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ABSTRACT
Urban areas experience the impact of natural disasters, such as heatwaves and flash floods, disparately in different neighbour-
hoods across a city. The demand for precise urban hydrometeorological and hydroclimatological modelling to examine this dis-
parity, and the interacting challenges posed by climate change and urbanisation, has thus surged. The Weather Research and 
Forecasting (WRF) model has served such operational and research purposes for decades. Recent advancements in WRF, includ-
ing enhanced numerical schemes and sophisticated urban atmospheric-hydrological parameterizations, have empowered the sim-
ulation of urban geophysical processes at high resolution (~1 km), but even this resolution misses significant urban microclimate 
variability. This study applies the large-eddy simulations (LES) mode within WRF, coupled with single-layer urban canopy models 
(SLUCM), to enable even finer-scale modelling (150 m) of the Urban Heat Island (UHI) effect in the Baltimore metropolitan area. 
We run nine scenarios to evaluate various methods of initializing soil moisture and various spinup lead times, and to assess the 
impact of WRF's Mosaic approach in depicting subgrid-scale processes. We evaluate the scenarios by comparing the WRF simu-
lated land surface temperature (LST) against Landsat LST and the WRF simulated hourly 2-m air temperatures (AT) with observa-
tions from eight weather stations across the domain. Results underscore the paramount influence of the lead spinup time on the 
spatiotemporal distribution of simulated soil moisture, consequently shaping WRF's efficacy in predicting the UHI. Furthermore, 
interpolating soil moisture-related parameters from the parent for child domain initialization yields a notable reduction in mean 
and root-mean-squared errors. This improvement was particularly evident in simulations with the longest spinup time, affirming 
the importance of carefully designing the initialization of soil moisture for improved urban temperature predictions.

1   |   Introduction

Exacerbated by climate change and rapid urbanisation, the in-
creasing frequency and intensity of heatwaves are intensifying the 
urban heat island (UHI) effect, posing significant threats to public 
health, economy, and infrastructure in cities. These threats dispro-
portionately affect underserved communities due to the inequita-
ble distribution of extreme heat exposure and vulnerability (Hsu 
et al. 2021; Venter et al. 2023; Ming et al. 2024), necessitating novel 

tools to understand the complex interplay between urban microcli-
mates and socioeconomic factors at fine scales. These tools need to 
be able to capture the climatic means in urban areas, the meteoro-
logical perturbations around these means, as well as the potential 
benefits of solutions implemented to mitigate the impact of ex-
treme heat events on vulnerable populations and neighbourhoods.

The UHI—a key component of the aforementioned threats—is 
a phenomenon whereby urban areas have higher temperatures 
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than surrounding suburban and rural areas. The combination 
of anthropogenic heat emission, city texture, and hygrothermal 
properties of urban surfaces modulate the intensity and trends 
of the UHI (Arnfield  2003; Shahmohamadi et  al.  2011; Oke 
et al. 2017; Sobstyl et al. 2018). As an example, during summer 
months, the daily minimum temperature in New York City can be 
up to ≈4°C warmer than the surrounding areas; this urban over-
heating can impact public health and air quality and increase en-
ergy and water demand (Rosenzweig, Solecki, and Slosberg 2006; 
Yang et  al.  2016). Wong, Paddon, and Jimenez  (2013), among 
many other studies, reviewed the UHI effect worldwide and 
found a direct link with increased mortality.

Urban areas are characterised by distinct features such as impervi-
ousness (streets, parking lots, roofs, compacted soil), densely pop-
ulated high-rise buildings, and sparse vegetative patches arranged 
in a highly heterogeneous spatial distribution. This heterogene-
ity leads to fine-scale variation in atmospheric and hydrological 
processes in urban areas. Binita, Shepherd, and Gaither  (2015) 
demonstrated how some areas of cities with higher urban densities 
tend to have much higher temperatures, essentially intra-urban 
heat islands. The difference in thermal and hydrological proper-
ties, such as higher evaporation rates and albedo and lower heat 
storage capacity of vegetation relative to impervious surfaces, leads 
to this intra-urban heat island phenomenon. Therefore, the surface 
temperature can vary significantly across urban areas at fine scales, 
exacerbating the need for atmospheric simulations at finer resolu-
tions to examine intra-urban overheating variability.

The Weather Research and Forecasting model (WRF; Skamarock 
et al. 2008) is a widely used tool for investigating the physics of 
the UHI effect and simulating mitigation strategies. WRF in-
cludes several Urban Canopy Model (UCM) options to represent 
urban-specific fluxes and hydrometeorological processes. Many 
researchers have used WRF with different UCMs to investigate 
the UHI phenomenon and its interactions with other physi-
cal and societal dynamics including climate change and heat 
waves at resolutions of ~1 km (Miao et al. 2009; Chen et al. 2011; 
Salamanca, Martilli, and Yagüe  2012; Li and Bou-Zeid  2014; 
Li, Bou-Zeid, and Oppenheimer  2014; Ramamurthy and Bou-
Zeid 2014, 2017; Ramamurthy et al. 2014; Yang and Wang 2014; 
Kamal, Huang, and Myint 2015; Yang et al. 2015; Ryu et al. 2016; 
Sharma et  al.  2016; Ramamurthy and Bou-Zeid  2017; Bassett 
et  al.  2019; Li et  al.  2019; Ortiz et  al.  2019; Jandaghian and 
Berardi  2020; Liu and Morawska  2020; Wang and Hu  2021). 
With increased computational power and improved numerical 
schemes, WRF can now be readily applied at finer resolutions 
(Talbot, Bou-Zeid, and Smith 2012). However, the performance 
of WRF + UCM at higher resolutions and the value of finer-scale 
simulations (e.g., ~150 m) have not been explored except for a 
handful of studies (Shaffer et al. 2015; Hall et al. 2024).

In principle, a fine-scale local microclimatic and hydrological 
investigation can advance the understanding of intertwined in-
teractions and processes at the interface of urban land surface, 
lower atmosphere, and upper subsurface. However, such simu-
lations face two hurdles: (1) refining the resolution of the atmo-
spheric component from 1 km to finer scales (e.g., ~150 m) would 
cause it to cross the terra-incognita—where the grid scale of the 
model is neither large enough to use Reynolds-averaged Navier–
Stokes equations (RANS) turbulence representations adequate 

for mesoscale models, nor small enough to use LES modelling 
for subfilter-scale turbulence (Wyngaard 2004); and (2) refining 
the surface model across the same range of scales results in a 
comparable change in physical regimes that gives rise to fine-
scale variability of soil moisture content (SMC) that needs to be 
accounted for (Talebpour, Welty, and Bou-Zeid 2021).

For fine-scale resolutions (~150 m), employing the LES mode in 
WRF is necessary for the innermost domains, while WRF's de-
fault RANS with a planetary boundary layer scheme would still 
be used for the coarser parent domains at resolutions above 1 km. 
Moreover, the spatiotemporal distribution of SMC influences 
hydrometeorological processes in the upper subsurface, land 
surface, and lower atmosphere. The influence of SMC on hydro-
meteorological and other geophysical processes is much stronger 
in urban areas that (1) are highly heterogeneous with various 
vegetated land covers such as parks, trees, and grass, and (2) in 
regions with shallow groundwater, where groundwater dynamics 
can significantly affect soil moisture variations. SMC also strongly 
influences the peri-urban reference temperatures that are used 
to calculate urban heat islands indices (Georgescu et  al. 2011). 
Therefore, SMC initialization is critical for urban weather and 
climate modelling (Dy and Fung  2016; Santanello et  al.  2019; 
Dennis and Berbery 2021; Talebpour, Welty, and Bou-Zeid 2021). 
For fine-scale simulation of urban hydrometeorological simula-
tions, there is no consensus on methods for soil moisture initial-
ization or on the spinup duration before the analysis period (i.e., 
the problem simulation period).

