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A B S T R A C T   

Despite the implications of winter precipitation for socioeconomic activities and transportation 
services, the influence of cities on winter precipitation is less studied compared to that on summer 
precipitation. Here we investigated the statistical relations between precipitation, temperature, 
and impervious surface fraction in 12 major cities across the contiguous United States. The results 
showed negative correlations between snowfall intensity and impervious surface fraction. The 
correlations depend on latitude and the distance to complex terrain features (water bodies or 
topography), with stronger correlations for inland cities than coastal/lakeside cities. We further 
selected Kansas City for modeling analyses based on the Weather Research and Forecasting 
model. Simulation results indicated that the heating effect of urban land occurs in the near- 
surface atmosphere during the precipitation period, leading to changes of different hydrome
ters and an overall tendency of reducing snowfall but increasing rainfall.   

1. Introduction 

Urban impacts on precipitation have received considerable attention since the pioneering Metropolitan Meteorological Experiment 
(METROMEX) in the 1970s (Changnon Jr et al., 1971; Changnon Jr, 1975). This evolves into a pressing issue as urban population 
witnesses rocketing increases around the globe (Grimm et al., 2008) and cities are suffering from multiple precipitation-related 
environmental hazards such as flooding, droughts, and snow storms (WBGU, 2016). Compared to surrounding rural areas, cities 
are characterized with higher surface and near-surface air temperatures, taller roughness elements, and severe air pollution (Oke et al., 
2017). These attributes modify the spatial and temporal variability of precipitation. 

Empirical and modeling analyses reveal three main mechanisms through which cities affect precipitation (mostly rainfall, Shep
herd, 2005, 2013; Liu and Niyogi, 2019; Pielke et al., 2007, 2011; Li et al., 2013). These three mechanisms are the urban heat island 
effect, the urban canopy effect, and elevated airborne aerosols. The urban heat island effect refers to the fact that urban areas typically 
have higher temperatures than their surrounding rural areas. The urban heat island effect contributes to more unstable atmospheric 
conditions in urban areas, leading to development of localized convection or rising air parcels, which then cool, condense, and form 
clouds and potentially precipitation (Bornstein and Lin, 2000; Dixon and Mote, 2003; Yang et al., 2014a; Miao et al., 2009; Niyogi 
et al., 2006; Kim et al., 2021; Shu et al., 2023). The urban canopy effect refers to that buildings, roads, and other urban canopy 
characteristics can alter wind patterns and thus the transfer of heat and moisture in the lower atmosphere, leading to convergence of 
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air masses near the city. This convergence further results in upward motion of air and, subsequently, cloud formation and precipitation 
(Niyogi et al., 2006; Yang et al., 2021; Zhang et al., 2018; Dou et al., 2015; Bornstein and LeRoy, 1990). Elevated airborne aerosols can 
act as cloud condensation nuclei and affect cloud microphysics. They may enhance cloud droplet formation and influence precipitation 
patterns (Rosenfeld, 2000; Zhong et al., 2017; Taichen et al., 2023). However, urban-induced precipitation anomalies demonstrate 
diverse signatures (e.g., the preferential distribution of rainfall enhancement, see Liu and Niyogi (2019) for a review). For instance, 
Yang et al. (2019) examined two back-to-back thunderstorms over Phoenix, Arizona. Their results showed that interactions of urban- 
induced circulation with an outflow boundary propagating from the surrounding mountains led to enhanced rainfall for the first storm 
episode, while the urban heat island effect was responsible for increased rainfall over the downtown region for the second storm 
episode. In addition, the role of land-water boundaries (i.e., through land-sea/lake breeze) in urban rainfall anomalies has been 
emphasized in previous studies over the Milwaukee–Lake Michigan region (e.g. Yang et al., 2014b) and the Baltimore-Washington 
region (e.g. Ryu et al., 2016). These studies highlighted the importance of interactions between complex terrain (i.e., topography, 
land-water boundaries) and cities in affecting the spatiotemporal variability of rainfall. 

Compared to warm-season rainfall, urban impacts on winter precipitation (i.e., snowfall or mixture of snow and rainfall) are 
relatively less examined. The urban heat island effect shows strong seasonality (Zhou et al., 2016; Gabriele et al., 2020). Some studies 
found that the urban heat island effect is stronger during winter months than summer months (Kim and Baik, 2005; Hinkel and Nelson, 
2007; Ramamurthy and Sangobanwo, 2016; Miles and Esau, 2017; Yang and Bou-Zeid, 2018), suggesting that urban-induced winter 
precipitation anomalies could be even more notable (Montávez et al., 2000; Li et al., 2016). Based on empirical analyses of 40-year in- 
situ observations from 14 weather stations, Wang et al. (2009) showed that both the urban heat island and urban dry island effects led 
to enhanced evaporation of hydrometeors over Beijing, and thus reduced winter precipitation acccumulation. Similarly, Johnson and 
Shepherd (2018) reported significant negative correlations between the observed intensity of mixed precipitation and the distance of 
weather stations to the city center. Modeling analyses further confirmed the role of the urban heat island effect in inducing winter 
precipitation anomalies (Changnon, 2004; Grillo and Spar, 1971; Jones and Jiusto, 1980; Malevich and Klink, 2011; Thériault et al., 
2010; Johnson et al., 2021). For instance, Guo et al. (2019) showed that urban-induced temperature increases in the lower atmosphere 
intensified the melting processes of snow within the Fifth Ring road of Beijing (i.e., the downtown region) for a snow storm in 2018. 
Studies also found that increased urban aerosols as cloud condensation nuclei could inhibit snow production and reduce winter 
precipitation (Bokwa, 2009; Givati and Rosenfeld, 2004; Rosenfeld, 2000). However, existing knowledge is mostly based on isolated 
case studies. Comparative studies across a large collection of cities, which enable improved characterization of urban-induced winter 
precipitation anomalies, are still quite limited. 

Ample evidence has highlighted the role of large water bodies (e.g., sea or lake) in determining the intensity and distribution of 
snowfall. When cold air flows over warmer lake surfaces, the water vapor evaporating from the lake condenses when mixed with the 
cold air, forming snow on the lake or downwind of the lake (Hayhoe et al., 2010; Niziol et al., 1995; Kitagawa et al., 2022). Similar 
effects were observed along coastal regions (Yang et al., 2009). Moreover, orographic lifting was also found to be important for 
convective processes and the properties of hydrometeors (e.g., types, size, density) (Notaro et al., 2015). However, the interactions of 
cities and complex terrain in modulating the spatiotemporal variability of winter precipitation have received less attention. 

