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ABSTRACT

Intensifying urban heat extremes require efficient mitigation strategies; therefore, we propose a methodological
framework for optimizing the implementation of urban green and cool roofs to reduce heat stress while maxi-
mizing their cost-effectiveness. In particular, we develop a surrogate model based on the deep learning algorithm
Multi-ResNet, which is trained on data generated by the physically-based Weather Research and Forecasting
model coupled with an urban canopy model (WRF-UCM). We applied this framework to the Greater Seoul region
under the SSP585 climate scenario for 2090-2099 with projected 2100 land cover and evaluated 262,144 sce-
narios for cool and green roof allocation across 379 urban grids. Our results showed that, at the current cost of
green roofs, the Pareto optimal scenario involves implementing cool roofs over 89.2 % of urban areas. This
scenario would reduce the total effective heat stress index by 8.8 % compared to the business-as-usual scenario
while decreasing costs by 19.6 %. We identified an optimal cost range of 117.4-146.1 $/m over 40 years for
green roofs to become cost-effective and more widely adopted. Our approach demonstrates the potential of deep
learning techniques to provide efficient quantitative assessments with lower computational demands (from 3561

h with the WRF-UCM to 72 h), potentially supporting climate-resilient urban building planning.

1. Introduction

Urban areas are known to experience unique climatic conditions
(Clinton and Gong, 2013; Peng et al., 2012), most notably elevated
temperatures, a phenomenon that is referred to as the urban heat island
(UHI) effect (Oke, 1973). UHI processes tend to exacerbate heat stress
during extreme heat events, with a temperature increase of up to 2.8 °C
observed during heat waves (Jiang et al., 2019; Wang et al., 2018). As
global climate change accelerates and urban populations continue to
grow (Fischer et al., 2021; Northridge and Sclar, 2003), the frequency
and severity of urban climatic extremes are projected to increase,
threatening public health and raising mortality rates in urban areas
(Huang et al., 2019, 2023). To mitigate this impact of extreme heat and
the UHI effect, strategic urban planning has become increasingly crit-
ical. This often involves the use of physically based numerical modeling,
which is employed for preemptive experiments and assessments. For

* Corresponding author.
** Corresponding author.

example, the Weather Research and Forecasting (WRF) model
(Skamarock et al., 2008) and its variants, coupled with various urban
canopy schemes, have been extensively used over the past decade to
estimate the effects of cool roofs (CRs) and green roofs (GRs) on a city or
regional scale (Georgescu, 2015; Li et al., 2014; Sharma et al., 2016;
Wang et al., 2022; Zonato et al., 2021). These numerical assessments
have demonstrated that CRs are more effective than GRs in reducing the
UHI effect (Georgescu, 2015; Wang et al., 2022; Zonato et al., 2021),
though this varies depending on their area (Zhong et al., 2021), and
irrigated GRs provide additional cooling effects (Li et al., 2014; Zonato
etal., 2021). It has also been suggested that increasing the CR or GR area
leads to greater reductions in the UHI effect (Li et al., 2014; Sharma
et al., 2016).

In addition to physically based numerical modeling, a growing
number of studies have applied machine learning (ML) techniques to
develop UHI mitigation strategies. These ML techniques can handle
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large datasets with numerous variables and capture intricate and
nonlinear relationships that may not be fully represented in physically
based numerical models. For example, artificial neural networks have
been used to provide theoretical guidelines for the optimization of fac-
tory designs and the proportion of green space to mitigate extreme UHI
effects in Wuhan, China (Liu et al., 2021, 2023). Additionally, Gaussian
process regression (Laloy and Jacques, 2019) has been employed to
develop a surrogate model for the physically based Arizona State Uni-
versity (ASU) Single-Layer Urban Canopy Model (version 4.1; Li and
Wang, 2020), which was subsequently used to determine the optimal
urban design parameters (e.g., road width, building height, and albedo)
for the mitigation of both urban heat and carbon emissions (Li et al.,
2022).

Recent studies have also demonstrated that deep learning (DL) al-
gorithms outperform traditional ML techniques when addressing issues
that are inherently complex and spatially heterogeneous with high
dimensionality (Johnson and Khoshgoftaar, 2019; LeCun et al., 2015).
This advantage is particularly evident in geoscience applications, where
DL algorithms enhance seismic data interpretation and advance mineral
exploration through the improved analysis of complex geological
structures (Yu and Ma, 2021). Similarly, in the energy sector, DL algo-
rithms have been employed to optimize geothermal resource assessment
and monitor carbon storage, leading to more precise and efficient
modeling (Zhong et al., 2019). Furthermore, in the fields of climate
modeling and pollution detection, DL algorithms have substantially
increased the accuracy and predictive capabilities of models, enabling
more robust environmental analysis and forecasts (Rasp et al., 2018).
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However, to date, the majority of studies on urban heat mitigation have
employed simple ML algorithms to provide uniform optimal parameter
values for the entire study region rather than applying DL algorithms to
generate spatially heterogeneous urban planning solutions.