This study addresses the research gaps outlined above concern-
ing high-resolution simulations using WRF with the single-layer 
urban canopy model (SLUCM; Kusaka et  al.  2001), with three 
aims. First, we evaluate the quality and sensitivity of combining 
LES and SLUCM in WRF to simulate the UHI effect. Second, we 
examine the impact of SMC spinup on these simulations by test-
ing three different starting points for spinning up the WRF model. 
Moreover, to rule out the bias introduced by SMC parameteriza-
tion and initialization, several scenarios are designed to analyse 
the sensitivity of WRF-SLUCM to these parameters. Third, since 
the development and implementation of the Mosaic approach in 
WRF (Li et al. 2013), several studies have shown that WRF-Mosaic 
improves the representation of subgrid-scale heterogeneity of 
water and energy fluxes at resolutions of ~1 km by incorporating 
a lumped method to calculate heterogenous fluxes (Ramamurthy 
and Bou-Zeid 2017; Sharma et al. 2017; Li et al. 2019; Yang and Bou-
Zeid 2019). Although we use a fine-scale resolution in this study 
(150 m), there is still some sub-grid scale heterogeneity at much 
finer scales. Therefore, we also investigate whether employing the 
Mosaic approach can still improve subgrid-scale heterogeneous 
representation and UHI simulations at these finer resolutions.

2   |   Methods

2.1   |   Model Description

2.1.1   |   WRF

For this study, WRF version 3.9.1.1 was used. WRF is an open-
source, three-dimensional, atmospheric-surface model devel-
oped and maintained by the National Centre for Atmospheric 
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Research (NCAR). WRF is a massive multi-modular code incor-
porating numerous parameterizations and numerical schemes 
for hydrometeorological processes. The Noah land surface 
model (LSM; Chen and Dudhia  2001a, 2001b), used in this 
study, is one of the LSMs provided in WRF, for simulation of 
land surface and subsurface energy and water fluxes. We also 
use the SLUCM to represent the urban part of the land surface 
in Noah. In recent years, WRF has employed LES schemes to 
represent small scale turbulence in the atmosphere (<the model 
filter scale), while eddies larger than the grid scale are explic-
itly resolved. This mode thus also allows the model to resolve 
the surface heterogeneity at neighbourhood scales (~150 m). 
Initially, WRF in LES mode was implemented and tested for 
ideal-case scenarios. Talbot, Bou-Zeid, and Smith (2012) evalu-
ated WRF's nesting capability to run fine-scale LES of real-case 
scenarios forced by downscaled initial and boundary conditions 
through nested domains. Since then, numerous studies have uti-
lised WRF-LES to study real-case scenarios (Kirkil et al. 2012; 
Daniels et  al.  2016; Ronda et  al.  2017; Wiersema, Lundquist, 
and Chow  2020; Talebpour, Welty, and Bou-Zeid  2021; Zhang 
et al. 2022).

Up to WRF version 3.7, only horizontal nesting was possible. 
All domains (if run concurrently) had to have identical verti-
cal layers, which is problematic as mesoscale and microscale 
domains require different vertical depths to resolve the physi-
cal processes. Using one combination of vertical layers for all 
domains introduces numerical errors due to the aspect ratio 
(vertical-horizontal) of grid spacing. Daniels et  al.  (2016) and 
Mirocha and Lundquist (2017) discussed the errors and biases 
introduced into nested simulations due to the cell aspect ratio, 
and they developed and evaluated a new vertical nesting capa-
bility to address this issue. This concurrent vertical nesting ca-
pability was employed in this study to reduce numerical errors 
associated with aspect ratio.

2.1.2   |   Domain Extent and Analysis Period

The Baltimore metropolitan area was chosen as the domain 
of study for several reasons. First, the Baltimore Office of 
Sustainability has developed and updated Baltimore's Disaster 
Preparedness and Planning Project (DP3; 2013, 2018, and 
2021; https://​www.​balti​mores​ustai​nabil​ity.​org/​) to address 
the impact of climate change on the future of Baltimore City. 
Six natural hazards identified as threats to the future of the 
city are related to hydrometeorological processes, including 
extreme heat. Moreover, previous studies using WRF meso-
scale simulations and urban temperature measurement net-
works have demonstrated that the combined effects of heat 
waves and UHIs severely impact the Baltimore metropolitan 
area (Li and Bou-Zeid 2013; Ramamurthy and Bou-Zeid 2017; 
Scott et al. 2017).

At the neighbourhood scale, the variability of heat exposure 
across cities, a phenomenon called intra-urban heat islands, has 
been investigated and reported before (Scott et al. 2017; Hoffman, 
Shandas, and Pendleton  2020; Wilson  2020; Shi et  al.  2021). 
These studies have demonstrated how scattered zones of under-
served communities are prone to higher LST and heat exposure 
due to several factors, including lower vegetation-to-impervious 

surface ratio and higher population density. As a result, these 
zones have a higher hydrometeorological and socioeconomic 
vulnerability to extreme events such as heat waves. Therefore, 
Baltimore has many risk factors (hazard, exposure, and vulner-
ability) that compel the present investigation of fine-scale varia-
tions of the UHI effect.

In the horizontal plane, WRF was applied to the Baltimore 
metropolitan area for 97.2 km by 97.2 km (Figure 1b). The hor-
izontal resolution of the innermost domain (domain 5) was 
150 m. This resolution was selected to be (1) below the ~150 m 
threshold recommended by the WRF community based on rec-
ommendations provided by (Wyngaard 2004) for scales where 
the use of LES turbulence closure is suitable, (2) small enough 
to capture urban microclimate variability at the neighbour-
hood scale, and (3) large enough to make running the numer-
ous scenarios on sensitivity analysis proposed in this study 
computationally feasible.

The simulation period for the innermost domain in this study 
was from Aug 19, 2017, 11:00 EDT to Aug 22, 2017, 12:00 EDT. 
The final time of the simulation contains one clear snapshot of 
Landsat 8 (Dwyer et al. 2018) provisional surface temperature 
data at a 30-m resolution that we use for model evaluation pur-
poses. Moreover, this date was one of the hottest days observed 
by Landsat during the summer of 2017.

2.1.3   |   Model Input

NCEP North American Regional Reanalysis (NARR; Mesinger 
et al. 2006) 3-hourly forcing data, at 0.25° (≈32 km) resolution, 
were obtained and processed with the WRF Preprocessing System 
(WPS). Multi-scale Ultra-high Resolution (MUR) Sea Surface 
Temperature (MEaSUREs-MUR; Chin, Vazquez-Cuervo, and 
Armstrong 2017; JPL MUR MEaSUREs Project, 5/16/2024) data 
were also processed and used in this study. WPS also provides 
all other preprocessed essential dynamic and static input data 
required for WRF simulations, including land use and digital el-
evation model (DEM). The resolution of preprocessed DEM and 
land use data available in WPS is appropriate for domains 1–3 
(Figure 1a). However, for domains 4 and 5, USGS DEM (https://​
www.​usgs.​gov/​core-​scien​ce-​syste​ms/​ngp/​3dep) and USGS 2011 
National Land Cover Dataset (NLCD; Homer et al. 2015) were 
obtained and resampled at a higher resolution (~30 m).

2.1.4   |   Nested Configurations

Four nested domains encompassed the smallest domain of in-
terest (domain 5 at 150 m resolution), having grid resolutions 
of 12,150, 4050, 1350, and 450 m (Figure  1a). In all scenarios, 
domains 1–3 started in mesoscale mode earlier than domains 4 
and 5. This spinup period allows the outer three RANS domains 
to develop smaller-scale dynamics before LES domains 4 and 5 
are initialized by the boundary conditions interpolated from the 
parent domains (3 and 4). Due to their higher computational ex-
pense, starting the inner domains as late as possible is preferred, 
closer to the analysis period, but early enough to still allow the 
inner domains develop turbulent flow structures at the scales of 
their grid resolution.

https://www.baltimoresustainability.org/
https://www.usgs.gov/core-science-systems/ngp/3dep
https://www.usgs.gov/core-science-systems/ngp/3dep
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2.2   |   Test Scenarios

We aim to address three research questions with our test 
scenarios.