In this study, we aim to improve our understanding of how urban land affects winter precipitation using statistical and modeling 
analyses. The statistical analyses were performed over 12 major cities across the contiguous United States. These cities demonstrated a 
spectrum of phsyiographic attributes, including latitude, topography, and land-water boundaries. We further selected Kansas City for 
modeling analyses based on the Weather Research and Forecasting (WRF) model, which has been widely used to study urban impacts 
on precipitation (Feili et al., 2023; Donmez et al., 2022; Sati and Mohan, 2021; Doan et al., 2022; Louis et al., 2020; Doan et al., 2023). 
We selected Kansas City because it is an inland city located in the Central Great Plains with little topographic relief and far away from 
major water bodies. The numerical simulations over Kansas City were expected to highlight the impact of cities on winter precipitation. 

The rest of the paper is organized as follows. Section 2 describes data and methodology, including observations and the setup of 
numerical experiments. Results are provided in section 3, followed by a summary and conclusions in section 4. 

2. Data and methodology 

2.1. Statistical analyses 

We investigated the statistical relations between various land surface parameters (especially impervious surface fraction) and 
meteorological variables (temperature and precipitation) using observational data collected by weather stations. Such statistical 
analyses were conducted for the period of 2009–2018 in 12 cities over the contiguous United States. These cities were selected using 
the following steps. 

First, the 50 largest cities in terms of population were chosen. For each city, we defined a circular buffer with a radius of 150 km to 
collect weather station data. When the buffers of different cities overlapped, data from the same weather station might be selected by 
different cities. To avoid such scenarios, only the city with the largest population was retained when the buffers of different cities 
overlapped, which resulted in 37 cities with the distance between each other greater than 150 km. The buffer size of 150 km was a 
rough estimate of the footprint size of a city. It was chosen as a compromise between being reasonable (e.g., the buffer size should not 
be too large) and ensuring that each city has enough stations for analysis (namely, the buffer size cannot be too small). 

Second, for these 37 cities we collected weather station data (snowfall, rainfall and temperatures) from the Daily Global Historical 
Climatology Network (Menne et al., 2012) within the buffer size of 150 km. To study the correlations between precipitation (snowfall 
and rainfall) and temperatures as well as the correlations between land surface parameters and meteorological variables (precipitation 
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and temperatures), we required four meteorological variables (daily maximum temperature, daily minimum temperature, daily 
snowfall and daily rainfall amounts) to be simultaneously available. If any of the four variables was missing on a day, then all four 
variables were treated as missing for that day. Afterwards, we tested different thresholds of missing data for determining whether a 
station was kept for analysis or discarded. With 60% as the threshold (namely, if a station had more than 40% of data missing, then it 
was discarded), 868 stations remained. With 90% as the threshold, 394 stations remained. 

Third, we required each city to have more than 30 stations. With 60% as the threshold, 12 cities remained. These 12 cities included 
4 coastal cities, 4 lakeside cities and 4 inland cities based on the criteria to be discussed shortly. If the threshold was set to 70%, 9 cities 
would have remained, with only 2 coastal cities. As a compromise, we used 60% as the threshold and were left with 12 cities. We also 
tested 50% as the threshold and our key findings were not altered. 

As just alluded to, we classified cities into inland cities, coastal cities, and lakeside cities. Following previous studies on the 
relationship between precipitation and the distance to coastline (Makarieva et al., 2009; Ogino et al., 2016), the coastal region was 
defined as any area within 300 km from the coastline. Hence cities within 300 km from the coastline were defined as coastal cities. 
Similarly, cities close to the Great Lakes (< 300 km) were defined as lakeside cities. The remaining cities were defined as inland cities. 
According to this classification, there were 4 coastal cities, 4 lakeside cities and 4 inland cities (see Fig. 1). 

In this study, January, February, March, November and December were treated as the winter season, which covers most of the 
snowfall events over the 12 cities we selected. Days with snowfall greater than zero were treated as snowfall days for each station. 
Snowfall and temperature data on snowfall days were used to analyze the correlation between snowfall and other variables. Similarly, 
the data on rainfall days were used to analyze the correlation between rainfall and other variables. It is worth noting that during the 
winter period, snowfall and rainfall often occurred at the same time, that is, mixed precipitation occurred. The 10-year (2009–2018) 
winter mean values of precipitation and temperatures on snowfall days and rainfall days were first calculated for each station. For each 
city, the 10-year winter mean values of precipitation and temperature across all stations were then spatially averaged. The spatial 
averages were taken as the reference and the difference between the value of each station and the reference (namely, the spatial 
anomaly) was used for analysis. 

Using these spatial anomalies, we analyzed the linear correlation between precipitation (both snowfall and rainfall) and tem
peratures based on the following equations: 

S = αʹ
1 + βʹ

1Tmax, (1)  

S = αʹ
2 + βʹ

2Tmin, (2)  

R = αʹ
3 + βʹ

3Tmax, (3)  

R = αʹ
4 + βʹ

4Tmin, (4) 

Fig. 1. The locations of selected U.S. cities. The impervious surface fraction (%) from the National Land Cover Database (NLCD) 2011 Percent 
Developed Imperviousness is shown by colour. Red circles represent inland cities, green circles represent lakeside cities, and blue circles represent 
coastal cities. Black dots represent valid stations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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where S is the mean daily snowfall on snowfall days, R is the mean daily rainfall on rainfall days. Tmax and Tmin (in ◦C) are the cor
responding mean daily maximum and minimum temperature, respectively. The αʹ and βʹ are regression coefficients. We expected that 
snowfall was negatively correlated with temperatures (i.e., negative values of βʹ

1 and βʹ
2) and rainfall was positively correlated with 

temperatures (i.e., positive values of βʹ
3 and βʹ

4). 
Furthermore, multiple linear regression was performed based on the following equation to isolate the effect of various land surface 

parameters: 

S = α1 + β11Imp+ β12Dis+ β13Lat, (5)  

where Imp is the impervious surface fraction (in %), Dis is the distance from water bodies (in km, only for coastal cities and lakeside 
cities), Lat is the latitude (degree), α and β are regression coefficients. The same analysis were performed for Tmax and Tmin: 

