
1.  Introduction
Monin-Obukhov similarity theory (MOST, Monin & Obukhov, 1954) is regarded as the starting point for modern 
micrometeorology (Foken, 2006; Nieuwstadt, 1984) and has been a cornerstone of surface-layer turbulence para-
metrization in weather and climate models (e.g., Hong et al., 2006; Nakanishi & Niino, 2006; Pleim, 2007). In 
numerical models, bulk formulations equivalent to MOST, which relate turbulent fluxes to mean flow properties, 
are widely used. For example, turbulent momentum flux is often expressed as 𝐴𝐴 𝐴𝐴

2

∗ = 𝐶𝐶𝑑𝑑𝑈𝑈
2 , where u* is the friction 

velocity, Cd is the drag coefficient, and U is the mean wind speed. The validity range of MOST or bulk formula-
tions in stable atmospheric boundary layers remains a long-standing issue (Holtslag et al., 2013; Mahrt, 2014). 
Much effort has been devoted to investigating the breakdown of MOST (e.g., Grachev et al., 2013) and its asso-
ciation with flow laminarization. However, observed data indicate that flow laminarization under strong stratifi-
cation is questionable (Galperin et al., 2007). Instead, the turbulent flow seems to transition into a weak regime 
where a finite amount of mixing remains (Mahrt, 2014).

A common way to distinguish different regimes of stable atmospheric boundary layers is through the variation 
of u* with U (Sun et al., 2012; Van de Wiel et al., 2012). In this method, two regimes are often identified: a weak 
turbulence regime where the mean wind speed is less than a height-dependent threshold (Us) and a moderate 
turbulence regime where the mean wind speed exceeds Us. The friction velocity u* increases weakly with the 
mean wind speed U in the weak turbulence regime, but increases strongly with the mean wind speed U in the 
moderate turbulence regime. Sun et  al.  (2016) named such a transition as HOckey-Stick Transition (HOST). 
Similar findings have been reported in follow-up studies using observations and numerical models (Acevedo 
et al., 2019; Chechin, 2021; Maroneze et al., 2019). It is suggested that the transition is due to changes in the 
coupling states of the surface layer (Acevedo et  al.,  2016; Sun et  al.,  2016,  2020), which are modulated by 
coherent eddies across the layers. In coupled surface layers, these coherent eddies are attached to the ground 
and are vertically synchronized (coupled), which provide the foundation for the bulk formulations and MOST. 
Because of these coherent eddies, the surface layer simultaneously experiences enhanced turbulent mixing of 
momentum and heat (Cuxart et al., 2002; Lan et al., 2018, 2019). In decoupled surface layers, turbulent eddies are 
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depressed and detached from the surface, leading to suppressed vertical mixing and the breakdown of bulk formu-
lations  and MOST. Knowledge on the transition between the two turbulence regimes is crucial for constraining 
the application range of MOST and for further improving turbulence parameterizations in stable boundary layers 
(Mahrt, 2014; Sandu et al., 2013).

Researchers have not agreed upon which index works best to characterize the transition between the two turbu-
lence regimes in stable atmospheric boundary layers. The mean wind speed threshold (Us), as a dimensional 
quantity, cannot be expected to be universal (Mahrt et al., 2015; Van de Wiel et al., 2012). The dual charac-
teristics of heat flux and the stability parameter corresponding to the maximum heat flux (in terms of magni-
tude) (Lapworth & Osborne, 2020; Mahrt et al., 1998; Malhi, 1995), albeit widely studied and recognized, have 
been found to fail to separate turbulence regimes as the maximum heat flux tends to occur in the weakly stable 
regime (Acevedo et  al.,  2019). The Richardson numbers (including the gradient Richardson number and the 
flux Richardson number) have been extensively studied, motivated by the seminar work by Miles and Howard 
(Howard, 1961; Miles, 1961; Miles & Howard, 1964), yet the exact meaning of critical (or sometimes maximum) 
Richardson numbers remains to be clarified (Bou-Zeid et al., 2018; Galperin et al., 2007; Katul et al., 2014; Li 
et al., 2015). Other work proposed non-dimensional indices to characterize horizontal meandering (Mortarini 
et  al.,  2019) and vertical coupling (Peltola et  al.,  2021), but the exact transition thresholds for these indices 
remain  empirically determined. This study aims to bridge this research gap by proposing a new non-dimensional 
index for characterizing the transition between moderate and weak turbulence regimes and determining the tran-
sition threshold value theoretically. In the following, the data set and methodology are elaborated in Section 2; a 
theoretical model is introduced in Section 3; interpretations of results are presented in Section 4; conclusions and 
discussion can be found in Section 5.