In addition to computational techniques used to assess the potential
heat reduction that can be achieved through roofing design, compre-
hensive consideration of costs and benefits is required for the develop-
ment of sustainable and economically viable urban heat mitigation
strategies. For example, while GRs have the potential to reduce building
energy consumption by up to 75 % during summer months (Castleton
et al., 2010), the expenses associated with their installation, mainte-
nance, and associated stormwater equipment may exceed the benefits
gained from energy savings and air pollution removal (Sproul et al.,
2014). In particular, it has been estimated that GRs have a net cost of
$71/m?, whereas CRs have the potential to achieve net savings of
$25,/m? (Sproul et al., 2014). Given these economic considerations, it is
important to identify optimal roofing strategies that balance financial
costs with heat mitigation effects, particularly when considering the
implementation of GRs and CRs on a regional scale. However, it is
important to note that GRs offer aesthetic, ecological, and recreational
benefits that are not easily quantified using existing methods (Manso
et al., 2021), while technological advancements in GR implementation
may reduce associated costs. Therefore, it is worthwhile to investigate
the optimal cost range at which GRs become a viable solution for urban
heat mitigation.

In the present study, we developed a DL-based surrogate model to
determine optimal roof strategies, including the spatial distribution and
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Fig. 1. Workflow for the deep learning-based optimization of the implementation of green and cool roofs for urban heat mitigation. This study involves
three main steps. First, the process-based Weather Research and Forecasting model coupled with an urban canopy model (WRF-UCM) was established as the base
model. Second, data were generated using the base model, and a surrogate model was developed using the deep-learning Multi-ResNet model (see Fig. 3). Finally,
metadata was produced using the surrogate model for multi-type roof scenarios, and the optimal solution was identified based on the trade-off between heat stress

mitigation and cost savings.
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type (i.e., CRs or GRs), with the objective of maximizing urban heat
mitigation while minimizing net costs (Fig. 1). As a case study, we
applied this framework to Seoul, the capital of South Korea (Fig. 2)
based on its projected climate conditions and land cover changes by the
end of this century (2090-2099). We employed the WRF regional
climate model coupled with a single-layer urban canopy model (WRF-
UCM) to produce the effective heat stress index (eHSI, Eq. (1)) for each
of four roof schemes: business-as-usual (BAU), 25 % and 100 % CRs
(CR25 and CR100, respectively), and 100 % GR (GR100) (Table S1).
After mosaicking the eHSI from each roof scenario (Fig. 3), we trained
and tested the DL algorithm Multi-ResNet (Abdi and Nahavandi, 2016)
using the mosaicked eHSI along with ancillary data to develop the sur-
rogate model. This DL-based surrogate model was then employed to
compute the eHSI for 262,144 multi-type roof scenarios. The optimal
roof scenarios at the current GR cost were determined using Pareto
optimization (Ngatchou et al., 2005), which identifies a set of solutions
where no objective can be improved without compromising another,
thus providing a balanced trade-off between the total eHSI and total
cost. We then estimated the optimal cost range for GRs that would
enable coverage of more than half of the urban area. This framework
represents a state-of-the-art tool that integrates physically based models,
DL techniques, and multi-objective optimization for use in the devel-
opment of urban heat mitigation strategies that address the complexity
of urban heat stress under future climate scenarios.

2. Methods
2.1. Study region

The study region included Seoul and its surrounding areas
(36.4896-38.207 °N, 126.0979-128.0743 °E), covering a population of
26 million as of 2023 (https://kosis.kr/) (Fig. 2b). With a land area of
2.4 Mha, the study region during the 2000-2004 period consisted of
urban areas (4.7 %, including low and high-intensity residential areas
and commercial areas), forests (56.9 %, including deciduous, evergreen,
and mixed forests), and other land cover (including croplands, grass-
lands, and wetlands) (https://egis.me.go.kr). The annual mean tem-
perature and precipitation in the study region from 2000 to 2021 were
12.4 °C and 1286.6 mm, respectively (https://data.kma.go.kr/).
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2.2. Base model: WRF-UCM