Tmax = α2 + β21Imp+ β22Dis+ β23Lat, (6)  

Tmin = α3 + β31Imp+ β32Dis+ β33Lat. (7) 

The impervious surface fraction (Imp) was from the National Land Cover Database (NLCD) 2011 Percent Developed Impervious
ness. Following previous work (Foissard et al., 2019; Suomi et al., 2012; Zhao et al., 2011; Pauleit et al., 2005; Eliasson and Svensson, 
2003), a circular buffer with a radius of 500 m was established for each station and the mean value of impervious surface fraction (%) 
within the buffer was computed as Imp. We conducted analysis with different buffer sizes and found that our findings were not altered 
as long as the buffer size was in a reasonable range (200–1000 m). A higher impervious surface fraction (%), which indicates a larger 
proportion of built-up area surrounding the station, was assumed to represent a higher urbanization level. We note that besides the 
impervious surface fraction, there are numerous urban characteristics factors that can influence atmospheric variables. In this study, 
we chose the impervious surface fraction as a bulk parameter that reflects the degree of urbanization. However, it is important to 
acknowledge that this assumption has its limitations. The distance from the coastline was defined as the shortest distance from a 
station to the coastline for coastal cities and the shoreline for lakeside cities. 

2.2. Numerical simulations 

The statistical analyses were complemented by numerical modeling analyses. Since it is impossible to conduct simulations for all 
winter precipitation events during the research period over all cities, as a logical starting point we selected one city, which is Kansas 
City. The reason that we selected Kansas City is because our statistical analyses (to be presented in Section 3.1) revealed that winter 
precipitation is influenced by various factors, including impervious surface fraction, topography, and distance from waterbodies. Since 
Kansas City is located in the Central Great Plains, with little topographic relief (Fig. 2b) and far away from any major water bodies, 
numerical simulations over Kansas City will highlight the impact of cities on winter precipitation. Kansas City is a medium size city in 
the United States. The population of Kansas City is estimated to be over 0.5 million people, while the metropolitan area includes over 2 
million people. The city is around 319 mile2, while the entire metropolitan area is much larger, around 7900 mile2. The city’s building 

Fig. 2. (a) Three nested domains used for WRF simulations with elevation in colour over. (b) The spatial extent of domain 3 with elevation in 
colour. The red polygon represents the urban boundary by encircling the urban land use type. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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morphology is marked by a mix of high-rise buildings in the central business district, mid-rise structures, and residential suburbs. 
Three different types of winter precipitation over Kansas City were simulated to investigate how urbanization impacts the 

spatiotemporal characteristics of different types of winter precipitation. Furthermore, a season-long simulation over Kansas City 
(referred to as the season-long simulation) was conducted to demonstrate that the findings from individual events were generalizable, 
at least over Kansas City. 

To perform numerical simulations, the WRF model was used (Skamarock et al., 2008). Specifically, the Advanced Research WRF 
(ARW) version 3.7 was adopted in this study. Three two-way nested domains were used as the basic configuration. There were 200 ×
200, 220 × 220 and 187 × 211 grid cells, with the corresponding resolutions of 9 km, 3 km, and 1 km, respectively (Fig. 2). There were 
1086 grid cells designated as urban in domain 3, accounting for about 3%. The model contained 54 sigma levels in the vertical di
rection, with the model top set at 50 hPa. The time step for the outermost domain was 15 s. The initial and boundary conditions were 
provided by the National Center for Environmental Prediction (NCEP) Global Final Analysis (FNL) fields (https://rda.ucar.edu/ 
datasets/ds083.2/), with a spatial resolution of 1 degree and a temporal resolution of 6 h. The MODIS land use dataset provided by 
WRF was used to represent land use and land cover over the study region. 

The other key physics options for the WRF model were listed in Table 1. WSM6 was chosen as the microphysical parametrization 
(Hong et al., 2006). The radiation schemes included the Dudhia shortwave radiation scheme (Dudhia, 1989) and the Rapid Radiative 
Transfer Model (RRTM) longwave radiation scheme (Mlawer et al., 1997). The selected planetary boundary layer (PBL) scheme was 
MYJ (Janjić, 1994). The Noah land surface model (Chen and Dudhia, 2001) and Monin-Obukhov Surface Layer scheme (Monin and 
Obukhov, 1954) were applied for parameterizing surface processes. Cumulus scheme was turned off for all domains because the largest 
horizontal grid was less than 10 km (Stensrud, 2007). The single-layer Urban Canopy Model (UCM) (Chen et al., 2011) was used to 
capture urban characteristics. The single-layer UCM model represents cities as street canyons composed of homogeneous buildings and 
streets. Although it lacks vertical atmospheric variations and terrain features, the single-layer UCM was widely employed in urban 
simulations. Anthropogenic heat flux was set to 90 Wm− 2, the highest value of default settings. Table 1 provided a summary of all key 
physics schemes used in WRF simulations of this study. The same model configuration was used for all simulations. National snowfall 
analysis data (https://www.nohrsc.noaa.gov/snowfall/) and the Integrated Multi-satellitE Retrievals for GPM (IMERG) Final Pre
cipitation data (https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary) were used to evaluate the model performance. 
National snowfall analysis data is 24-h accumulated, with a spatial resolution of 0.04 degree. IMERG data is also 24-h accumulated, 
with a spatial resolution of 0.1 degree. 

For all simulations, two scenarios were set up to assess the effects of urban land. The control (CTRL) scenario (Fig. 3a) represented 
the MODIS land use conditions over this region. For the No-Urban (NU) scenario (Fig. 3b), cities were removed by replacing the urban 
land with the dominant rural land cover type in the surrounding. 

For each event, a two-day period was studied. For the snow only event (Kansas City - Snow), the simulation period was from 1800 
LT 03–1800 LT 05 February 2014 (LT: Local Time). For the rain only event (Kansas City - Rain), the simulation period was from 1800 
LT 08–1800 LT 10 March 2010. For the mixed precipitation event (Kansas City - Mix), the simulation period was from 1800 LT 
04–1800 LT 06 February 2010. The synoptic conditions for these three events were shown in Fig. 5 in Section 3b. Precipitation from 
these three events were primarily large-scale precipitation instead of convective precpitation based on ERA5 reanalysis data (Hersbach 
et al., 2018). For the season-long simulation, the simulation period was from 1800 LT 30 October 2009–1800 LT 01 April 2010. The 
results from domain 3 were analyzed due to the high spatial resolution of domain 3 unless noted otherwise. 