2.2.1   |   How Does the Length of the Spinup Period 
Influence the AT and LST Predictions?

To address the SMC initialization for the smaller domains, 
the outer three domains were run throughout rain events. 
Talebpour, Welty, and Bou-Zeid  (2021) showed that intense 
rain events will ‘reset’ the SMC spatial distribution and re-
move the signature of low-resolution NARR SMC input. On 
the other hand, if the nested domains start much earlier before 
the analysis time, the atmospheric conditions tend to diverge 
from the observed input conditions since WRF here does not 
assimilate observational data like NARR (Ryu et  al.  2016). 
Therefore, there is a trade-off between starting exactly before 
or much earlier than the analysis period. Table 1 describes sce-
narios used to evaluate differences in results between simula-
tions starting at different times before the start of the analysis 

window. In all three scenarios, domains 4 and 5 starting points 
are identical on Aug 19, 2017, 8:00 and Aug 19, 2017, 11:00. 
However, the outer three domains start together in each sce-
nario on Aug 8, 2017, 11:00; Aug 14, 2017, 11:00; or Aug 17, 
2017, 11:00.

2.2.2   |   How Does the Mosaic Approach Influence AT 
or LST Predictions at Fine Scales?

Although 150 m is a fine-scale resolution compared to previous 
studies, urban heterogeneous land cover varies at a much finer 
scale. The 150-m by 150-m cells in this study are 25 times lower 
in resolution compared to NLCD land cover with 30-m reso-
lution. We thus investigated whether incorporating the Mosaic 
approach, shown to improve the capability of WRF simulations 
at a 1-km resolution, can also improve the subgrid-scale pa-
rameterization and LST prediction where the scales between 
150-m and 1-km are explicitly resolved. We ran three scenar-
ios with three different starting times to investigate the Mosaic 
approach's impact. These scenarios are called Mosaic group 
scenarios.

FIGURE 1    |    (a) Nested four outer domains centring on domain 5 (innermost domain) of this study, (b) demonstrates the extent of the Baltimore 
domain simulated in this study. USGS World Topographic Map as base map overlaid by NLCD urban categories (https://​www.​mrlc.​gov). The figure 
indicates eight AWOS and ASOS weather station sites for model air temperature evaluation. [Colour figure can be viewed at wileyonlinelibrary.com]

https://www.mrlc.gov
https://onlinelibrary.wiley.com/
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2.2.3   |   How Does Initializing the Innermost Domains 
(d4 and d5) With Interpolated Soil Moisture From 
the Parent Domain Affect LST and AT Evolution?

When nested inner domains start later than their parent domains 
(domains 4 and 5 in this study), WRF provides an option to initial-
ize the inner domains by interpolating their parent hydrometeoro-
logical conditions. However, several input parameters, including 
soil moisture content, land surface temperature, and soil tempera-
ture, are not initialized from their parent domain output, even if 
the child domain starts later. In such instances, WPS will initial-
ize the child domain with the same low-resolution observational 
or reanalysis data used to initialize the parent domain. Generally, 

most simulations in this study start from the SMC distribution 
interpolated from the same NARR data used for domains 1–3. 
Therefore, the inner domains are initialized from low-resolution 
with almost homogeneous states of these parameters.

To examine whether using a high-resolution interpolated input 
has any influence on the prediction capability of the WRF model, 
we ran another group of scenarios with all three starting times for 
the parent domains 1 to 3. However, we bypassed the standard 
WRF initialization protocol in this group scenario. We interpo-
lated SMC, soil water content, soil temperature, and relative SMC 
from the parent domains output 3 and 4 for initializing domains 
4 and 5, respectively, at their start time; Figure 2a–d show four 

TABLE 1    |    Simulation start time for domains 1–5 for each starting point scenario. All times are in EDT and military 24 h format.

Initialization scenario Domains 1–3 start point Domain 4 start point Domain 5 start point

START_08 Aug 08, 2017, 11:00 Aug 19, 2017, 8:00 Aug 19, 2017, 11:00

START_14 Aug 14, 2017, 11:00 Aug 19, 2017, 8:00 Aug 19, 2017, 11:00

START_17 Aug 17, 2017, 11:00 Aug 19, 2017, 8:00 Aug 19, 2017, 11:00

FIGURE 2    |    SMC input for domain 5 (a) interpolation from NARR 32 km resolution data; (b–d) interpolation from domain 4 for domain 5 in 
scenarios started on August 8, 14, and 17, 2017; with domain 4 itself initialized from domain 3 rather than NARR. [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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different SMC inputs for domain 5 for different group scenarios. 
Figure 2b–d are the SMC distributions interpolated from domain 
4 output in the scenarios started from August 8, 14, and 17, while 
Figure 2a shows the SMC distribution interpolated from NARR 
data. The potential benefits of interpolating from the parent do-
main are apparent, with domain 5 exhibiting much more variabil-
ity at initial times when interpolating from domain 4 (compare 
Figure 2b–d to a). The influence of the parent domain spinup is 
also evident. The Interpolated_08 scenario has higher SMC val-
ues than Interpolated_14 and Interpolated_17 due to intense rain 
events captured in WRF's RANS domains (1–3) between August 
8–14, 2017. The NARR-interpolated SMC also has much higher 
values closer to the Start_08 distribution but with much less vari-
ability in spatial distribution.

2.2.4   |   Summary of Group Scenarios

Table 2 summarises the case scenarios simulated in this study. 
There are nine scenarios with three different starting dates for 
domains 1–3. Three base scenarios run with different start-
ing times all used NARR data in domains 4 and 5; this group 
is called the Original scenarios. Three scenarios with different 
starting dates all used the Mosaic approach (hence called the 
Mosaic group) to refine surface representation, as well as the 
NARR-interpolated data as in the Original group. Therefore, 
domain 5 SMC input for all six scenarios in the Original and 
Mosaic group is the same as in Figure 2a. The last group of sce-
narios, again with different starting times, incorporated the 
interpolated initial conditions from the parent domains but 
did not use the Mosaic approach. This last group is called the 
Interpolated group.

2.3   |   Modified Zilitinkevich and LST 
Postprocessing

Li and Bou-Zeid  (2014) demonstrated how the modified 
Zilitinkevich relationship developed and implemented into WRF 
(Chen and Zhang 2009) significantly reduced LST biases when 
evaluated using 1-km resolution satellite data (MODIS LST), 
in non-urban parts of their Baltimore-Washington domain. 
However, they showed that owing to incorrect calculations over 

urban terrain, where WRF assigns thermal roughness parame-
ters and uses aggregate heat fluxes to infer surface temperature, 
WRF still generates higher biases in LST. This bias is introduced 
into the calculation of the impervious surface temperature. To 
address this issue, they proposed an alternative equation that 
calculates LST for urban impervious surfaces:

where Ts(impervious) is the surface temperature for impervious 
surfaces, and Tr and Tc are roof and canopy temperatures for 
each grid cell. Tr and Tc are computed directly by the SLUCM 
components in WRF over each cell. Following their postpro-
cessing step, this study calculated all urban LST results from 
Equation (1). Li and Bou-Zeid (2014) provided detailed explana-
tions of the biases in the Original Ts(impervious) calculated by WRF 
at runtime, evaluation of the alternative method, and justifica-
tions for using the alternative equation.

2.4   |   Computational Resources

Most simulations for this study were carried out on the 
Cheyenne high-performance computing system provided by 
NCAR's Computational and Information Systems Laboratory 
(CISL  2019). Some simulations conducted later to evaluate 
the impact of sea surface temperature were run on Derecho 
(CISL  2023), the successor of Cheyenne at CISL. Simulations 
used 9 and 36 computational nodes (36 cores per node) with 324 
and 1296 cores at different simulation stages. Each scenario took 
~96–120 h of wall clock time from the start to the end. It is worth 
noting that the computing cost of Domain 5 is much higher 
than that of Domain 1 or other coarser domains. To simulate 24 
physical hours, the computing cost in floating point operations 
scales with N3/dt, where dt is the time step and N3 is the total 
number of grid points in the domain. If the resolution of domain 
1 is 12,150 m and that of domain 5 is 150 m, and assuming they 
use a comparable number of grid nodes N3, numerical stability 
(the Courant–Friedrichs–Lewy condition; Courant, Friedrichs, 
and Lewy  1967) requires domain 5 to have a dt that is about 
150/12150 (0.012) smaller than that of domain 1. This consider-
ation implies that the computing cost of domain 5, for example 

(1)Ts(impervious) = froof Tr +
(

1 − froof
)

Tc

TABLE 2    |    Simulation case scenario description.