As the base model, we employed the WRF with the Advanced
Research WRF dynamic core (WRF-ARW) regional climate model
(version 4.3.3; Skamarock et al., 2021), coupled with a single-layer UCM
(Kusaka et al., 2001; Kusaka and Kimura, 2004). Key urban processes,
such as shadowing, reflections, and the trapping of radiation and energy
in the urban canyon via roofs, walls, and roads, are represented in the
UCM. Therefore, the WRF-UCM has been widely used to investigate the
effects of climate change and anthropogenic activities in urban areas
(Vahmani and Hogue, 2015; Wang et al., 2022).

We established three two-way nested grids with spatial resolutions of
27 km, 9 km, and 3 km (number of grids = 100 x 103, 82 x 91, and 51 x
60, respectively), with the innermost domain centered over Seoul and
the surrounding suburban areas (Fig. 2). The vertical grids were set to
have 45 levels, with the top level at 50 hPa. The physical parameteri-
zation schemes were as follows: the WRF Single-Moment 3-Class
(WSM3) microphysics scheme (Hong et al., 2004), the Rapid Radiative
Transfer Model (RRTM) for long- and short-wave radiation schemes
(Mlawer et al., 1997), the revised MM5 surface layer scheme (Jiménez
et al., 2012), Noah-LSM (Tewari et al., 2004) for land surface processes,
the Yonsei University planetary boundary layer scheme (YSU) (Hong
et al., 2006), the Kain—-Fritsch cumulus scheme (Kain and Fritsch, 1990)
with no cumulus parameterization for domain 3, and the UCM (Kusaka
et al., 2001; Kusaka and Kimura, 2004) for urban surface processes.

We generated two land cover maps at a resolution of 3 km: a his-
torical map to evaluate the WRF-UCM and a future map to assess the
effects of the roof scenarios. The historical map was generated by
rescaling the level-2 map from the Ministry of Environment of South
Korea, https://egis.me.go.kr, 5-m resolution) and then reclassifying it
following the U.S. Geological Survey (USGS) 24 land cover classification
categories with three urban categories (low and high-intensity residen-
tial areas and commercial areas) (Fig. 2b). The future map was taken
from the land cover change scenario for 2100 under the SSP585 scenario
(Chae et al., 2017), which we reclassified following the USGS 24 land
cover classification categories (Fig. 2c). Urban parameters for the urban
grids are summarized in Table S2.

For the initial and boundary conditions, we used a global dataset
(horizontal grid spacing of 1.25° x 1.25° at 6-h intervals for the
1979-2100 period) based on the mean climate and interannual variance
of the European Centre for Medium-Range Weather Forecasts Reanalysis
5 (ERAS), the bias of which was corrected using a nonlinear trend from
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Fig. 2. Study region. (a) Weather Research and Forecasting model coupled with an urban canopy model (WRF-UCM) applied to three nested domains: d01
(23.2431-50.8376 °N, 109.363-147.6499 °E), d02 (31.7593-39.9859 °N, 122.6212-131.9247 °E), and d03 (36.4896-38.207 °N, 126.0979-128.0743 °E). (b) Study
region (d03) encompassing Seoul and its surroundings, with land cover data for 2000-2004 obtained from the Environmental Geographic Information Service (https
://egis.me.go.kr). (c) Projected land cover map for the year 2100 generated based on the Shared Socioeconomic Pathway 585 (SSP585) scenario’.
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Fig. 3. Schematic diagram of the sample data generation and mosaic process. The Weather Research and Forecasting model coupled with an urban canopy
model (WRF-UCM) was employed to generate sample data to calculate the total effective heat stress index (eHSI) for four mono-type roof scenarios: business-as-usual
(BAU), 25 % cool roofs (CR25), 100 % cool roofs (CR100), and 100 % green roofs (GR100) (Table S1). To construct training and testing datasets for the Multi-ResNet
model, we mosaicked the roof schemes, ancillary datasets, time-variant forcings, and the response variable (i.e., €HSI;ono from the WRF-UCM). The ancillary datasets
were static attributes (elevation, soil type, leaf area index, and projected land cover), which were replicated four times. Time-variant forcings (temperature, relative
humidity, and wind) were monthly averages from June to August over two five-year periods (2090-2094 and 2095-2099). The eHSI,;on, values represented the 10-

year averages for each roof scheme and meteorological forcing set.