2.  Data and Methods
2.1.  Data Set

The data from the Cooperative Atmosphere-Surface Exchange Study in October 1999 (CASES-99) field exper-
iment are used (Poulos et al., 2002). The CASES-99 data set contains ultrasonic turbulence measurement on a 
60-m tower in southeast Kansas (located at 37.649°N, 96.736°W) during the month of October 1999. The tower 
site was surrounded by the relatively flat terrain. Sonic anemometers were installed at 1.5, 5, 10, 20, 30, 40, 50, 
and 55 m. Since the lowest sonic anemometer was moved on 20 October, the measurements at 1.5 m are not used 
in this study. Data are split into 15-min segments.

2.2.  Data Processing

The coordinate system is defined that x, y, and z-coordinates represent the streamwise direction, the span-
wise direction, and the vertical direction, respectively, and the corresponding velocity components are u, v, 
and w. Due to this rotation, the spanwise mean wind speed and the spanwise momentum flux become suffi-
ciently small and are neglected. The mean wind speed is then defined as 𝐴𝐴 𝐴𝐴 = 𝑢𝑢 , where the overbar repre-
sents the time average. Turbulent momentum fluxes and heat fluxes are computed as −�′�′ and �′�′ with the 
prime indicating the turbulent fluctuations from the time averages, and the friction velocity is calculated as  

�∗ =
√

−�′�′ . Brunt-Väisälä frequency is defined as =
(

�
�
��
��

)

1
2 , where θ denotes the potential temperature,  

g is gravity acceleration, and z denotes the distance to the ground. The mean wind speed gradient 𝐴𝐴 𝐴𝐴 =
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 and 

the mean potential temperature gradient 𝐴𝐴
𝜕𝜕𝜃𝜃

𝜕𝜕𝜕𝜕
 are obtained by fitting third-order polynomial functions to the mean 

wind speed and mean potential temperature profiles and then taking the derivative of the fitted functions. Using 

the above definitions, the Obukhov length is computed as � = −��3∗∕
(

���′�′
)

 , where κ is Karman constant. 
The stability parameter z/L can be used to measure the atmospheric stability. Another widely used stability 
parameter, the gradient Richardson number, is computed as ��� = �2

�2  . The dissipation rate for turbulence 

kinetic energy ϵ is obtained from its relation with the second-order structure function S2(r) as 𝐴𝐴 𝐴𝐴2(𝑟𝑟) = 2.13𝜖𝜖

2

3 𝑟𝑟

2

3 

(Kolmogorov, 1941), where 𝐴𝐴 𝐴𝐴2(𝑟𝑟) =

(

𝑢𝑢

(

𝑡𝑡 +
𝑟𝑟

𝑈𝑈

)

− 𝑢𝑢(𝑡𝑡)

)2

 with t the time and r the separation scale following 

Taylor's frozen eddy hypothesis.
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The streamwise and vertical turbulence integral length scales are obtained by fitting exponential functions to the 
autocorrelation as (Salesky et al., 2013):

𝑅𝑅𝑢𝑢𝑢𝑢(∆𝑥𝑥𝑥 0) = exp

(

−
|∆𝑥𝑥|

𝐿𝐿ℎ

)

,� (1)

𝑅𝑅𝑤𝑤𝑤𝑤(0,∆𝑧𝑧) = exp

(

−
|∆𝑧𝑧|

𝐿𝐿𝑣𝑣

)

,� (2)

where Ruu(∆x,0) and Rww(0,∆z) denote the streamwise and vertical autocorrelation which are calculated as 
𝐴𝐴 𝐴𝐴𝛼𝛼𝛼𝛼(Δ𝑥𝑥𝑥Δ𝑧𝑧) =