Scenario Domains 4 and 5 input soil moisture Domains 1–3 start time

Original_08 NARR Original 8/8/2017

Original_14 NARR Original 8/14/2017

Original_17 NARR Original 8/17/2017

Mosaic_08 NARR Original 8/8/2017

Mosaic_14 NARR Original 8/14/2017

Mosaic_17 NARR Original 8/17/2017

Interpolated_08 Interpolated from parent 8/8/2017

Interpolated_14 Interpolated from parent 8/14/2017

Interpolated_17 Interpolated from parent 8/17/2017
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for simulating one day, will be 12,150/150 = 81 times the com-
puting cost of domain 1.

We conducted all the postprocessing and visualisation of output 
data on NCAR's JupyterHub on the Casper system provided by 
CISL  (2019). Most pre- and post-processing was conducted by 
employing several software packages including Python, Scipy, 
Jupyter Notebook, wrf-python, xarray, NetCDF, and matplot-
lib (Rew and Davis 1990; Brown et al. 1993; Van Rossum and 
Drake  2009; Kluyver et  al.  2016; Hoyer and Hamman  2017; 
Ladwig, William 2017; Virtanen et al. 2020; Caswell et al. 2023).

3   |   Results and Discussion

3.1   |   Soil Moisture

Figure 3a–d show the domain-averaged SMC values time series 
for all nine scenarios and four soil layers simulated in the Noah 
LSM component of WRF. Excluding the cells with water bodies 
(e.g., the Chesapeake Bay) was necessary as they were masked 
as permanent water bodies by WRF. WRF assigns values of 1.0 
to the SMC output for these cells for the entire simulation pe-
riod, and they skew domain-averaged values.

The average SMC value for all scenarios in the 4th (bottom) layer, 
with a thickness of 1 m, exhibits negligible changes for the entire 

simulation and a SMC value of approximately 0.27. There are 
radical changes in area-averaged SMC values from the first to 
the second time step (not shown; Figure 3 only shows every 2-h 
intervals for clarity, skipping the second output interval), most 
recognisable in layers 1 and 3 and for the Original and Mosaic 
groups. These SMC values get overwritten in the WRF initial-
ization module in the first timestep after the SMC is recalculated 
based on other parameters fed into the model. In Interpolated 
scenarios, SMC, soil temperature, and relative SMC values are 
interpolated from mesoscale parent domain values (domains 
3–4 and 4–5), displaying a smoother transition from the first 
output interval to the next.

Precipitation input for all scenarios was negligible from Aug 19 
to 22, 2017. For all scenarios, reduction in SMC due to evapo-
transpiration is noticeable during daytime, mainly in the first 
and second layers. We started all the Mosaic and Original group 
scenarios from identical high NARR-interpolated SMC values 
(Figure 2a). As seen in all layers, SMC remains almost identi-
cal for the Mosaic and Original group scenarios, with a slight 
divergence toward the end of the simulation. Nevertheless, 
as pointed out, there is a sudden drop (~ −0.02) and increase 
(~0.03) at the start of the simulation in average SMC values 
in layers 1 and 3 in these scenarios. Whereas the Mosaic and 
Original group scenarios started from higher SMC content on 
average in the top layer (~0.28), they decreased to ~0.22 toward 
the end (~21% loss).

FIGURE 3    |    Domain-average SMC values for the entire domain, excluding water body cells, for all nine scenarios, from Aug 19, 2017, 11 AM EST 
to Aug 22, 2017, 12 PM EST. Panels a-d show SMC for the four WRF soil layers. Markers are printed at 2-h intervals. [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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The SMC of the Interpolated group scenarios had a different 
evolution. The Interpolated_08 scenario had the highest aver-
age SMC compared to all the scenarios in the top three layers, 
explaining the slower drop in the moisture of the top layer over 
time compared to the Original and Mosaic groups. Figure  2b 
shows the spatial distribution of the first SMC layer, interpo-
lated from domains three and four, after nine days of simulation 
in WRF. Therefore, higher rain infiltrated the soils during Aug 
8–14 in this scenario. The Interpolated_14 and Interpolated_17 
had much lower average SMC values in layers 1–3 (compared to 
Interpolated_8, Figure 3a–c). Figure 3 shows domain-averaged 
SMC for the four WRF soil layers. While their values differ, the 
trends of change in average SMC values for the Interpolated sce-
narios are similar, indicating that the evapotranspiration might 
not differ.

In contrast with the Mosaic and Original group scenarios, the 
Interpolated_08 started from a similar area-averaged SMC value 
(~0.285), but it did not drop dramatically in the first interval. The 
cause might be that other than SMC content, relative SMC, soil 
liquid water, and soil temperature were also interpolated from 
domains 3–4 and then 4–5. Therefore, the water-energy balance 
recalculated at the first timestep was closer to an equilibrium 
state for the Interpolated group scenarios than the Mosaic and 
Original group scenarios.

3.2   |   Land Surface Temperature Evaluation

We compared the LST spatial distribution results with Landsat 
LST observations on Aug 22, 2017, 12 PM EDT. Figure 4 shows 
the pseudocolour map of land surface temperatures for all sce-
narios and Landsat data on Aug 22, 2017, 12 PM EDT. All WRF 
scenarios model the entire Chesapeake Bay surface temperature 
with a spatially constant temperature. This constant bay tem-
perature is due to the parameterization of water body tempera-
ture evolution in WRF. However, the Landsat (Figure  4j) has 
a temperature gradient over the Bay, with colder temperatures 
in the centre of the Bay in deeper water bodies, changing to 
warmer temperatures along the coastline. We also run two other 
simulations on domain 3, one with the Original NARR SST and 
another one with MUR SST as input. As shown in Appendix A, 
using higher resolution MUR SST, resulted in negligible dif-
ferences with the simulation with the Original NARR SST. 
Therefore, the Bay cells were excluded from data analysis from 
all simulation scenarios and Landsat for statistical comparison.

3.2.1   |   Bay-Excluded LST Statistics

Figure 5 depicts the spatial cell-wise difference between simu-
lated scenarios LST and Landsat with the Bay masked. A quick 
view of the spatial difference indicates a sharp discrepancy be-
tween WRF performance over urban versus non-urban land 
covers. This can be explained by the fact that LST was calcu-
lated using fluxes computed by SLUCM and NOAH. Overall, in 
all scenarios WRF underpredicted LST over urban land covers 
and overpredicted over non-urban land covers. Start_08 sce-
narios with longer SMC spinup decreased the urban underpre-
diction gap but exacerbated the overprediction over non-urban 
areas. On the other hand, Start_17 scenarios had lower bias over 

non-urban areas compared to Landsat, but produced cooler tem-
perature and larger biases over urban land tiles. Among all sce-
narios, Interpolated_08 had a lower bias in both non-urban and 
urban land covers, which might be due to higher soil moisture 
availability (shown in Figures 2 and 3) and longer spinup time. 
Nevertheless, spatial pseudocolour maps, while useful for show-
ing spatial patterns, cannot explain all the trends without statis-
tical analysis. Therefore, we discuss some statistical evaluation 
of scenarios compared to Landsat next.

