)) for varying cluster numbers (Nc) using the mini-batch K-means method (gray circles). The clustering 
process incorporated nine variables across three attributes: geospatial information (latitude and longitude), climate forcings (average temperature, relative humidity, 
and wind speed for the period 2090–2099), and response variables (mean eHSI under the BAU, CR25, CR100, and GR100 roof scenarios for 2090–2099 from the 
WRF-UCM). The optimal number of clusters (nine) was determined as the elbow point (red open circle), where the rate of change of the cost function decreases 
notably. (b) Spatial distribution of the resulting nine clusters across the 379 urban grids.
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optimal scenario was identified to be implementing the CR100 scheme 
across all of the urban areas (Figs. 5b and 6a). This scenario reduced 
costs by 19.6 % compared to the BAU scheme, while reducing heat stress 
by 8.8 %. The eHSI with the optimal scenario was significantly different 
from that with BAU and GR100 (p < 0.001, Fig. S4), indicating a sig
nificant effect of the roof implementations on heat reduction. The next 
nine best-performing Pareto solutions exhibited a consistent pattern, 
with the CR100 scheme dominating the spatial configurations and the 
other roof schemes (GR100, CR25, and BAU) making up only 4.2–10.8 % 
of the total urban area (Fig. 6b). These results also demonstrated that the 
implementation of uniform roof schemes produced spatially heteroge
neous effects on urban heat stress (Fig. 6c). Specifically, the heat stress 
reduction was minimal for the CR100 scheme in dispersed and isolated 
regions, with little change in the eHSI compared to the BAU scheme. In 
contrast, the largest heat stress reduction was observed in central urban 
areas. These heterogeneous effects can be attributed to the complex 
interactions between various factors, including local microclimates and 
urban morphology, highlighting the need for a robust framework 
capable of comprehensive analysis. Our analysis also suggested that 
tangible mitigation requires not only sufficient area coverage of the 
implemented roof schemes but also an adequate concentration of these 
strategies within the urban landscape. Adopting a uniform roof scheme 
across the entire city may not be sufficient to ensure effective heat stress 
reduction, meaning that a spatially targeted approach to urban heat 
mitigation is required.

3.3. Optimal GR cost range and efficacy of the roofing strategy

The current net cost of GRs is 209.6 $/m2 for a 40-year period 
(Table S5), which means that they could only be implemented over a 
limited proportion of the urban areas (4.2–10.8 %) in the Pareto solu
tions (Fig. 6b). In order for GRs to be a viable solution for urban heat 
stress mitigation, by which they should cover more than half of the 
urban areas, their net cost needs to be lower. To explore the impact of 
potential reductions in GR costs, we analyzed the Pareto solutions for all 
roof scenarios with GR costs ranging from the current net cost to a lower 
bound of 100 $/m2 over a 40-year period (Fig. S5 and Fig. 7a). Our 
results indicated that, when the costs of GRs exceeded that of the BAU 
scheme (146.1 $/m2 over a 40-year period), increasing the GR area led 

to an almost linear increase in total costs (Fig. 7b). It was also observed 
that the total eHSI could not be reduced below a certain threshold (3.43 
× 105), indicating that the heat mitigation efficacy was limited within 
this range of GR costs (Fig. 7c). Once the GR costs fell below that of BAU, 
a large increase in the GR area was observed in the Pareto solutions. This 
was accompanied by a noticeable reduction in the total eHSI without 
large increases in total costs (Fig. 7a–c). In addition, when the GR costs 
were lower than that of the CR100 scheme (117.4 $/m2 over a 40-year 
period), the scenario in which the GR100 scheme was employed across 
all urban areas emerged as the sole optimal solution. This non-linear 
pattern in the total eHSI and GR area in relation to the GR costs could 
be used to determine the optimal cost range for GRs, within which the 
cost-effectiveness of its implementation substantially improved. These 
results collectively suggest that achieving specific cost thresholds for 
GRs could facilitate their widespread adoption without proportional 
increases in total costs.

In addition to the consideration of overall coverage and cost, the 
spatial configuration of roof schemes is also a critical factor in opti
mizing urban heat mitigation. We thus compared two roof scenarios 
with contrasting spatial distributions but identical compositions: 50 % of 
GR100 and 50 % of either CR100 or CR25 (Fig. 8a–d). This revealed 
differential heat mitigation effects across the urban landscape 
(Fig. 8e–j), highlighting the potential for stronger mitigation in specific 
areas or diffuse cooling effects across larger urban expanses without 
increasing the overall implementation costs. This variability illustrates 
the importance of optimizing not only the extent but also the spatial 
configuration of roof schemes to enhance urban heat mitigation benefits. 
Our findings indicate that robust processes for implementing roof stra
tegies that are optimized to the specific climatic and economic charac
teristics of urban environments need to be developed.

3.4. Study limitations and future research directions

We propose a methodological framework for determining the 
optimal distribution of CRs and GRs for urban heat mitigation, yet it is 
important to acknowledge its limitations. First, our analysis was 
confined to a single city, which may limit the generalizability of our 
framework to other cities with different urban morphologies and cli
matic characteristics. In addition, the use of a single climate scenario 

Fig. 5. Pareto-optimal solutions. (a) Density plot of the number of scenarios according to their total effective heat stress index (eHSI) and associated total costs. The 
mono-type roof scenarios are business-as-usual (BAU; brown diamonds); 25 % cool roofs (CR25; dark-gray circles); 100 % cool roofs (CR100; light-gray triangles); 
and 100 % green roofs (GR100; green squares). The 46 Pareto-optimal solutions are indicated by black dots. (b) All Pareto solutions (black dots) together with the ten 
best solutions (red dots) and the optimal solution (blue dot).
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(SSP585) may limit the robustness of long-term heat mitigation strate
gies, given the inherent uncertainties in future climate projections. 
Therefore, future research should extend this approach to multiple cities 
across a diverse range of climate regimes and projections to validate the 
applicability of the model and investigate the efficacy of CRs and GRs for 
heat mitigation.