3. Results 

3.1. Statistical analyses 

3.1.1. The relation between precipitation and temperature 
First, we examined the relations between precipitation (snowfall and rainfall) and temperatures (Tmax and Tmin). The fitted values of 

βʹ based on the Eqs.1–4 were summarized in Table 2. The results indicated that in general snowfall was negatively correlated with 
temperatures (βʹ

1 < 0, βʹ
2 < 0), while rainfall was positively correlated with temperatures (βʹ

3 > 0, βʹ
4 > 0), as expected. This is also 

demonstrated in Fig. 4, which presents the results for Kansas City. While these results were consistent with physical intuition, pre
cipitation and temperatures were not only affected by the impervious surface fraction but also other factors such as the distance from 

Table 1 
Overview of the WRF physics options.  

Physics Scheme Reference 

Microphysics WSM6 Hong and Lim (2006) 
PBL MYJ Janjić (1994) 
Shortwave radiation Dudhia Dudhia (1989) 
Longwave radiation RRTM Mlawer et al. (1997) 
Land surface scheme Noah LSM Chen and Dudhia (2001) 
Surface layer scheme Monin-Obukhov Monin and Obukhov (1954) 
Cumulus None None 
Surface urban physics UCM Chen et al. (2011)  
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coast, latitude, and topography. To isolate the impact of these various land surface parameters, we used Eqs.5–7. 

3.1.2. The relation between precipitation/temperature and impervious surface fraction compounded by other factors 
The fitted values of β based on the Eqs.5–7 were summarized in Table 3. For all 12 cities, snowfall and impervious surface fraction 

were negatively correlated (with β11 < 0). This suggested that snowfall decreased with increasing impervious surface fraction. The 
negative correlation between snowfall and impervious surface fraction was generally more significant for inland cities than other 
cities. 

For coastal cities, snowfall was more affected by the distance from the coastline (the correlation coefficient β12 was significant). 
However, the correlation coefficient showed different signs for different cities. More specifically, for New York City and Boston, the 
correlation coefficient β12 was negative, while for the other coastal cities, the correlation coefficient β12 was positive. The different 
signs suggested that the influence of ocean on snowfall may be opposite under different conditions. On the one hand, when the cold air 
from the land meets up mith the warm, moist air from the ocean, snow might form. For example, Nor’easters, which are major 
snowfall-producing cyclones in the Northeastern United States, mainly move along the coastline and produce snow during the winter 
period. So for cities in this region like New York City and Boston, snowfall might form as water vapor from the ocean meets the cold air 
from the land, leading to the negative correlation between snowfall and the distance from the coast. On the other hand, due to the large 
heat capacity of water, temperatures near the ocean are often higher in winter. Namely, temperatures are negatively related to the 
distance from the coastline, as can be seen from the values of β22 and β32 in Table 3. Higher temperatures may cause the melting of 
snowfall, leading to less snowfall. These contrasting effects might be the reason why the correlation between snowfall and the distance 

Fig. 3. Land use and land cover of domain 3 for CTRL (top) and NU (bottom) scenarios over Kansas City.  

Table 2 
The fitted values of βʹ in Eqs. 1–4. Coefficients are statistically significantly different from zero at the level of 0.05 (*) and 0.1 (#).    

S R 

Tmax Tmin Tmax Tmin 

βʹ
1 β́2 β́3 βʹ

4 

Coastal 

New York City 2.9092 1.9594 0.2542* 0.1822* 

Washington, D.C. − 1.4641 − 3.438* 0.0825 0.0614#

Boston − 2.1293 − 1.0508 0.4177* 0.341* 

Portland − 10.9371* − 3.412 − 0.4384 − 0.2252 

Lakeside 

Chicago − 1.6642 − 1.1925 0.3185* 0.2033* 

Indianapolis − 0.7548 − 0.3185 0.5788* 0.5669* 

Detroit − 3.002* − 0.6513 0.5257* 0.3743* 

Minneapolis − 0.9142 − 1.9061# 0.2693# 0.0831 

Inland 

Denver − 0.9695 − 0.8913 0.0277 0.064 
Nashville − 5.023# − 4.2965 0.2209 0.4625* 

Kansas City − 6.9128* 5.9687* 0.552* 0.6162* 

Omaha − 2.5475* − 3.1221* 0.281* 0.2746*  
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Fig. 4. The unary linear regression results between independent variables (Snowfall and Rainfall) and dependent variables (Tmax and Tmin) in 
Kansas City. 

Table 3 
The fitted values of β in Eqs. 5–7. Coefficients are statistically significantly different from zero at the level of 0.01 (*) and 0.1 (#).    

S Tmax Tmin 

Imp Dis Lat Imp Dis Lat Imp Dis Lat 

β11 β12 β13 β21 β22 β23 β31 β32 β33 

Coastal 

New York City −

0.1617#
− 0.1679* 0.6579 0.007 − 0.0125* − 0.6938* 0.0187# − 0.0274* − 0.2969 

Washington, D. 
C. − 0.1734 0.063# 1.9781 0.006 − 0.0003 − 1.1511* 0.0196#

−

0.0081#
− 1.048* 

Boston − 0.048 
−

0.0941#
3.3528 0.0137* − 0.0096* − 0.8634* 0.0242* − 0.0167* − 1.0736* 

Portland − 0.1251 0.1886# − 9.5316 − 0.0077 − 0.0182* 0.0729 − 0.0009 − 0.009# 0.2493 

Lakeside 

Chicago − 0.0157 0.0231 1.0808 − 0.0015 
−

0.0045#

−

0.3348#
0.0236* −

0.0056#
− 0.1607 

Indianapolis − 0.00683 − 0.019 − 2.4287 − 0.0058 − 0.0007 
−

0.8496#
0.0212# 0.0014 − 0.4966 

Detroit − 0.0111 − 0.028 − 0.7669 0.0006 − 0.0057 − 0.1342 0.0183# − 0.0061 − 0.1964 
Minneapolis − 0.045 0.0022 − 1.0324 − 0.0041 − 0.0091* − 1.1366* 0.0191* − 0.0125* − 1.6144* 

Inland 

Denver 
−

0.2325#
4.0124 0.0456*  − 0.3929 0.055*  0.6044#

Nashville 
−

0.3612# 13.3458* 0.0231# − 0.9015* 0.0318*  − 0.7704* 

Kansas City − 0.0595  1.705 0.0157  −

0.4078#
0.0205#

−

0.3795#

Omaha − 0.1821*  1.4756 0.008  − 0.7504* 0.0194# − 0.6916*  
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from the coastline was not of the same sign across different coastal cities. Unlike coastal cities, the distance to lakes did not present a 
significant impact on snowfall for lakeside cities. 