𝛼𝛼′(𝑥𝑥+Δ𝑥𝑥𝑥𝑥𝑥+Δ𝑧𝑧)𝛼𝛼′(𝑥𝑥𝑥𝑥𝑥)
√

𝛼𝛼′(𝑥𝑥+Δ𝑥𝑥𝑥𝑥𝑥+Δ𝑧𝑧)
2

√

𝛼𝛼′(𝑥𝑥𝑥𝑥𝑥)
2

 with α denoting u and w, ∆x, and ∆z denote the streamwise and verti-

cal spatial lags, and 𝐴𝐴 𝐴𝐴ℎ and 𝐴𝐴 𝐴𝐴𝑣𝑣 denote the streamwise and vertical integral length scales (Li,  2020; Salesky 
et al., 2013). An example of deriving 𝐴𝐴 𝐴𝐴𝑣𝑣 through fitting is given in Figure S1 in Supporting Information S1. It can 
be seen that the fitting method is reasonable for all reference heights except the lowest one (5 m), and thus the 
calculated 𝐴𝐴 𝐴𝐴𝑣𝑣 at 5 m is discarded.

The horizontal Froude number is defined as 𝐴𝐴 𝐴𝐴ℎ =

𝜎𝜎𝑢𝑢

𝑁𝑁𝑁𝑁ℎ

 , where σu is the standard deviation of streamwise velocity. 
The buoyancy length scale is defined as 𝐴𝐴 𝐴𝐴𝑏𝑏 =

𝜎𝜎𝑢𝑢

𝑁𝑁
 , which represents the vertical displacement of a fluid parcel if 

all its kinetic energy were converted to potential energy (Billant & Chomaz, 2000b). In this sense, the horizontal 
Froude number can be regarded as the ratio of the buoyancy length scale to the streamwise turbulence integral 
length scale. Similarly, the vertical Froude number can be defined as 𝐴𝐴 𝐴𝐴𝑣𝑣 =

𝜎𝜎𝑢𝑢

𝑁𝑁𝑁𝑁𝑣𝑣

 , which represents the ratio of 
the buoyancy length scale to the vertical turbulence integral length scale. Note that the vertical Froude number 
is still defined with σu, not the standard deviation of vertical velocity (σw). This is a major difference between 
our work and the study by Peltola et al. (2021). We choose σu as again 𝐴𝐴

𝜎𝜎𝑢𝑢

𝑁𝑁
 represents the vertical displacement 

of a fluid parcel if all its kinetic energy were converted to potential energy (Billant & Chomaz, 2000b; Riley & 
Lindborg, 2008) while 𝐴𝐴

𝜎𝜎𝑤𝑤

𝑁𝑁
 only represents the vertical displacement of a fluid parcel within the buoyancy time 

scale.

3.  Theory
Our starting point of characterizing the transition is to assume that the turbulence regime transition concurs 
with the development of quasi two-dimensional pancake vortices, which provides a constraint on the verti-
cal length scale of turbulence. Vortex instability (Herring & Métais,  1989) in stably stratified fluid has 
been investigated by setting long vertical columnar vortex pair experimentally and numerically (Billant & 
Chomaz,  2000a,  2000b,  2000c; Leweke & Williamson,  1998). For weak stratification, the elliptic instability 
prevails by the gradual bending of each vortex core in the opposite direction to the vortex periphery. As strat-
ification becomes stronger, the zigzag instability plays an increasingly important role. The vortex pair twists 
with almost no change of the dipole's cross-sectional structure and is ultimately sliced into thin horizontal layers 
of independent pancake dipoles. Under such conditions, turbulence behaves as quasi two-dimensional pancake 
vortices. However, we  note that the dynamics of these pancake vortices remain closer to three-dimensional turbu-
lence rather than exact two-dimensional turbulence (Sozza et al., 2015).