Figure 6 shows the probability density functions (PDFs) of the cell-
wise difference between simulated scenarios LST and Landsat 
with the Bay masked. A better model performance would result 
in narrower distributions of these different PDFs that are cen-
tred (mean or mode) around 0°C. However, moving from right 
to left, earlier starting times result in a larger departure of the 
PDF mode from zero, but the standard deviation (STD) becomes 
smaller (narrower PDF) with Interpolated_08 scenario having 
the narrowest distribution. A narrower PDF with shifted mode 
from zero means that starting earlier lowers the cell-wise errors 
for the entire domain but tends to shift to a warmer tempera-
ture bias on average for the entire domain. More specifically, the 
Start_08 scenarios (Figure 6, panels a, d, g) for all three groups 
(Original, Mosaic, and Interpolated) are characterised by PDFs 
of difference from Landsat ranging from −8 to 10°C with peaks 
at ≈1°C. The scenarios started on Aug 17 (Figure 6, panels c, f, i) 
exhibit PDFs ranging from −10 to 10°C, with peaks at ≈0°C.

Table  3 summarises the LST statistics for all scenario groups 
compared to Landsat over the entire domain, excluding the Bay. 
Figure  7 demonstrate a statistical comparison between scenar-
ios and Landsat over the entire domain, again excluding the Bay. 
Figure 7a shows the Taylor diagram (Taylor 2001) for evaluating 
scenario performances by comparing correlation and STD values 
between scenarios and Landsat and showing their unbiased RMSE 
(CRMSE) on a single diagram. The Landsat values, excluding the 
Bay, had an STD value of 3.55°C marked by a star on the bottom 
STD axis. The smaller the distance between a scenario marker and 
this Landsat point, the closer its overall predictions (in terms of 
mean, variance, and spatial patterns) are to the Landsat values.

In Figure 7a, all scenarios spread along the STD line of ≈2.5°C, 
which is ≈1°C smaller than Landsat STD of 3.55°C, indicat-
ing lower simulated spatial variability compared to Landsat. 
However, this variability alone cannot fully describe model skill 
since scenarios might have similar STDs but still contain sig-
nificant local errors. The spatial correlation values can help to 
evaluate scenarios' performances in capturing the spatial dis-
tribution or patterns of predicted values compared to Landsat. 
Correlation values range from about 0.4 for Start_17 scenarios 
to about 0.67 for the Interpolated_08 scenario. The Start_17 sce-
narios cluster around a 0.45 correlation line.

Moving from the star marker depicting Landsat toward the sce-
narios, the values of CRMSE, showing the unbiased error from 
Landsat, increase. It is obvious that start time had the most sub-
stantial influence on model performance, with Start_17 scenar-
ios having lower correlation and higher CRMSE values. While 
the rest of the scenarios are all clustered, Interpolated_08 with a 
red diamond performs slightly better by demonstrating the high-
est correlation of 0.67 and lowest CRMSE (2.65°C).
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Although the Taylor diagram is a powerful tool to compare dif-
ferent model performances to observation, it lacks information 
on the bias of the scenarios. Figure  7b shows the Bias-Error 
diagram demonstrating the Mean Errors (ME; the bias) on the 
horizontal and CRMSE on the vertical axis. The shaded, orange-
coloured circular wedges show the range of RMSE from 0°C to 
3.5°C in increments of 0.5°C. Similar to the Taylor diagram, 
the smaller the distance from the star (depicting the Landsat 

point at the centre along the ME axis), the better the model's 
performance.

The Bias-Error diagram further demonstrates differences be-
tween the scenarios. Once again, Interpolated_08 is the closest 
to Landsat, indicating the lowest combined bias and error. The 
Start_17 group scenarios performed worse than the Start_14 and 
Start_08. The starting point seems to have the most substantial 

FIGURE 4    |    Pseudocolour plots of LST for all case scenarios and Landsat for the entire domain on Aug 22, 2017, 12 PM ET. [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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influence on scenarios. Most scenarios with similar starting 
points are clustered, with Start_17 showing the lowest bias 
(ME) but the highest CRMSE and RMSE. Similarly for Start_14 
scenarios, clustering at lower CRMSE and RMSE demonstrates 
higher ME. The only exception here is Interpolated_08, which 
has the lowest CRMSE and RMSE, and its ME is the third lowest 
(0.37°C), better than the other Start_08 scenarios (Original_08 
and Mosaic_08) with respective ME values of 1.39°C and 1.42°C.

The combination of the Taylor diagram and Bias-Error dia-
gram shown in Figure 7 emphasises that the starting point of 
spinup most strongly influences the model's performance in 
predicting LST compared to Landsat over the entire domain, 
excluding the Bay. The longer the spinup period, the more 
significant the spatial correlation between scenarios and the 
Landsat observation and lower local errors from observation 
(CRMSE). However, as shown in both Figures  6 and 7b, the 
longer the spinup, the larger the ME and the overprediction of 
LST over the entire domain. The Interpolated_08 scenario is 
an exception. While Interpolated_08 has the lowest cell-wise 

local error (CRMSE) due to its longer spinup, it has the third 
lowest ME (0.37°C). The Interpolated_08 scenario benefited 
from a more extended spinup period and improved spatial dis-
tribution of soil moisture provided by interpolation from the 
parent domain.

3.2.2   |   Urban Land Cover LST Statistics

We compared the performances of different scenarios for urban 
and non-urban areas to determine the influence of different 
methods used in each scenario on LST prediction over specific 
land uses. This analysis examines how urban versus rural en-
ergy balance models perform since the SLUCM handles these 
balances and fluxes in WRF over urban terrain while Noah sim-
ulates vegetated surfaces. Moreover, it aids in reaching one of 
the objectives of this study, which was to evaluate the perfor-
mance of SLUCM and LES mode together in representing fine-
scale UHI. This section presents the urban LST results for each 
scenario compared to Landsat.

FIGURE 5    |    Pseudocolour plots of difference between WRF scenarios LST minus Landsat LST with the Bay masked on Aug 22, 2017, 12 PM ET. 
[Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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Table 4 summarises the LST statistics for all group scenarios com-
pared to Landsat over urban cells. We again used the Taylor and 
Bias-Error diagrams to compare the scenarios against Landsat 
(Figure 8). A quick overview of the Taylor diagram in Figure 8a 
shows a similar pattern to Figure 7a for the Bay-excluded results 

for the scenarios. Overall, the most substantial influence again 
comes from the spinup duration, where Start_17 scenarios clus-
tered at correlation values ranging from 0.42 to 0.49 and CRMSE 
values ranging from 3.25°C to 3.5°C. On the other hand, the rest 
of the scenarios clustered closer to the Landsat point (star marker).

FIGURE 6    |    Probability density function (PDF) of cell-wise difference between WRF scenarios LST minus Landsat LST, with the Bay masked. 
[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3    |    LST statistics for all scenarios and Landsat data, excluding Bay cells. All values are in degrees Celsius except for the Pearson column 
showing the correlation values.

Scenarios Mean STD ME RMSE CRMSE Correlation

Original_08 34.84 2.6 1.39 3.1 2.77 0.63

Original_14 34.46 2.5 1.02 3.05 2.88 0.60

Original_17 33.51 2.39 0.06 3.15 3.15 0.50

Mosaic_08 34.87 2.50 1.42 3.11 2.76 0.63

Mosaic_14 34.12 2.46 0.67 2.93 2.85 0.60

Mosaic_17 33.16 2.55 −0.28 3.23 3.22 0.48

Interpolated_08 33.81 2.57 0.37 2.68 2.66 0.67

Interpolated_14 34.04 2.47 0.59 2.86 2.80 0.62

Interpolated_17 32.88 2.47 −0.57 3.34 3.29 0.45

Landsat 33.45 3.55 0 0 0 1

https://onlinelibrary.wiley.com/
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Although all scenarios had similar Taylor diagram for urban 
versus all land covers, the performance of the scenarios is quite 
different in the Bias-Error diagram (Figure 8b). All scenarios 
except for Original_08 and Mosaic_08 show cooler bias com-
pared to Landsat over urban areas on average. This indicates 
that the low bias in Figure  7 for all land uses resulted from 
an error cancellation with a warm bias over natural terrain. 
The Start_17 scenarios are much farther from Landsat than the 
Bay-excluded comparison (Figure 7b). The ME values for the 
Start_17 scenarios range from −2.38 to −1.7°C. All other sce-
narios have similar distances to the Landsat point, indicating 
similar RMSE values. Original_08 has the lowest RMSE and 
ME values of 2.90°C and 0.22°C. Based on the overall statistics, 
it is evident that the SLUCM results are also sensitive to spinup 
duration.