the ensemble mean of 18 Coupled Model Intercomparison Project Phase
6 (CMIP6) models (Xu et al., 2021) (Table S3). The simulation period
covered the summer season from June to August (JJA), when heat stress
is strongest within the study region. The model was initialized on 1 May
with a one-month spin-up for each simulation year during the model
evaluation period (2000-2009) and the future scenario period
(2090-2099). We evaluated the model performance based on the
Pearson correlation coefficient (r) and the root-mean-squared error
(RMSE) for the comparison between the simulation results (2-m air
temperature, relative humidity, and precipitation) and the measurement
data at five meteorological stations from the National Climate Data
Portal of the Korea Meteorological Administration (http://data.kma.go.
kr) during the historical period (i.e., JJA of 2000-2009).

2.3. Sample data generation

Using the WRF-UCM with the future SSP585 climate scenario and a
land cover scenario for 2100 (Chae et al., 2017) (Fig. 2¢), we generated a
sample dataset by setting all of the roofs in the urban grids as a
mono-type roof scheme for the four options: BAU, CR25, CR100, and

GR100 (Table S1). For each roof scheme, the albedo parameter for the
urban grids was set to the value representing each roof type. For the
GR100 scheme, the GR option in the WRF-UCM model was employed
instead of altering the albedo.

We calculated the objective variable HSI (Ha et al., 2022; Rothfusz,
1990) using simulated 3-h outputs (temperature, water vapor mixing
ratio, and surface pressure) with each mono-type roof scheme (HSIyono)-
Because an HSI higher than 105 is considered to represent extreme
caution or even danger (Ha et al., 2022), we added together the HSI;nono
exceeding this threshold during JJA each year to produce the eHSI
(eHSImono, Eq. (1)).
eHSlnono = Z:’:l (HSImono,h - eHSI) (Eq 1)
where HSIpnono,n indicates the 3-h HSI for the roof scheme, Oyg; is the
threshold (105), and N is the number of data points (i.e., 736 over the
three months).
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2.4. Deep learning model: Multi-ResNet

Multi-ResNet (Abdi and Nahavandi, 2016) was employed as the
surrogate model in this study. This selection was based on its proficiency
in processing high-dimensional data with spatial heterogeneity (LeCun
et al.,, 2015), making it particularly suitable for handling complex
datasets derived from WRF-UCM outputs. Multi-ResNet extends the
concept of ResNet by introducing multiple residual functions in each
block (MultiResBlock, Fig. S1, Table S4) in parallel or in a hierarchical
manner with varying kernel sizes (e.g., 1 x 1,3x 3,5x 5,and 7x 7) to
capture different levels of features or representations from the input
data, such as urban grid attributes and meteorological forcings. These
features are integrated through concatenation, batch normalization, and
ReLU activation to integrate and refine features across scales, with re-
sidual connections ensuring robust gradient flow through the network.
The architecture progressively reduces the spatial dimensions while
deepening the feature representations through successive blocks. It then
employs global average pooling to aggregate spatial information and
fully connected layers for the prediction of the output (eHSI in this
study). This structure facilitates the efficient and accurate modeling of
complex urban heat mitigation scenarios.

In this study, the hyperparameters of Multi-ResNet were optimized
using grid search method to enhance its urban heat stress prediction
performance. In particular, a learning rate of 0.001, the Adam optimizer,
a batch size of 32, training over 200 epochs, and seven MultiResBlocks
were employed (Fig. S1). A dropout rate of 0.3 was used to prevent
overfitting, while ReLU activation with batch normalization was
employed within each MultiResBlock to capture multi-scale features
from the urban grid data and meteorological forcings, ensuring the ac-
curate prediction of the eHSI across multiple roof scenarios.

To train and test a single Multi-ResNet with the four mono-type roof
scenarios simultaneously, we generated mosaic sets of both the input
data (i.e., the roof schemes, static attributes, and time-variant meteo-
rological forcings) and output data (i.e., eHSI) (Fig. 3). The mosaic for
the roof schemes was created by aligning BAU, CR25, CR100, and
GR100. Static attributes (e.g., elevation, soil type, leaf area index, and
future land cover map) were duplicated four times. Each time-variant
meteorological forcing variable (e.g., monthly median temperature,
relative humidity, and wind) was averaged over two five-year periods
(2090-2094 and 2095-2099) and then duplicated. As a result, two
mosaic sets were produced for each variable each month: the first set
corresponding to the years 2090-2094 and the second set corresponding
to the years 2095-2099. The eHSIyono derived from WRF-UCM was
averaged for the 2090-2099 period for each mono-type roof scheme. We
then aligned these four eHSIpon, values with the order of the roof
schemes in the mosaic. The 12,240 grids in the mosaic sets (51 x 60
grids in the domain with the four roof schemes) were divided into two
groups, with 70 % of the grids used for training over 200 epochs and 30
% used for testing (Ghorbanzadeh et al., 2022). During the training
process, 10 % of the data was used for validation to avoid overfitting
(Srivastava et al., 2014).