For temperatures, the negative correlation between daily maximum temperature and latitude (β23 < 0) was often significant, 
indicating that the highest temperature one station could reach was at least partially determined by the latitude of the station. While 
daily minimum temperature also tended to be significantly affected by latitude, it was highly correlated with the impervious surface 
fraction (β31 > 0). The finding that daily maximum temperature was not significantly correlated with impervious surface fraction but 
daily minimum temperature was significantly correlated with impervious surface fraction is consistent with the traditional paradigm 
that the urban heat island effect is stronger and more perceptible during nighttime (Oke et al., 2017). 

Fig. 5. The unary linear regression results between independent variables (Imp and Lat) and dependent variables (Snowfall, Tmax and Tmin) in 
Kansas City. 
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In the following, We use Kansas City, Boston, and Denver as examples to demonstrate the relations between dependent variables 
(precipitation and temperatures) and independent variables (e.g., Imp and Lat), which can help us interpret the results shown in 
Table 3. Fig. 5 shows the unary linear regression between independent variables (Imp and Lat) and dependent variables (Snowfall, Tmax 
and Tmin) in Kansas City. Since it is an inland city, only two independent variables (Imp and Lat) are analyzed. There is a significantly 
positive correlation between the impervious surface fraction and Tmin (Fig. 5e). Although the correlation between the impervious 
surface fraction and another two dependent variables (Snowfall and Tmax) is weak (P > 0.1), we can still see that increases in 
impervious surface fraction lead to increases in Tmax increase and reductions in Snowfall (Fig. 5a and c). Both snowfall and temperature 
show significant correlations with latitude (P < 0.01). As latitude increase, snowfall shows significant increases, while temperature is 
significantly reduce (Fig. 5b, d and f). 

Another independent variable Dis (Distance from the coast) is added for the regression analysis in the coastal city Boston (Fig. 6b, e 
and h). There is a significantly positive correlation between the impervious surface fraction and temperature (Fig. 6d and g). Compared 
to temperature, the correlation between the impervious surface fraction and snowfall is weaker (P > 0.1). However, we can still see 

Fig. 6. The unary linear regression results between independent variables (Imp, Dis and Lat) and dependent variables (Snowfall, Tmax and Tmin) 
in Boston. 
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that increases in impervious surface fraction lead to snowfall reduction (Fig. 6a). Generally speaking, there should be a negative 
correlation between snowfall and temperature as shown in Table 2. In other words, the correlation between the two dependent 
variables (snowfall and temperature) and the same independent variable should be opposite. However, the correlation between the 
two dependent variables (snowfall and temperature) and the distance from the coastline shows the same sign (all are negatively 
correlated, see Fig. 6b, e and h). These correlations indicate that the further away from the coastline, the lower the temperature, and 
the less the snowfall. This is because snowfall is affected not only by temperature, but also by water vapor likely provided by the 
Atlantic Ocean. It is precisely because of the complexity of the factors affecting snowfall in coastal cities that the correlation between 
snowfall and a single independent variable (e.g., Imp and Dis) is not significant against the null hypothesis (Fig. 6a and b). We note that 
latitude is still a key factor affecting snowfall and temperature for Boston (Fig. 6c, f and i). 

In Denver, the negative correlation between snowfall and impervious surface fraction is more significant (Fig. 7a, 0.01 < P < 0.05). 
Moreover, as Denver’s climate is greatly affected by the mountainous terrain, the correlation between the three dependent variables 
(Snowfall, Tmax and Tmin) and latitude is not significant (Fig. 7b, e and h). The altitude of each station over Denver varies greatly. 
Therefore, we add another independent variable Alt (Altitude, in meters above sea level) in our analysis (Fig. 7c, f and i). The other 

Fig. 7. The unary linear regression results between independent variables (Imp, Lat and Altitude) and dependent variables (Snowfall, Tmax and 
Tmin) in Denver. 
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cities do not show large variations in the altitude for the analyzed stations and hence the same analysis is not repeated for the other 
cities. The results suggest that the correlation between the three dependent variables (Snowfall, Tmax and Tmin) and altitude is sig
nificant (P < 0.01). As altitude increases, snowfall shows significant increases, while temperatures are significantly reduced. 

In summary, snowfall was negatively correlated with temperatures while rainfall was positively correlated with temperatures. For 
most cities, the impervious surface fraction was positively correlated with temperatures and negatively correlated with snowfall, 
indicating that the impervious surface fraction was an important factor affecting both temperatures and snowfall, especially for inland 
cities. For coastal cities, the distance from the coastline was a more important factor affecting snowfall than the impervious surface 

Fig. 8. The simulated 24-h accumulation snowfall (snow water equivalent, mm) of the No-Urban (NU) simulation (top row), CTRL simulation 
(middle row) and observation (bottom row) for (a, d, g) Kansas City - Snow and (b, e, h) Kansas City - Mix. The 24-h period is from 2014 to 02-04 06 
LT to 2014-02-05 06 LT for Kansas City - Snow and from 2010 to 02-05 06 LT to 2010-02-06 06 LT for Kansas City - Mix. And the simulated 48-h 
accumulation rainfall (mm) of the No-Urban (NU) simulation (top row), CTRL simulation (middle row) and observation (bottom row) for (b, g, l) 
Kansas City. The 48-h period is from 2010 to 03-08 18 LT to 2010-03-10 18 LT for Kansas City - Rain. The NU and CTRL simulation show results 
from Domain 2. 
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fraction. However, the distance to coast could be either positively or negatively correlated with snowfall. Latitude was a key factor 
affecting temperatures. But the correlation between snowfall and latitude was not significant across the cities examined here. 

One caveat of these statistical analyses is that with multiple variables affecting snowfall, the correlation between snowfall and 
independent variables was often weak. In particular, the relation between snowfall and impervious surface fraction was weak. Thus we 
carried out numerical simulations to elucidate how urban land affects winter precipitation. 