The sensitivity of the SLUCM to starting points can be detected 
from the clustering of different colours. Interpolated_08 again is 
an exception to this rule because the interpolation from domain 
3 to domain 4 and domain 4 to domain 5 dramatically changed 
SMC at their initial start time. Therefore, the Interpolated_08 

scenario acted differently from the Original_08 and Mosaic_08 
and predicted cooler temperatures. As explained above, all in-
terpolated scenarios' SMC were calculated from their parent do-
mains. Scenarios started from August 08, featured significant 
and long precipitation events between August 10 and August 
14, resulting in significant increase in SMC for these scenarios. 
Therefore, Interpolated_08 started with much higher SMC and 
latent heating, and cooler temperatures, at the end compared 
to any other simulation. This observation is consistent with 
Talebpour, Welty, and Bou-Zeid's  (2021) findings that Noah 
LSM allows high infiltration rates during precipitation events, 
leading to higher latent heating and cooler temperatures over 
impervious surfaces.

The statistics shown in Figure 8 and Table 4 are evaluated for 
all urban land cover categories (i.e., the four urban categories 
in NLCD land cover). Figure 9 shows the MEs per each NLCD 
urban category and illustrates how each scenario performed 
in the prediction of LST in each of these urban categories. 
The values printed in blue at the centre of each figure are the 
MAEs for the entire urban land cover for each scenario. In most 

FIGURE 7    |    Statistical comparison between scenarios and Landsat over the entire domain excluding the Bay on two diagrams: (a) Taylor diagram 
comparing the correlation between scenarios and Landsat, the standard deviation of scenarios and the Landsat (dashed line), and unbiased RMSE 
(CRMSE); and (b) Bias-Error diagram acting as a complimentary to the Taylor diagram to show the error and bias from Landsat for all scenarios. 
The shaded orange wedges are 0.5 increments of RMSE values (RMSE2 = CRMSE2 + ME2). [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4    |    LST statistics for all scenarios and Landsat data only over urban cells. All values are in degrees Celsius except for the Pearson column 
showing the correlation values.

Scenarios Mean STD ME RMSE CRMSE Correlation

Original_08 36.83 2.60 0.22 2.90 2.89 0.61

Original_14 36.19 2.52 −0.41 2.99 2.96 0.59

Original_17 34.90 2.53 −1.70 3.67 3.25 0.49

Mosaic_08 36.85 2.53 0.24 2.93 2.92 0.60

Mosaic_14 35.92 2.47 −0.69 3.00 2.92 0.60

Mosaic_17 34.63 2.66 −1.97 3.88 3.34 0.48

Interpolated_08 35.95 2.65 −0.66 2.91 2.83 0.62

Interpolated_14 35.84 2.54 −0.77 3.00 2.90 0.60

Interpolated_17 34.22 2.66 −2.38 4.23 3.50 0.42

Landsat 36.61 3.64 0 0 0 1

https://onlinelibrary.wiley.com/
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scenarios, the MAE increases from the Developed-Open Space 
category with ≈20% imperviousness toward Developed-High 
Intensity with ≈95% imperviousness. However, the difference 
between Developed-Open Space and Developed-Low Intensity 
is negligible. Figure 4 illustrates how most scenarios could not 
capture the hottest spots in the Landsat map, which overlaps 
with Developed-High Intensity land cover category.

3.2.3   |   Non-Urban Land Cover LST Statistics

Table  5 summarises the LST statistics for all group scenarios 
compared to Landsat over non-urban cells. Figure 10 shows the 
corresponding Taylor and Bias-Error diagrams for non-urban 
land covers. While for the urban terrain Taylor diagram, the pat-
terns were similar to the Bay-excluded patterns, the non-urban 
diagram is different. The spatial correlation values, between 
0.17 and 0.28, are much lower than urban values. Regarding 
the scenarios' performances implied from the Taylor diagram, 
the scenarios had similar performance, with starting points 
strongly influencing the clusters. More specifically, Start_17 sce-
narios show higher CRMSE values and are farther from Landsat 
than the other scenarios. Interpolated_08 again demonstrates 
the lowest RMSE and shows significantly more predictive skill 
than other Start_08 scenarios.

In the Bias-Error diagram, the clusters are similar to those 
found in the Bay-excluded diagram; however, they spread out 
more along the ME axis. The Start_17 group scenarios and the 
Interpolated_08 scenario have the lowest ME values. Considering 
all the previous observations, it is evident that the Interpolated_08 
scenario benefits from both longer spinup and interpolation of 
SMC, resulting in the lowest biases and errors and the highest 
correlation values. While Start_17 scenarios produce lower ME, 
their spatial correlation with Landsat is much lower than other 
scenarios, and they produce higher local cell-wise errors (RMSE). 
Finally, the lower correlation and higher ME values observed in 
the non-urban versus urban areas indicate that parameterizations 
in the SLUCM predict surface energy balance and LST better 
than the parameterizations in Noah over non-urban land cover.

3.3   |   Air Temperature Evaluation

We compared a time series of AT values from all scenarios with 
eight ASOS and AWOS stations across the domain (see map in 
Figure  1b). The comparisons included time series plots of AT 
for Original and Interpolated scenarios over three stations: 
Aberdeen, BWI, and College Park. Mosaic scenarios showed no 
improvement over the Original scenarios, so they are excluded 
here. The plots are shown in Figure  11. These three stations 
were chosen because they span three domain regions (north-
east, centre, and southwest) and have different surrounding 
land cover. During nighttime (8 PM to 6 AM; shaded area in the 
plots), the difference between all WRF scenarios and the obser-
vations reaches the highest values for each station.

Overall, the daytime model performance was better at all sta-
tions. This might be due to the difficulty in parameterizing the 
nighttime boundary layer and the stable atmospheric regimes, 
as also observed and commented on by Talbot, Bou-Zeid, and 
Smith  (2012). The Original_14 and Interpolated_14 scenarios 
have the closest match to NOAA observations, as shown in 
Figure  11. The Original_17 and Interpolated_17, on the other 
hand, have the most considerable biases at all three stations. The 
difference between Start_14 and Start_08 scenarios during day-
time is almost negligible.

All the statistical values (e.g., RMSE and STD) were calculated 
for 72 hourly points over the entire simulation. Figure 12 shows 
the Taylor diagrams for these comparisons for each of the 8 sta-
tion locations in the domain identified in Figure 1a. The Taylor 
diagrams reveal that at all stations, the correlation values for all 
scenarios are above 0.8 and, in some scenarios, reach 0.95. At 
BWI and Westminster locations, the scenarios are all clustered 
together.

As noted before, a good complement for the Taylor diagram is the 
Error-Bias diagram that we plot in Figure 13. The Bias-Error dia-
grams reveal that at the Annapolis, Inner Harbour, Stevensville, 
and Westminster stations, all scenarios have near zero or nega-
tive MEs, indicating underprediction of air temperature at these 

FIGURE 8    |    Statistical comparison between scenarios and Landsat only over urban land cover on two diagrams: (a) Taylor diagram comparing the 
correlation between scenarios and Landsat, the standard deviation of scenarios and the Landsat (dashed line), and unbiased RMSE (CRMSE); and 
(b) Bias-Error diagram acting as a complimentary to the Taylor diagram shows the error and bias from Landsat for all scenarios. The shaded orange 
wedges are 0.5 increments of RMSE values (RMSE2 = CRMSE2 + ME2). [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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stations by WRF compared to the observations (Figure 13b,f–h). 
Three stations are on the Chesapeake Bay coast (Annapolis, 
Inner Harbour, and Stevensville). As shown in Figure  4, all 
model scenarios treat water body temperatures as constant. In 
this case, the modelled scenarios were cooler by more than 2°C–
3°C difference, compared to Landsat, over most Bay cells. These 
cooler water temperatures in the model can result in strong sea 
breezes, leading to cooler temperatures or biases in the scenar-
ios near the coastlines. However, for the Westminster station, 
the comparison is different. The Westminster station is far away 
from any water body. Therefore, the Bay breeze cannot cause 
the cooler bias. The most identifiable characteristic of this sta-
tion is that croplands and pasture/hay land covers surround it, 
unlike other stations. Delving into why all scenarios underpre-
dicted AT at the Westminster station is beyond the scope of this 
paper as it needs an examination of the parameterizations of the 

croplands and pasture/hay land covers in WRF and how any ir-
rigation may affect the results.