The performance of Multi-ResNet was assessed based on its accuracy
(ACC) and average F1-score derived from the testing data (Egs. (3) and
(4), respectively):

ACC=(TP+TN)/p .y (Eq. 3)

F1 =2 x |(precision x recall) (Eq- 4)

/ (precision + recall)

where TP and TN represent true positives and true negatives (i.e.,
correctly predicted positive and negative classes, respectively), while P
and N are the actual positive and negative classes, respectively. We also
evaluated Multi-ResNet based on r and RMSE to allow a comparison
between the eHSI predictions from Multi-ResNet and those from the
WRF-UCM for the four mono-type roof scenarios (i.e., BAU, CR25,
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CR100, and GR100). After validating its performance, Multi-ResNet was
employed as the surrogate model for the simulation of the eHSI under
the multi-type roof scenarios.

2.5. Urban grid clustering

The mini-batch K-means method is a variant of the widely used K-
means method (Lloyd, 1982), which has some disadvantages, such as its
sensitivity to initial centers, outliers, and the number of clusters
(Sculley, 2010). Mini-batch K-means clustering assigns the dataset to
small random batches with a fixed size and calculates the centroid in
each batch. New batch assignments and centroid calculations are iter-
ated until convergence or a preset number of iterations is reached (100
in the present study).

For clustering purposes, we normalized nine variables related to
three attributes of urban grids: geospatial information (i.e., latitude and
longitude), background climate forcings (i.e., median temperature,
relative humidity, and wind speed for the 2090-2099 period), and the
response variable (i.e., mean eHSIo,, for BAU, CR25, CR100, and
GR100 during the 2090-2099 period).

We calculated cost function J (Eq. (5)) while increasing the number
of clusters (N, = 0 ... 10) and selected the optimal number of clusters
(Nopt) using the elbow method (Nainggolan et al., 2019; Syakur et al.,
2018), which identifies the point around which changes in the cost
function decrease rapidly.

N. Ng N

=353 e Cea [

c=1 d=1 a=1

(Eq. 5)

where Jy, is the cost function with the cluster number (N.), Ny is the
number of data points in cluster ¢, N, is the number of the attributes
considered (nine in this study), x. 4, is the normalized value of the data
point in cluster ¢ with attribute a, and C., is the center value of cluster ¢
with attribute a.

2.6. Metadata generation and Pareto optimization

Once the optimal number of clusters of urban grids (Ny,) was
determined, we produced multi-type roof scenario maps by assigning
one roof scheme to one cluster and changing the roof schemes in a
sequential manner, resulting in a total of 4Vt multi-type roof scenarios.
We implemented the surrogate Multi-ResNet model for each roof sce-
nario with the other input data (i.e., future climate projections and
ancillary data), generating eHSI ). The economic net cost of each roof
scheme over 40 years was calculated as the sum of costs (e.g., installa-
tion and maintenance) minus the sum of the benefits (e.g., avoided COo,
NOy, and SO, emissions) after considering inflation and discount rates
(Table S5), and the total cost was calculated by multiplying the net cost
with the area of the roof scheme.

To identify the optimal roof scenarios that provided a balance be-
tween the reduction in the heat stress and the total cost, we searched for
Pareto solutions (Ngatchou et al., 2005) from the 4V scenarios where
eHSI 1 could not be reduced further without increasing the total cost.
In this study, we opted for Pareto optimization due to its superior effi-
ciency in identifying non-dominated solution sets. This approach offers
distinct advantages over alternative methods, such as the weighted-sum
technique, which requires the arbitrary assignment of weights to various
objectives, and multi-objective evolutionary algorithms, which are
computationally intensive (Gunantara, 2018). Both eHSIy i and the
total cost were normalized prior to searching for the Pareto solutions.
We also identified the optimal roof scenarios under the assumption that
the GR cost would continue to decrease. The Pareto solutions were
assessed as the net cost of the GR scheme decreased in increments of $1
from the current cost. We then proposed an optimal cost range for the
GR scheme that would enable coverage of more than half of the urban
areas, making it the optimal scenario for heat reduction and cost savings.
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3. Results and discussion
3.1. Surrogate model development