Since the shape of pancake vortices is buoyancy driven, the horizontal Froude number, as a stability parame-
ter for assessing buoyancy effects, is often used to describe the development and evolution of pancake vorti-
ces with stratification (Mater & Venayagamoorthy,  2014a,  2014b). Further analysis showed that the typical 
thickness of pancake layers scales with the buoyancy scale (Billant & Chomaz, 2001; Lindborg, 2006; Riley & 
Lindborg, 2008). Thus, we expect Fv approaches unity at the transition (i.e., Fvc = 1 where the subscript c indicates 
critical) with the development of pancake vortices. However, it is much difficult to compute Fv as it requires ultra-
sonic measurements at multiple heights and data fitting across heights (Figure S1 in Supporting Information S1). 
In contrast, the horizontal Froude number Fh only requires ultrasonic measurements at a single height. Therefore, 
for practical purposes, it is better to formulate the transition in terms of Fh instead of Fv.

Building on this thinking, our model starts in the weak stratification and then identify the transition (i.e., a critical 
Fh value) by introducing the constraint of Fvc = 1 at the transition. By starting from weak stratification, many 
assumptions in our theoretical model should still be applicable. Essentially, we aim to derive a relation between  
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Fh and Fv, which requires to derive a relation between Lh and Lv. This is accomplished by using a simplified spec-
tral model introduced below.

While the Kolmogorov −5/3 power law scaling for isotropic turbulence ends at the Ozmidov scale that indicates 
the largest scale of isotropic turbulence (Li et al., 2016), Lindborg (2006) reported that a new −5/3 power law scal-
ing holds for anisotropic turbulence bounded in pancake layers. The new −5/3 power law scaling in this so-called 
buoyancy subrange has received some support from atmospheric surface layer studies (Cheng et al., 2020), but the 
mechanism for the new −5/3 power law scaling differs from that in isotropic turbulence. Energy is first transferred 
directly from the large scales to the Ozmidov scale by the zigzag instability and Kelvin–Helmholtz instability, and 
then transferred to the Kolmogorov scale by the traditional energy cascade process described by the Kolmogorov 
theory (Deloncle et  al.,  2008). Given these results, we assume the −5/3 power law scaling extends from the 
integral length scale to the inertial subrange of isotropic turbulence. To facilitate analytical treatment, we further 
ignore the spectral drop in the dissipation range. This is justified given that the dissipation range contributes little 
to the total energy (variance). At the low frequency end, we assume that the spectra flatten once the scale becomes 
larger than the integral length scale. Although the −1 power law scaling is often observed in neutral conditions 
for the streamwise velocity spectrum (Calaf et al., 2013; Drobinski et al., 2004; Katul et al., 1995, 1996, 2012; 
Marusic & Monty, 2019), previous studies also showed that such a −1 power law scaling ceases to exist under 
moderately stable stratification (Krug et al., 2019). To support this argument, the streamwise and vertical velocity 
spectra are computed from the CASES-99 data and are shown in Figure S2 in Supporting Information S1. Clearly, 
the low frequency components of both streamwise and vertical velocity spectra are closer to a zero power law 
scaling than a −1 power law scaling. Therefore, the streamwise and vertical velocity spectra are described as

𝐸𝐸𝑢𝑢(𝑘𝑘) =

⎧

⎪

⎨

⎪

⎩

𝐶𝐶𝑢𝑢𝜖𝜖

2

3𝐿𝐿ℎ

5

3 , if 𝑘𝑘 ≤
1

𝐿𝐿ℎ

𝐶𝐶𝑢𝑢𝜖𝜖

2

3 𝑘𝑘
−
5

3 , if 𝑘𝑘 𝑘
1

𝐿𝐿ℎ

� (3)

𝐸𝐸𝑤𝑤(𝑘𝑘) =

⎧

⎪

⎨

⎪

⎩

𝐶𝐶𝑤𝑤𝜖𝜖

2

3𝐿𝐿𝑣𝑣

5

3 , if 𝑘𝑘 ≤
1

𝐿𝐿𝑣𝑣

𝐶𝐶𝑤𝑤𝜖𝜖

2

3 𝑘𝑘
−
5

3 , if 𝑘𝑘 𝑘
1

𝐿𝐿𝑣𝑣

� (4)

where Eu(k) and Ew(k) denote the streamwise and vertical velocity spectrum respectively, 𝐴𝐴 𝐴𝐴𝑢𝑢 =
18