All scenarios overpredicted AT at the other four stations: 
Aberdeen, BWI, College Park and Fort Meade (Figure 13a,c–e). 
All these stations are located farther from water bodies. BWI 
has lower RMSE and ME values compared to the other stations. 
This could be because BWI is closer to the Chesapeake Bay and 
is surrounded by large forested areas.

The spinup period again has the most substantial impact on 
scenario prediction capabilities. Start_14 scenarios predicted 
lower AT at all stations than Start_08 and Start_17 scenar-
ios. The Interpolated_08 scenario again has closer values to 
the Start_14 scenarios as it incorporates longer spinup for at-
mospheric processes and soil moisture than other Start_08 

FIGURE 9    |    MEs from Landsat LST for each NLCD urban category for all scenarios. The blue number in each figure represents the ME for all 
urban land cover for each scenario, as shown in Table 4. [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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scenarios. Considering the difference in prediction of AT over 
urban, non-urban, and coastline, it is hard to come up with a 
general conclusion for which scenario performed better in AT 
prediction over urban areas. However, since 50% of stations are 
located in urbanised areas, and their pattern is similar, Start_14 
group scenarios and Interpolated_08 had better predictions 
than other scenarios when compared to ASOS and AWOS sta-
tions' observations.

Overall, spinup time had the strongest influence on AT evo-
lution compared to incorporating the Mosaic approach or 
interpolating soil moisture and temperatures from the par-
ent domain in the Interpolated scenarios. The Annapolis, 
Inner Harbour, and Stevensville stations were close to large 
water bodies. When we looked at the time series of AT for all 
scenarios and NOAA observations at these stations, we no-
ticed considerable cool biases compared to the observations. 
As discussed earlier, WRF simulates the entire surface tem-
perature of water bodies with an error of ≈2.5°C compared to 
Landsat. Therefore, the inaccurate representations of water 

temperatures may have led to cooler biases in AT near water 
bodies.

3.4   |   Discussion and Synthesis

Section 2.2 proposed three questions to evaluate the influence of 
different initialization methods and incorporation of the Mosaic 
approach on fine-resolution simulations of the UHI effect using 
WRF-LES and SLUCM. Here, we answer those questions based 
on a synthesis of the comparison of model results to Landsat 
LST and ASOS and AWOS AT observations.

3.4.1   |   How Does the Length of the Spinup Period 
Influence the AT and LST Predictions?

The length of the spinup period strongly influenced the pre-
dictions of LST and AT across scenarios. The more extended 
spinup period in the Start_08 scenarios, which captured several 

TABLE 5    |    LST statistics for all scenarios and Landsat data over non-urban land covers. All values are in degrees Celsius except for the Pearson 
column showing the correlation values.

Scenarios Mean STD ME RMSE CRMSE Correlation

Original_08 33.85 1.97 1.97 3.20 2.52 0.28

Original_14 33.61 2.00 1.72 3.08 2.55 0.27

Original_17 32.82 1.99 0.94 2.86 2.70 0.18

Mosaic_08 33.89 1.81 2.01 3.19 2.48 0.25

Mosaic_14 33.23 1.90 1.35 2.89 2.56 0.24

Mosaic_17 32.44 2.15 0.55 2.86 2.81 0.18

Interpolated_08 32.76 1.74 0.87 2.56 2.41 0.28

Interpolated_14 33.14 1.88 1.26 2.78 2.48 0.28

Interpolated_17 32.21 2.07 0.33 2.79 2.77 0.17

Landsat 31.88 2.22 0 0 0 1

FIGURE 10    |    Statistical comparison between scenarios and Landsat only over non-urban land cover on two diagrams: (a) Taylor diagram 
comparing the correlation between scenarios and Landsat, the standard deviation of scenarios and the Landsat (dashed line), and unbiased RMSE 
(CRMSE); and (b) Bias-Error diagram acting as a complimentary to the Taylor diagram, shows the error and bias from Landsat for all scenarios. 
The shaded orange wedges are 0.5 increments of RMSE values (RMSE2 = CRMSE2 + ME2). [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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intense rain events, improved LST prediction in all three groups 
(Original, Mosaic, and Interpolated). Start_14 scenarios, de-
spite having almost half of the leading time, had a closer per-
formance to Start_08 scenarios in LST prediction. Start_17 
scenarios performed poorly in LST prediction.

In predicting AT evolution from Aug 19, 2017, 11:00 AM EST 
to Aug 22, 2017, 12:00 AM EST, compared to eight ASOS and 
AWOS stations across the domain, Start_14 scenarios performed 
better than Start_08 and Start_17 scenarios. Start_17 scenar-
ios performed worse than the other scenarios (at five stations) 
except at two stations (Inner Harbour and Annapolis). The 

two-day spinup period in the Start_17 scenarios thus appear to 
be too short for adequate representation of the initial conditions, 
while the 5 and 11 days spinup in the other two sets had closer 
agreement.

3.4.2   |   How Does the Mosaic Approach Influence AT 
or LST Predictions at Fine Scales?

While previous studies have shown significant simulation im-
provement by incorporating the Mosaic approach at high me-
soscale resolutions (1 km), this approach did not improve the 

FIGURE 11    |    Time series of 2-m air temperature at (a) Aberdeen ASOS station, (b) BWI airport ASOS station, and (c) College Park airport AWOS 
station from Aug 19, 2017, 12:00 PM to Aug 22, 2017, 12:00 PM. The figure shows only the Original and Interpolated scenarios and NOAA ASOS and 
AWOS stations. [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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LST or AT predictions appreciably at fine-scale WRF-LES res-
olutions of 150 m. Although at a 150 m resolution, there are still 
urban areas where land cover is highly variable in a single com-
putational cell, the subgrid-scale parameterization of these het-
erogeneous energy and water fluxes represented by the Mosaic 
approach does not appear to influence the predictions of WRF 
significantly. This could be due to compensating errors across 
cells at such fine-scale resolutions. For example, if some urban 
terrain is ignored in a given cell without the Mosaic approach, 
this may be compensated for by an overrepresentation of urban 
terrain in adjacent cells.

3.4.3   |   How Does Initializing the Innermost Domains 
(d4 and d5) With Interpolated Soil Moisture From 
the Parent Domain Affect LST and AT Evolution?

As shown in section  3.1, interpolating soil moisture and tem-
perature from parent domains (3 and 4) to domains 4 and 5 
at their start time on Aug 19, 2017, 8:00 AM EST and Aug 19, 

2017, 11:00 AM EST, resulted in significant changes in spatio-
temporal soil moisture evolution between Interpolated sce-
narios on the one hand, and Original and Mosaic scenarios on 
the other hand. The interpolation method yielded differences 
among Interpolated scenarios as well. The Interpolated_08 had 
a much higher SMC than all other scenarios over the simula-
tion period. Interpolated_14 and Interpolated_17 started simi-
larly from much less SMC than other scenarios at the first layer. 
Interpolation improved the RMSE and Pearson correlation 
values in Interpolated_14 and Interpolated_08 compared to all 
other scenarios compared to Landsat LST. For AT evolution, in-
terpolated_08 had the lowest ME values.