The performance of WRF-UCM, the physically based model used to
generate data for the surrogate model, was evaluated using measure-
ments at five meteorological stations (Table S6). The Pearson correlation
coefficient (r) was 0.75-0.86 for the 2-m air temperature, 0.56-0.83 for
the 2-m relative humidity, and 0.55-0.61 for precipitation, while the
RMSE was within an acceptable range (1.2-1.5 °C, 41.1-183.4 mm, and
7.2-10.0 %, respectively). These metrics were comparable to previous
studies (Ding and Chen, 2024; Du et al., 2022; Wang et al., 2017),
indicating a reasonable consistency between model simulations and
measurements.

Using Multi-ResNet, the accuracy of both the training and validation
groups gradually converged after approximately 100 epochs (Fig. S2).
The overall accuracy (0.84) indicated that 84 % of the model predictions
were correct, while the F1-score (0.84) suggested that the model reliably
identified high eHSI values despite their rarity, thus it could handle an
imbalanced dataset. Similarly, r and RMSE were 0.73 and 53.5
(approximately 10 % of the maximum eHSI), respectively, supporting
the reliability of Multi-ResNet as a surrogate model for the roof scenario
simulations.

3.2. Metadata analysis and optimal scenarios

Running simulations for all four roof schemes (i.e., CR25, CR100,
GR100, and BAU) on each of the urban grids (N = 379) would require
the analysis of 4379 scenarios (about 1.52 x 10,%28), which is prohibitive
in terms of computing power and time. Therefore, to reduce the total
number of scenarios, we clustered the urban grids using the mini-batch
K-means method (Chavan et al., 2015; Sculley, 2010). Based on the peak
curvature for the cost function (J) (Fig. 4a), the optimal number of urban
clusters was determined to be nine, where there was a steep decline in
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the rate of change of the cost function (Noy: = 9, Fig. 4a). This optimal
cluster number represents an ideal balance between maximizing
computational efficiency (achieved through fewer clusters) and model
performance (minimizing within-cluster variance). The smallest cluster
(#3) consisted of 16 grids scattered across the northeastern area, while
the largest cluster (#4) included 70 grids and was located in the mid-
western region (Fig. 4b). Each of the four roof schemes was systemati-
cally applied to each of the nine clusters, starting with a baseline
scenario where the BAU scheme was applied to all clusters. In subse-
quent scenarios, other roof schemes (i.e., CR25, CR100, and GR100)
were applied to individual clusters while maintaining BAU for the
others. This systematic variation continued, exploring all possible
combinations of roof schemes across the clusters, generating a total of
262,144 unique scenarios (i.e., 4°; see the four examples in Fig. S3).

We found that there was considerable variation in the total eHSI
derived from the surrogate model across these roof scenarios (Fig. 5a).
This indicated that there is significant potential for heat stress mitigation
within the study region by implementing appropriate roof schemes in
the designated areas. Notably, when applied across all urban areas, the
GR100 scheme led to the largest reduction in heat stress, with a 15.8 %
decrease in the total eHSI compared to the BAU scheme. Similarly, the
total costs associated with each of the roof scenarios varied substan-
tially. Implementing the GR100 scheme across all urban areas generated
the highest cost ($339.6 billion), 43.5 % higher than the total cost of the
BAU scheme ($236.7 billion), while the scenarios associated with the
CR100 scheme generated the lowest total cost ($190.2 billion). The
majority of the roof scenarios were characterized by an inverse rela-
tionship between total cost and heat stress, with higher costs leading to a
stronger mitigation effect. Overall, the considerable differences in the
total eHSI and total cost highlight the importance of considering both
environmental and economic factors when developing urban heat
mitigation strategies.