3.2. Numerical simulations 

As mentioned in Section 2, we also investigated the impacts of urban land on winter precipitation using numerical simulations 
(three case studies over Kansas City). Three cases (i.e. Kansas City - Snow, Kansas City - Rain and Kansas City - Mix) over Kansas City 
were simulated to show urban impacts on different types of winter precipitation. Before discussing the results from numerical sim
ulations, it is important to acknowledge that the sample size was limited. Hence, our findings should be interpreted cautiously. 
However, the consistency between the numerical simulation results and the statistical results, which will be highlighted below, gave us 
confidence in our findings. 

3.2.1. Model performance 
The simulated 24-h accumulation snowfall (represented by snow water equivalent, for snow only and mixed precipitation events) 

or simulated 48-h accumulation rainfall (for rain only event) in both No-Urban (NU) and CTRL scenarios were spatially consistent with 
the observations for all three events (Fig. 8, Table 4), although light and moderate precipitation was overestimated. The distribution of 
the snow band or rain was well captured by the model, with the caveat that there seemed to be a slight westward shift for the Kansas 
City - Rain case (Fig. 4g and i) and a slight northward shift for the Kansas City - Mix case (Fig. 8h and m). The snowfall and rainfall 
intensity was also comparable between the CTRL simulation and observation (Table 4). These results suggested that the model 
reasonably captured the precipitation over these three cases. Thus, comparisons between the CTRL and NU scenarios could shed light 
on the impacts of urban land on the spatial and temporal pattern of winter precipitation. 

3.2.2. Spatial variability 
Fig. 9 showed the synoptic conditions (i.e., temperature, geopotential height, and wind field at 850 hPa) at four times during the 

24-h precipitation period for the three events. For Kansas City - Snow, a low-pressure system moved from southwest to northeast 
during this period, with cooling effects and stronger winds from east to west over the city (Fig. 9a, Fig. 9d, Fig. 9g and Fig. 9j). For 
Kansas City - Rain, the center of a low-pressure system to the west of the city moved across the city area, with stronger winds from 
south to north (Fig. 9b, Fig. 9e, Fig. 9h and Fig. 9k). For Kansas City - Mix, a stationary surface cyclone was strengthened to the east of 
Kansas City, with cooling effects and stronger winds from north to south (Fig. 9c, Fig. 9f, Fig. 9i and Fig. 9l). 

Fig. 10 showed the differences between the CTRL and NU scenarios (CTRL minus NU, representing the impacts of urban land) in 
terms of the 2-m air temperature, 2-m specific humidity and 10-m wind speed averaged over the entire simulation period. For different 
types of precipitation over Kansas city, similar warming effects were seen in all three cases (Fig. 10a, Fig. 10b, Fig. 10c). However, the 
three cases showed different changes of the 2-m specific humidity. The urban land had small effects on the 2-m specific humidity 
within the city area, but caused a slight increase in specific humidity (0.1 g/kg) in the downwind area of the city in the snow only case 
and the mixed precipitation case (Fig. 10d and Fig. 10f). While in the rainfall only case, the urban land reduced the specific humidity 
(0.15 g/kg) within the city area (Fig. 10e). In addition to the thermodynamic perturbations induced by urban land, noticeable per
turbations existed in the near-surface wind field due to increases in surface roughness as well as buoyancy fluxes. There was a decrease 
in near-surface wind speed in all three cases in Kansas City, consistent with the increases in surface roughness and buoyancy fluxes 
(Fig. 10g, Fig. 10h, Fig. 10i). It was noteworthy that the decrease of near-surface wind speed occurred over the downwind area of 
Kansas City in the snow only case and the mixed precipitation case (Fig. 10g and Fig. 10i). 

Fig. 11 showed the differences of the accumulated snowfall, rainfall and total precipitation between CTRL and NU scenarios for the 
three cases. Also shown were the wind fields from CTRL. For all cases in Kansas City, there was no abrupt change in the magnitude and 
direction of wind over the city area (Fig. 11a, Fig. 11b, Fig. 11c). 

For the snowfall only case in Kansas City, snowfall decreased by about 1 mm over the downwind area and increased by about 1 mm 
over the upwind area of the city (Fig. 11a). Changes in wind speed and temperature caused by urbanization may be the cause of this 

Table 4 
The 24-h area-average and maximum snowfall accumulations (snow water equivalent, mm) for Kansas City - Snow, Kansas City - Mix and the 48-h 
area-average and maximum rainfall accumulations (mm) for Kansas City - Rain in both domain 2 and domain 3. The 24-h period and 48-h period are 
the same as Fig. 4.   

Domain 2 Domain 3 

Area-average (mm) Maximum (mm) Area-average (mm) Maximum (mm) 

Simulation Observation Simulation Observation Simulation Observation Simulation Observation 

Kansas City - Snow 10.05 9.11 27.14 30.67 16.70 14.97 27.27 30.56 
Kansas City - Rain 13.11 12.95 45.40 54.25 18.34 15.61 40.94 33.73 
Kansas City - Mix 3.55 1.92 14.93 20.88 6.64 4.73 14.77 21.03  
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phenomenon. In the upwind area of the city, decrease in near-surface wind speed dominated and led to snowfall accumulation, while in 
the downwind area of the city, the warming effect (Fig. 10a) dominated and caused the negative snowfall anomaly. The impact 
distance on snowfall was relatively large (about 100 km) outside the city. 

Unlike the clear anomaly in the snow only case, the rainfall changes were complicated in the rainfall only case. As the center of the 
low-pressure system moved over Kansas City during the simulation period, a convergence zone occurred to the north of the city 
(Fig. 11e) and the regional circulation in the center was significantly affected by urban land (Fig. 10h). As a result, the urban land 

Fig. 9. The synoptic conditions at 850 hpa during the 24-h precipitation period for (a, d, g, j) Kansas City - Snow, (b, e, h, k) Kansas City - Rain and 
(c, f, i, l) Kansas City - Mix. The 24-h precipitation period was from 2014 to 02-04 06 LT to 2014-02-05 06 LT for Kansas City - Snow, 2010-03-09 06 
LT to 2010-03-10 06 LT for Kansas City - Rain and 2010-02-05 06 LT to 2010-02-06 06 LT for Kansas City - Mix. The shaded colour indicates air 
temperature (∘C), the contours denote geopotential height (m), and the arrows denote wind fields (m/s). The data are taken from the National Center 
for Environmental Prediction (NCEP) Global Final Analysis (FNL) fields. The black squares indicate the domain 3 in three cases. 