Our framework also has a predominantly environmental and climatic 
focus when developing the DL-based surrogate model. The effectiveness 
of heat mitigation strategies may vary considerably based on socioeco
nomic factors such as population density, resident activity patterns, the 
use of cooling systems, and local economic conditions. For example, 
areas with a higher socioeconomic status may have better access to air 
conditioning, whereas lower-income communities may rely more on 
passive cooling strategies, such as shaded outdoor spaces and natural 
ventilation (Li et al., 2024). However, those communities may struggle 
to maintain green infrastructure, potentially reducing its long-term 
cooling effectiveness (Schwarz et al., 2015). Understanding these 

complex feedback loops involving environmental parameters and so
cioeconomic factors is essential for tailoring mitigation strategies that 
address the needs of various populations. Therefore, by incorporating 
socioeconomic datasets such as census data, land-use surveys, and 
behavioral studies, future research can improve the effectiveness of 
strategies designed to mitigate future heat risks.

Another issue may arise from the clustering approach in this study, 
which grouped 379 urban grids into nine clusters. This approach aimed 
to provide a degree of localization to reduce the computational re
quirements, but it may fail to generate completely localized recom
mendations across urban grids. Even though climate variables (i.e., 
temperature, relative humidity, and wind speed) were employed during 
clustering, intra-cluster microclimate variation may have affected the 
accuracy of the optimal CR and GR distribution strategies, potentially 
leading to suboptimal mitigation outcomes. While clustering provides a 
practical framework for city-scale analysis, it may oversimplify the 
localized recommendations needed for effective heat mitigation at the 

Fig. 6. Pareto-optimal roof configurations and associated heat stress reduction. (a) Optimal solution for heat stress mitigation that also balances cost, which 
predominantly implements the 100 % cool roof (CR100) scheme (in white) across the urban areas. (b) For the next nine best Pareto solutions, the CR100 scheme is 
consistently preferred, with alternative schemes (business-as-usual [BAU], 25 % and 100 % cool roofs [CR25 and CR100], and 100 % green roofs [GR100], Table S1) 
used in 4.2–10.8 % of the urban areas. (c) Difference in the total effective heat stress index (eHSI) between the optimal solution and the BAU scheme, highlighting the 
effectiveness of this configuration in reducing heat stress.
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neighborhood scale. Future research should consider employing higher- 
resolution data and more advanced clustering techniques to better 
capture the heterogeneity of urban environments and provide more 
localized, effective recommendations for heat mitigation strategies.

Another potential concern is that the economic analysis in this study 
employed certain simplifications that may limit its applicability to real- 
world decision-making. Specifically, it does not account for regional 
variation in installation and maintenance costs, which can influence the 
feasibility of heat mitigation strategies. In addition, the non-monetary 
benefits of GRs, such as improved air quality, enhanced stormwater 
management capacity, and improved biodiversity, were not included in 
the cost estimation, despite their substantial contribution to the overall 
urban environment. Another limitation is the simplified net cost esti
mations over the 40-year period, which only considered inflation and 
discount rates but not technological advancements or economies of 
scale. Future research should incorporate dynamic cost models and 
broader cost− benefit frameworks to capture the full economic benefits 
of these strategies.

4. Conclusion

The use of CRs or GRs is effective in mitigating urban heat (Berardi 
et al., 2014; Rawat and Singh, 2022). In this study, we proposed a 
framework for the optimization of the CR and GR distribution to miti
gate urban heat while simultaneously considering economic costs. Using 
a Multi-ResNet-based surrogate model trained on the eHSI from the 
physically based model WRF-UCM, we found that the implementation of 
the CR100 scheme across the majority of urban areas achieved the 
optimal balance of heat stress reduction (8.8 %) and cost savings (19.6 
%) compared to the BAU scenario in the Greater Seoul region under the 
SSP585 climate scenario during the 2090–2099 period. We also identi
fied an optimal cost range for GRs of 117.4–146.1 $/m2 over a 40-year 

period, making GR implementation substantially more viable without a 
proportional increase in overall costs. Our findings demonstrate the 
importance of spatial configuration considerations because the roof 
schemes exhibited heterogeneous effects on heat stress mitigation across 
different urban areas, highlighting the need for spatially targeted 
approaches.

Despite potential limitations discussed above, our study demon
strates the value of surrogate modeling in efficiently exploring a large 
number of scenarios, allowing for more informed decision-making in 
urban planning. In particular, the surrogate model significantly reduced 
the computing time to approximately 72 h for 262,144 scenarios, 
compared to the 3561 h required by the WRF-UCM in the same 
computing environment. Future research should focus on exploring the 
applicability of this approach to other urban areas with different cli
matic and urban characteristics, which could provide valuable insights 
for global urban heat mitigation efforts.
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Pareto-optimal solutions that balance the total eHSI and total costs for a range of GR costs from the current value (209.6 $/m2 over a 40-year period, Table S5) to 
100.0 $/m2 over a 40-year period. The current costs of each roof scheme (i.e., business-as-usual [BAU], 25 % and 100 % cool roofs [CR25 and CR100], and 100 % 
green roofs [GR100]; Table S5) are colored accordingly. (b) Distribution of GR areas according to the associated total cost. (c) Distribution of the total eHSI in 
accordance with the associated total cost.
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