55
× 1.5 and 

𝐴𝐴 𝐴𝐴𝑤𝑤 =
24

55
× 1.5 are the Kolmogorov spectral constants for one-dimensional velocity spectrum, and k denotes the 

one-dimensional wavenumber. Integrating Equations 3 and 4 within 0 < k < ∞ yield

𝜎𝜎
2

𝑢𝑢 = 2.5𝐶𝐶𝑢𝑢𝜖𝜖

2

3𝐿𝐿ℎ

2

3 ,
� (5)

𝜎𝜎
2

𝑤𝑤 = 2.5𝐶𝐶𝑤𝑤𝜖𝜖

2

3𝐿𝐿𝑣𝑣

2

3 .� (6)

Invoking the definitions for Fh and Fv gives

(

𝐹𝐹ℎ

𝐹𝐹𝑣𝑣

)

2

3

=

𝐶𝐶𝑢𝑢

𝐶𝐶𝑤𝑤

𝜎𝜎
2

𝑤𝑤

𝜎𝜎
2

𝑢𝑢

.� (7)

To close Equation 7, we need to further examine the relation between 𝐴𝐴 𝐴𝐴
2

𝑢𝑢 and 𝐴𝐴 𝐴𝐴
2

𝑤𝑤 .

It was suggested that turbulence kinetic energy (TKE) and 𝐴𝐴 𝐴𝐴
2

𝑢𝑢 is at a balance as 𝐴𝐴 TKE =
1

2

(

𝜎𝜎
2

𝑢𝑢 + 𝜎𝜎
2

𝑣𝑣 + 𝜎𝜎
2

𝑤𝑤

)

≈ 𝜎𝜎
2

𝑢𝑢 
(Banerjee et al., 2016) when turbulence is separated from gravity waves. Namely,

𝜎𝜎
2

𝑢𝑢 ≈ 𝜎𝜎
2

𝑣𝑣 + 𝜎𝜎
2

𝑤𝑤,� (8)

where σv indicates the standard deviation of velocity in the spanwise direction. The 1:1 comparison between 𝐴𝐴 𝐴𝐴
2

𝑢𝑢 
and 𝐴𝐴 𝐴𝐴

2

𝑣𝑣 + 𝜎𝜎
2

𝑤𝑤 is shown in Figure S3 in Supporting Information S1 to support Equation 8. The standard deviation 
of spanwise velocity in Equation 8 can be closed by the spanwise velocity variance budget for stationary and 
horizontally homogeneous surface layer flows which reads
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𝜖𝜖𝑣𝑣 =
𝑃𝑃 ′

𝜌𝜌

(

𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕

)

,� (9)

where ϵv denotes the TKE dissipation rate in the spanwise direction, P denotes 
the pressure, and ρ denotes the air density. Vertical transport term is neglected 
because the magnitude of this term is small compared with other terms under 
mild to moderate stratification (e.g., Li et al., 2016). The term on the left-hand 
side of Equation 9 can be estimated as 𝐴𝐴

1

3

𝜖𝜖 because small-scale energy dissipa-
tion is isotropic (Lindborg, 2006). The term on the right-hand side of Equa-
tion 9 is the correlation between pressure fluctuations and velocity shears that 
describe how TKE is redistributed by pressure perturbations. Traditionally, 
Rotta's return-to-isotropy hypothesis (Rotta, 1951) is used to parameterize this 
pressure correlation term in atmospheric boundary layer modeling (e.g., Katul 
et al., 2014; Zilitinkevich et al., 2007), which is expressed as (Pope, 2000):

2
𝑃𝑃 ′

𝜌𝜌

(

𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕

)

= −
𝐶𝐶𝑟𝑟

𝜏𝜏

(

𝜎𝜎
2

𝑣𝑣 −
2

3
TKE

)

,� (10)

where Cr = 1.8 is the Rotta constant and τ is a relaxation time scale repre-
senting how fast TKE is dissipated. Here we formulate 𝐴𝐴 𝐴𝐴 =

𝜎𝜎
2

𝑣𝑣

2𝜖𝜖𝑣𝑣

 to focus on the 
spanwise TKE content relative to its dissipation rate. Equations 9 and 10 give 
the form of 𝐴𝐴 𝐴𝐴

2

𝑣𝑣 as:

𝜎𝜎
2

𝑣𝑣 =

2

3

𝐶𝐶𝑟𝑟

𝐶𝐶𝑟𝑟 + 1

𝜎𝜎
2

𝑢𝑢 .� (11)