Fig. 10. Differences of 2-m temperature (top row, ◦C), 2-m specific humidity (middle row, g/kg) and 10-m wind speed (bottom row, m/s) between 
CTRL and NU scenarios averaged over the simulation period for Kansas City - Snow, Kansas City - Rain and Kansas City - Mix from left column to 
right column. The red polygon represents the urban boundary. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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influenced the rainfall in the downwind region of the urban boundary with a magnitude of about 6 mm, while a slight decrease (about 
3 mm) occurred over some part of the city. In addition, rainfall over the convergence area showed complex anomalies. 

Both rainfall and snowfall in Kansas City - Mix were altered by the urban land, with snowfall decreased by about 2 mm (Fig. 11c) 
and rainfall increased by about 2 mm (Fig. 11f). In addition, the urban land influenced the snowfall and rainfall in the downwind 
region for Kansas City with a magnitude of about 1 mm. The impact distance on rainfall was relatively large (about 100 km), while the 

Fig. 11. Differences of accumulated snowfall (top row), rainfall (middle row) and precipitation (bottom row) between CTRL and NU scenarios over 
the simulation period for (a, d, g) Kansas City - Snow, (b, e, h) Kansas City - Rain and (c, f, i) Kansas City - Mix. Vectors represent 10-m wind fields at 
2014-02-04 18 LT (Kansas City - Snow), 2010-03-09 18 LT (Kansas City - Rain) and 2010-02-05 18 LT (Kansas City - Mix). The red polygon rep
resents the urban boundary. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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impact distance on snowfall was relatively small (about 30 km). In terms of the total precipitation, urban land showed a small impact, 
with some decreases in the immediate downwind region and some increases in the distant downwind region (Fig. 11i). The changes in 
rainfall and snowfall were spatially different (Fig. 11c and Fig. 11f). This highlights the importance of separating precipitation into 
rainfall and snowfall in order to clearly identify urban impacts on winter precipitation. Overall, since Kansas City is a typical inland city 
with no complex terrain or land-water boundary, the impact of urbanization on winter precipitation was not compounded by other 
geographical factors. 

3.2.3. Temporal variability 
For the three events, time series of hourly snowfall rates, rainfall rates and total precipitation (the sum of snowfall and rainfall) 

rates averaged over urban grid cells were shown in Fig. 12. 
For Kansas City - Snow, the total snowfall value during the entire simulation period was 19.2 mm. As for Kansas City - Rain, the total 

rainfall was 17.1 mm. The total precipitation in the mixed precipitation event was dominated by snowfall, with mixed precipitation 
during some periods. For Kansas City - Mix, the total precipitation value during the entire simulation period was 11 mm, of which 
snowfall accounted for 93%. In terms of hourly precipitation rate, Kansas City - Rain had the largest value, reaching 2.4 mm/h, while 
Kansas City - Mix showed the lowest hourly precipitation rate, with the maximum hourly precipitation rate less than 1.0 mm/h. 

The snow only event in Kansas City lasted for 30 h (Fig. 12a). The snowfall was reduced during the first 20 h and increased during 
the last 10 h (Fig. 12d). There were two episodes of rainfall in Kansas City - Rain (Fig. 12b). For the first episode, the impacts of urban 
land (again represented by the differences between the CTRL and NU scenarios) were quite weak, while a large increase of rainfall was 
shown in the second episode, which was selected for further analysis (Fig. 12e). 

The mixed precipitation event in Kansas City lasted about 40 h, with 15-h mixed precipitation (Fig. 12c). During the period of 
mixed precipitation, the impacts of urban land were quite strong (Fig. 12f). Overall, the rainfall was increased and the snowfall was 
reduced. The magnitude of snowfall reduction was greater than that of rainfall increase, resulting in a slight decrease in the total 
precipitation. During the periods when there was only snowfall, the differences between the two scenarios were small. 

Fig. 13 further showed the differences between CTRL and NU scenarios in terms of vertical distributions of temperature and 
moisture variables, which have been averaged over all urban grids, during the key precipitation periods (shaded regions in Fig. 12). 
The vertical extent of temperature increase was approximately 500 m from the surface, corresponding to the typical atmospheric 
boundary layer height. The temperature increase was observed for all 3 events. For Kansas City - Snow, the temperature increased by 
about 0.1 ◦C below 500 m and decreased by about 0.1 ◦C between 500 m to 1 km. For Kansas City - Rain and Kansas City - Mix, the 
temperature increases by about 0.1 ◦C below 500 m. As a result, all hydrometeors were affected, with the strongest impact on ice and 
snow. 

For the snow only event in Kansas City (Fig. 13 a, d, g, j, m), it was noteworthy that the warming effect of urban land only occurred 
during the first 20 h, in which ice and snow were reduced near the surface. However, they were increased slightly above 200 m. This 
was likely because the increase in temperature helped melt ice and snow at the surface, while at the same time the updraft of warm 

Fig. 12. Time series of hourly precipitation rates (mm/h) averaged over urban grid cells (see Fig. 3) for (a, d) Kansas City - Snow, (b, e) Kansas City - 
Rain and (c, f) Kansas City - Mix. (a-c) are the CTRL simulation results. (d-f) are the differences between CTRL and NU scenarios. The gray shading 
area represents the precipitation phase for further analysis. 
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moist air parcel condensed at higher altitudes, facilitating the formation of ice and snow. The urban warming effect disappeared in the 
late snowfall period and led to increase of ice and snowfall. 

As for the rain only event in Kansas City - Rain (Fig. 13 b, e, h, k, n), the anomalies of rain were consistent with the warming effect. 
When the warming effect was enhanced (from 1400 LT to 2200 LT), rain was increased significantly; while during other period, rain 
was reduced slightly. 

For the mixed precipitation event in Kansas City (Fig. 13 c, f, i, l, o), when the precipitation peak was observed (around 1000 LT on 
the first day), in the altitude range where the temperature was enhanced (below 500 m or so), the ice and snow decreased while the 
graupel and rain water increased. During the mixed precipitation period, the warming effect of urban land was strong and the changes 
of ice, snow and rain were consistent with the snow only event and the rain only event results, respectively. 