Our analysis of 262,144 scenarios yielded 46 Pareto solutions that
balanced a reduction in heat stress with a reduction in cost (Fig. 5b). The
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Fig. 4. Clustering urban grids. (a) Cost function (J, Eq. (5)) for varying cluster numbers (N.) using the mini-batch K-means method (gray circles). The clustering
process incorporated nine variables across three attributes: geospatial information (latitude and longitude), climate forcings (average temperature, relative humidity,
and wind speed for the period 2090-2099), and response variables (mean eHSI under the BAU, CR25, CR100, and GR100 roof scenarios for 2090-2099 from the
WRF-UCM). The optimal number of clusters (nine) was determined as the elbow point (red open circle), where the rate of change of the cost function decreases
notably. (b) Spatial distribution of the resulting nine clusters across the 379 urban grids.
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optimal scenario was identified to be implementing the CR100 scheme
across all of the urban areas (Figs. 5b and 6a). This scenario reduced
costs by 19.6 % compared to the BAU scheme, while reducing heat stress
by 8.8 %. The eHSI with the optimal scenario was significantly different
from that with BAU and GR100 (p < 0.001, Fig. S4), indicating a sig-
nificant effect of the roof implementations on heat reduction. The next
nine best-performing Pareto solutions exhibited a consistent pattern,
with the CR100 scheme dominating the spatial configurations and the
other roof schemes (GR100, CR25, and BAU) making up only 4.2-10.8 %
of the total urban area (Fig. 6b). These results also demonstrated that the
implementation of uniform roof schemes produced spatially heteroge-
neous effects on urban heat stress (Fig. 6¢). Specifically, the heat stress
reduction was minimal for the CR100 scheme in dispersed and isolated
regions, with little change in the eHSI compared to the BAU scheme. In
contrast, the largest heat stress reduction was observed in central urban
areas. These heterogeneous effects can be attributed to the complex
interactions between various factors, including local microclimates and
urban morphology, highlighting the need for a robust framework
capable of comprehensive analysis. Our analysis also suggested that
tangible mitigation requires not only sufficient area coverage of the
implemented roof schemes but also an adequate concentration of these
strategies within the urban landscape. Adopting a uniform roof scheme
across the entire city may not be sufficient to ensure effective heat stress
reduction, meaning that a spatially targeted approach to urban heat
mitigation is required.

3.3. Optimal GR cost range and efficacy of the roofing strategy

The current net cost of GRs is 209.6 $/m? for a 40-year period
(Table S5), which means that they could only be implemented over a
limited proportion of the urban areas (4.2-10.8 %) in the Pareto solu-
tions (Fig. 6b). In order for GRs to be a viable solution for urban heat
stress mitigation, by which they should cover more than half of the
urban areas, their net cost needs to be lower. To explore the impact of
potential reductions in GR costs, we analyzed the Pareto solutions for all
roof scenarios with GR costs ranging from the current net cost to a lower
bound of 100 $/m? over a 40-year period (Fig. S5 and Fig. 7a). Our
results indicated that, when the costs of GRs exceeded that of the BAU
scheme (146.1 $/m? over a 40-year period), increasing the GR area led

to an almost linear increase in total costs (Fig. 7b). It was also observed
that the total eHSI could not be reduced below a certain threshold (3.43
x 10%), indicating that the heat mitigation efficacy was limited within
this range of GR costs (Fig. 7c). Once the GR costs fell below that of BAU,
a large increase in the GR area was observed in the Pareto solutions. This
was accompanied by a noticeable reduction in the total eHSI without
large increases in total costs (Fig. 7a—c). In addition, when the GR costs
were lower than that of the CR100 scheme (117.4 $/m? over a 40-year
period), the scenario in which the GR100 scheme was employed across
all urban areas emerged as the sole optimal solution. This non-linear
pattern in the total eHSI and GR area in relation to the GR costs could
be used to determine the optimal cost range for GRs, within which the
cost-effectiveness of its implementation substantially improved. These
results collectively suggest that achieving specific cost thresholds for
GRs could facilitate their widespread adoption without proportional
increases in total costs.

In addition to the consideration of overall coverage and cost, the
spatial configuration of roof schemes is also a critical factor in opti-
mizing urban heat mitigation. We thus compared two roof scenarios
with contrasting spatial distributions but identical compositions: 50 % of
GR100 and 50 % of either CR100 or CR25 (Fig. 8a—d). This revealed
differential heat mitigation effects across the urban landscape
(Fig. 8e-j), highlighting the potential for stronger mitigation in specific
areas or diffuse cooling effects across larger urban expanses without
increasing the overall implementation costs. This variability illustrates
the importance of optimizing not only the extent but also the spatial
configuration of roof schemes to enhance urban heat mitigation benefits.
Our findings indicate that robust processes for implementing roof stra-
tegies that are optimized to the specific climatic and economic charac-
teristics of urban environments need to be developed.