4   |   Conclusions

Our research underscores the sensitivity of high-resolution 
WRF-LES coupled with single-layer urban canopy models 
(SLUCM) to soil moisture initialization in simulating urban 
microclimates and the urban heat island (UHI) effect. We 

FIGURE 12    |    Taylor diagrams depicting statistical comparisons of 2-m air temperature between scenarios and NOAA AWOS and ASOS stations. 
The stations are located across the domain shown in Figure 1b. The bottom axis is the standard deviation in degrees Celsius removed from the 
subfigures to save space. The dashed line shows the STD value for the NOAA stations. [Colour figure can be viewed at wileyonlinelibrary.com]
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demonstrated the critical influence of spinup lead time and 
soil moisture interpolation on land surface temperature (LST) 
and air temperature (AT) predictions, highlighting the im-
portance of accurate initialization for capturing the dynam-
ics of urban thermal environments under varying climatic 
conditions.

While the Mosaic approach offered limited benefits at the fine-
scale resolution of our study, it remains a valuable tool for re-
solving subgrid-scale processes in coarser simulations. Our 
findings also underscore the need for further refinement of 
WRF's representation of surface water bodies, a crucial compo-
nent for accurately simulating urban microclimates.

Our comparison of high-resolution SST data with the Original 
NARR SST revealed negligible differences between simulations, 
despite significant SST variations. This contradicts expecta-
tions that such SST discrepancies should manifest in more pro-
nounced atmospheric responses. Future research could examine 
the effect of improved representation of water body physics and 
temperatures, and exchanges with the air aloft, on atmospheric 
dynamics within WRF to better capture the complex interac-
tions between these systems, ensuring more accurate and reli-
able simulations of urban microclimates and their response to 
climate change for coastal areas.

Ultimately, this study advances our understanding of the complex 
interactions between urban surfaces, atmospheric processes, and 
soil moisture, providing valuable insights for refining urban hy-
drometeorological models. Despite the fact that initialization is a 
lesser concern in hydroclimatological models (that run for a long 
time) compared to their hydrometeorological counterparts, the 
findings also have two climatological implications. First, climate 
models will still miss the significant urban surface variability that 
emerged in our fine scale resolution, and hence Mosaic and similar 
approaches are crucial for climatological applications over cities. 
Second, climatological downscaling of extreme events of short du-
ration, which are essentially aiming to capture extreme weather, 
need to carefully design the initialization of the model for the 
downscaling. By improving the accuracy and reliability of such 
downscaling models, we can better assess the impact of climate 
change on urban environments, develop targeted mitigation strat-
egies, and inform urban planning decisions to enhance resilience 
and sustainability in the face of escalating extreme heat events.
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Appendix A

Sea Surface Temperature

A.1   |   Sea Surface Temperature Representation in WRF

The Weather Research and Forecasting (WRF) model typically uses a 
fixed initial sea surface temperature (SST) for the entire simulation pe-
riod, suitable for short-term forecasts where SST changes are minimal. 
However, for longer simulations, this approach can introduce inaccura-
cies due to the dynamic nature of SST.

In our study, we investigated the impact of SST resolution on WRF simu-
lations within domain 3 (1350 m resolution). We compared two scenarios: 
one using the coarser resolution 32 km NARR SST data and another using 
the higher resolution 1 km MUR SST (JPL MUR MEaSUREs Project 2020) 
data. The comparison points to a low sensitivity of our results to vary-
ing SST datasets, even over large bodies of water like the Chesapeake Bay 
where the coarser NARR data resulted in uniform SST values.

A.2   |   Comparing the Results With Different SST Products

We analysed the hourly spatial evolution of wind fields across two sce-
narios with differing SST inputs. Both scenarios shared identical ini-
tializations for domains 1–3 and ran from August 8th, 2017, 11 AM to 
August 22, 2017, 12 ET. Figure A1 presents three wind pseudocolour 
maps overlaid with wind vectors, capturing snapshots at the end of the 
simulation period: (1) August 21, 4 ET, (2) August 21, 20 ET, and (3) 
August 22, 12 ET to illustrate diurnal variations. To gage the maximum 
divergence between scenarios, we selected snapshot toward the end of 
the simulation. Despite minor differences in wind speed patterns over 
the Atlantic Ocean, the overall wind field remains largely consistent 
across both scenarios after 14 days of simulation.

To further investigate SST's influence, we compared wind vector 
plots overlaid on surface temperature maps at the same time points 
(Figure  S1). A notable ≈2°C difference in SST emerged between sce-
narios, particularly over the Southeastern Atlantic Ocean, resulting in 
localised shifts in mesoscale wind patterns. However, the broader sur-
face temperature and wind patterns remained similar throughout the 
simulation period.

To assess if the slight shifts in large-scale wind pattern between the 
two simulations with different SST can have a significant impact on 
microscale circulations and atmospheric properties, we also compared 
2-m air temperature (AT) between simulations. Figure A2 presents time 
series of AT for eight ASOS/AWOS stations (Figure  1b) from August 
19th to 22nd, 2017. Both scenarios generally captured the observed AT 
trends, with minor discrepancies mainly occurring at night. Nighttime 
differences in AT were negligible across most stations for the entire pe-
riod, except for a few nighttime hours at Aberdeen, Annapolis, BWI, 
and Fort Meade. The differences between the two simulations are, in 
general, smaller than the differences of either compared to observations.
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To investigate the underlying mechanisms, we also examined the wind 
fields throughout the simulation period. Figure S2 zooms in on domain 
5 (Figure A1), focusing on the ASOS/AWOS stations. While minor dif-
ferences in wind patterns emerged, particularly in the final snapshot 
(Figure S1e–f), the overall patterns remained consistent between sce-
narios across most time points.

Figure  S3 illustrates wind vectors over surface temperature maps 
zoomed in on domain 5. Notably, the Chesapeake Bay consistently 
exhibited a ≈ 2°C higher temperature in the MUR SST simulation 
compared to the Original NARR SST simulation. We analysed hourly 
snapshots of these overlays to understand the nighttime AT discrepan-
cies observed at Aberdeen, Annapolis, BWI, and Fort Meade stations 
(Figure A2).

While space limitations preclude inclusion of all hourly snapshots, our 
analysis revealed that the combination of (1) surface temperature dif-
ferences and (2) late afternoon wind speed variations between the two 
scenarios may explain the observed AT discrepancies. For instance, 
at Aberdeen station between August 21st, 20 ET, and August 22nd, 6 
ET (Figure  A2, third shaded area), the MUR SST simulation showed 
a ≈ 2°C higher AT than the Original NARR SST. Concurrently, wind 
direction persisted from southwest to northeast, with the southwest re-
gion near Aberdeen exhibiting a ≈ 2°C cooler LST in the Original NARR 
SST simulation. A similar pattern, albeit with reversed AT and LST dif-
ferences, was observed near Annapolis station during the same period.

Despite these local (in space and time) differences at some stations 
associated with wind patterns shifts, throughout the simulation, both 

FIGURE A1    |    Wind field vector overlaying the wind speed map over for domain 3. The left and right panels correspond to simulations initialized 
by NARR and MUR SST. The three timestamps were chosen deliberately to demonstrate wind fields at different times. Blue box identifies domain 5 
and the coloured triangles show the ASOS and AWOS stations similar to Figure 1b. [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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scenarios exhibited nearly identical air temperatures (AT) at all sta-
tions, with minor differences limited to a few hours, despite the MUR 
simulation's higher Chesapeake Bay temperature. This, however, may 
not be the case when the synoptic wind conditions are weaker. The de-
velopment of land-sea breezes that would be affected by a 2°C change 

in SST competes with synoptic pressure forcing that works to obliterate 
these circulations (Allouche, Bou-Zeid, and Iipponen 2023). The synop-
tic wind in our analysed periods is quite strong at over 6 ms−1 over the 
bay, and under such conditions SST may have a limited impact on the 
atmospheric dynamics.

FIGURE A2    |    Time series of 2-m air temperature, at all 8 ASOS and AWOS stations shown in Figure 1b, from Aug 19, 2017, 12:00 PM to Aug 22, 
2017, 12:00 PM. The figure shows Original NARR SST and MUR SST scenarios. [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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