Putting together results of temporal variability from three different types of winter precipitation in Kansas City, we could conclude 
that changes of snowfall and rainfall were significantly related to the temperature changes. When the atmosphere was heated up by 
urban land, snowfall was reduced while rainfall and graupel were increased. These findings were broadly consistent with our statistical 
analyses. For snow only events, the warming effect occurred during the early stage and disappeared with the accumulation of snow, 
thus snowfall decreased in the early stage and increased in the later stage, at least for Kansas City - Snow. As for rain only events, the 
warming effect occurred during the later stage, resulting in the increase of rainfall (e.g., in Kansas City - Rain). For mix precipitation 

Fig. 13. Vertical distribution of differences between CTRL and NU scenarios in terms of moisture variables (cloud water, ice, snow, graupel and rain 
water; shade; g/kg) and temperature (contour at every 0.2 K) during the gray shading precipitation period in Fig. 12 for Kansas City - Snow, Kansas 
City - Rain and Kansas City - Mix. The results are averaged over urban grid cells. 

J. Liu et al.                                                                                                                                                                                                              



Urban Climate 56 (2024) 102038

18

case, the warming effect led to the changes of ice, snow and rain, which were consistent with the snow only event and the rain only 
event. 

3.2.4. Results from the season-long simulation 
Fig. 14 showed the differences between the CTRL and NU scenarios (CTRL minus NU, representing the impacts of urban land) in 

terms of the accumulated snowfall, rainfall and total precipitation during the entire period of the season-long simulation. In the CTRL 
case, the total snowfall was 151.33 mm, while the total rainfall was 143.28 mm. The accumulated snowfall was reduced by urban land 
over the inner city area (up to 15 mm) and the eastern and southern surrounding areas, while an increased snowfall band (up to 12 
mm) was observed to the northwest of the city (Fig. 14 a). As for the areas farther away from the city, reductions of snowfall occurred to 
the southwest of the city, and slight increases occurred to the south of the city. For most part of the domain, rainfall was increased by 
urban land, especially over the areas where snowfall was reduced (Fig. 14 b). For the total precipitation (Fig. 14 c), the changes showed 
complex distributions. A band of total precipitation increase was located to the northwest of the city, coinciding with the band of snow 
increase; while reductions of precipitation occurred near the city and over the east and southwest of the city. In the southeast region 
farther away from the city, precipitation was increased significantly. 

Overall, the existence of urban land leads to reductions of accumulated snowfall and increases of accumulated rainfall over the city 
area. As for the total precipitation within the city, the anomalies were opposite in different regions - increase in the western part and 
decrease in the eastern part. Meanwhile, the existence of urban also has impacts on the precipitation outside the city. The snowfall 
anomalies were different at different locations outside the city but with good consistency, while rainfall was increased over most areas 
in the domain. 

4. Conclusion 

In this study, we carried out statistical analyses to quantify the influence of impervious surface fraction on winter precipitation 
across 12 major U.S. cities. Three types of winter precipitation (snow only, rain only and mixed precipitation) over Kansas City were 
selected in modeling simulation to elucidate the physical processes through which urban land influences winter precipitation. The 
main findings were summarized below. 

(1) Snowfall was significantly negatively correlated with air temperatures in the studied cities. Meanwhile, rainfall was signifi
cantly positively correlated with air temperatures. Snowfall and impervious surface fraction were generally negatively corre
lated. The correlation between snowfall and impervious surface fraction was more significant for inland cities than for coastal 
and lakeside cities. For coastal cities, snowfall was significantly affected by the distance to coastline. Latitude was found to 
affect daily maximum temperature more than daily minimum temperature, while the impervious surface fraction significantly 
affected daily minimum temperature. The correlation between latitude and snowfall was nonetheless not significant. In areas 
with strong altitude variations, temperature was also strongly correlated with altitudes.  

(2) Based on simulation results of three precipitation events, when urban land was replaced by the dominant rural land cover type 
in the surrounding, near-surface air temperature, humidity, wind speed, and various hydrometers in the atmospheric column 
were affected. In the near-surface atmosphere (within 500 m high), the warming effect of urban land caused reductions in ice 
and snow and increases in graupel and rain water. For snow only precipitation, the warming effect was stronger in early stage, 
leading to reduction of snowfall. For rain only precipitation, the warming effect was stronger in late stage, leading to increase of 
rainfall. In mixed precipitation events, the warming effect occurred resulted in reductions in snowfall and increases in rainfall 
and graupel. When the warming effect weakened, the reductions of wind speed caused by increases in surface roughness and 
buoyancy fluxes could lead to the increase of both snowfall and rainfall. The season-long simulation over Kansas City further 
testified the role of urban land, which led to less snowfall and more rainfall in inner city over the winter season in 2009–2010. 
For the surrounding area of the city, the impact of urban was visible but complex.  

(3) Combining the results of statistical analyses and numerical simulations, we conclude that the impervious surface fraction or the 
urban land as in the case of numerical simulations plays an important role in affecting winter precipitation. The urban influence 
becomes more pronounced during mixed-precipitation events, where the urban-induced temperature rise results in reduced 
snowfall and increased rainfall. Specifically, statistical analyses suggested that higher impervious surface fraction was generally 
associated with higher air temperatures, less snowfall, and more rainfall. Simulations results suggested that the higher tem
peratures caused by urban land were not only found at the surface, but also in the atmospheric boundary layer (especially below 
500 m), leading to changes in hydrometers. The changes in hydrometers were consistent with decreases of snowfall and in
creases of rainfall as in the statistical analyses. 

Based on statistical analyses of multi-year observation data and both case and long-term studies with WRF simulations, this study 
provides evidence on the influence of impervious surface fraction (urban land) on winter precipitation. However, as we have noted 
earlier, only three winter precipitation events were simulated for one city, and thus the generalization of our numerical results needs to 
be practiced with caution. Future modeling studies on events with diverse synoptic conditions are needed. For cities with mountainous 
terrain or next to water bodies, further modeling studies on how their effects interact with the urban effects may shed new insights. In 
consideration of the complexity associated with winter precipitation, studies on the fundamental physical processes such as land 
surface/ boundary layer/ microphysical processes involved in winter precipitation events are needed. With existence of ice, snow, 
graupel and other moisture variables, the complex microphysical processes of snowfall were quite challenging in the simulation and 
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research. In addition to the spatial and temporal distribution changes of these variables caused by city in this study, the transformation 
relationship of various moisture variables and the influencing factors in the snowfall process can be further studied. Last but not least, 
more studies using observations to statistically quantify the urban effects in other regions and using observations to evaluate numerical 
simulations are strongly encouraged. 
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