3.4. Study limitations and future research directions

We propose a methodological framework for determining the
optimal distribution of CRs and GRs for urban heat mitigation, yet it is
important to acknowledge its limitations. First, our analysis was
confined to a single city, which may limit the generalizability of our
framework to other cities with different urban morphologies and cli-
matic characteristics. In addition, the use of a single climate scenario
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(SSP585) may limit the robustness of long-term heat mitigation strate-
gies, given the inherent uncertainties in future climate projections.
Therefore, future research should extend this approach to multiple cities
across a diverse range of climate regimes and projections to validate the
applicability of the model and investigate the efficacy of CRs and GRs for
heat mitigation.

Our framework also has a predominantly environmental and climatic
focus when developing the DL-based surrogate model. The effectiveness
of heat mitigation strategies may vary considerably based on socioeco-
nomic factors such as population density, resident activity patterns, the
use of cooling systems, and local economic conditions. For example,
areas with a higher socioeconomic status may have better access to air
conditioning, whereas lower-income communities may rely more on
passive cooling strategies, such as shaded outdoor spaces and natural
ventilation (Li et al., 2024). However, those communities may struggle
to maintain green infrastructure, potentially reducing its long-term
cooling effectiveness (Schwarz et al., 2015). Understanding these

complex feedback loops involving environmental parameters and so-
cioeconomic factors is essential for tailoring mitigation strategies that
address the needs of various populations. Therefore, by incorporating
socioeconomic datasets such as census data, land-use surveys, and
behavioral studies, future research can improve the effectiveness of
strategies designed to mitigate future heat risks.

Another issue may arise from the clustering approach in this study,
which grouped 379 urban grids into nine clusters. This approach aimed
to provide a degree of localization to reduce the computational re-
quirements, but it may fail to generate completely localized recom-
mendations across urban grids. Even though climate variables (i.e.,
temperature, relative humidity, and wind speed) were employed during
clustering, intra-cluster microclimate variation may have affected the
accuracy of the optimal CR and GR distribution strategies, potentially
leading to suboptimal mitigation outcomes. While clustering provides a
practical framework for city-scale analysis, it may oversimplify the
localized recommendations needed for effective heat mitigation at the
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neighborhood scale. Future research should consider employing higher-
resolution data and more advanced clustering techniques to better
capture the heterogeneity of urban environments and provide more
localized, effective recommendations for heat mitigation strategies.

Another potential concern is that the economic analysis in this study
employed certain simplifications that may limit its applicability to real-
world decision-making. Specifically, it does not account for regional
variation in installation and maintenance costs, which can influence the
feasibility of heat mitigation strategies. In addition, the non-monetary
benefits of GRs, such as improved air quality, enhanced stormwater
management capacity, and improved biodiversity, were not included in
the cost estimation, despite their substantial contribution to the overall
urban environment. Another limitation is the simplified net cost esti-
mations over the 40-year period, which only considered inflation and
discount rates but not technological advancements or economies of
scale. Future research should incorporate dynamic cost models and
broader cost—benefit frameworks to capture the full economic benefits
of these strategies.

4. Conclusion

The use of CRs or GRs is effective in mitigating urban heat (Berardi
et al.,, 2014; Rawat and Singh, 2022). In this study, we proposed a
framework for the optimization of the CR and GR distribution to miti-
gate urban heat while simultaneously considering economic costs. Using
a Multi-ResNet-based surrogate model trained on the eHSI from the
physically based model WRF-UCM, we found that the implementation of
the CR100 scheme across the majority of urban areas achieved the
optimal balance of heat stress reduction (8.8 %) and cost savings (19.6
%) compared to the BAU scenario in the Greater Seoul region under the
SSP585 climate scenario during the 2090-2099 period. We also identi-
fied an optimal cost range for GRs of 117.4-146.1 $/m? over a 40-year

period, making GR implementation substantially more viable without a
proportional increase in overall costs. Our findings demonstrate the
importance of spatial configuration considerations because the roof
schemes exhibited heterogeneous effects on heat stress mitigation across
different urban areas, highlighting the need for spatially targeted
approaches.

Despite potential limitations discussed above, our study demon-
strates the value of surrogate modeling in efficiently exploring a large
number of scenarios, allowing for more informed decision-making in
urban planning. In particular, the surrogate model significantly reduced
the computing time to approximately 72 h for 262,144 scenarios,
compared to the 3561 h required by the WRF-UCM in the same
computing environment. Future research should focus on exploring the
applicability of this approach to other urban areas with different cli-
matic and urban characteristics, which could provide valuable insights
for global urban heat mitigation efforts.
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tional Climate Data Portal of the Korea Meteorological Administration
(https://data.kma.go.kr) are available at https://zenodo.org/records
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