Then, by substituting Equations 8 and 11 into Equation 7, the sought relation can be derived:

�ℎ = ��

(

��

��

�� + 3
3�� + 3

)

3
2
.� (12)

At the transition, 𝐴𝐴 𝐴𝐴𝑣𝑣𝑣𝑣 = 1 , corresponding to a critical horizontal Froude number

𝐹𝐹ℎ𝑐𝑐 = 0.28.� (13)

4.  Results
Using the CASES-99 data, Fv is shown as a function of Fh in Figure 1. As one can see, Equation 12 is in good 
agreement with observations in weak stratification, supporting our theory. Note that a decrease in Fh, which 
corresponds to moving toward the right of Figure  1, indicates an increase in the stable stratification. When 
Fh < Fhc, the calculated Fv from Equation 12 deviates from the observed Fv, which remains around unit. This is 
consistent with the key assumption invoked in our model, namely, the transition concurs with the development of 
pancake vortices in the stable atmospheric boundary layers. The mean deviation of the observed Fv when Fh > Fhc 
is 0.35, implying that the uncertainties introduced by calculation of the potential temperature gradient and estima-
tion of the Lv have a relatively small impact on the results. To exclude the potential impact of self-correlation on 
Figure 1, the relations between Lv, Lb, and Lh are shown in Figure S4 in Supporting Information S1. It can be seen 
that when Fh > Fhc, the relationship between Lv and Lh is reasonably described by Equation 12. When Fh < Fhc, Lv 
is no longer correlated with Lh and instead becomes equal to Lb. In short, the observation evidence supports the 
use of a critical horizontal Froude number Fhc = 0.28 to indicate the development of pancake vortices in stable 
atmospheric boundary layers.

Following Sun et al. (2016), the HOST patterns are shown in Figure 2a. The magnitude of u* is around 0.15 m s −1 
or less in the weak turbulence regime and is above 0.15 m s −1 in the moderate turbulence regime. In this plot, the 
mean wind speed threshold used to separate the two turbulence regimes is height dependent. It is also site depend-
ent as shown in other work (Mahrt et al., 2015; Van de Wiel et al., 2012). In contrast, when the u* is plotted against 
Fh in Figure 2b, the critical horizontal Froude number Fhc = 0.28 well separates the two turbulence regimes. More 

Figure 1.  The relation between vertical Froude number Fv and horizontal 
Froude number Fh. The red dots and vertical bars refer to the median values 
and corresponding standard deviations in Fh bins, respectively. Each bin has 
a logarithmically equal width of 0.2. The blue solid line denotes Equation 12. 
The horizontal and vertical black dashed lines indicate the unit Fv and the 
critical horizontal Froude number Fhc = 0.28, respectively. Note that x-axis is 
reversed so that moving toward the right of this figure indicates an increase in 
the stable stratification.
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importantly, no height dependence is found. In this sense, Fhc is a better, non-dimensional threshold separating 
the two turbulent regimes.

One might be tempted to characterize the transition using traditionally defined stability parameters such as z/L 
and Rig. In the context of HOST patterns, Figures 2c and 2d shows that neither z/L nor Rig is a good indicator 
given the large scatter. However, it is insightful to estimate the critical values of z/L and Rig corresponding to Fhc 
as z/L and Rig are widely utilized in operational stable boundary layer parameterizations. To do so, all z/L and 
Rig data points in the interval 0.26 < Fh < 0.3 are considered, which give a mean value of 2.15 ± 0.39 for z/L (± 
refers to the 95% confidence interval) and a mean value of 0.241 ± 0.026 for Rig. Note that we do not observe 
strong variations of these values using other Fh intervals such as 0.27–0.29 or 0.25–0.31. These values, shown in 
Figures 2c and 2d, are consistent with those used in the literature (Galperin et al., 2007; Grachev et al., 2013; Li 
et al., 2015; Mahrt et al., 1998; Miles, 1961; Sorbjan, 2010; Stull, 1988; Sun et al., 2016).

Our results may shed some insights into the meaning of critical Richardson numbers often quoted in the literature. 
Miles (1961) reported that wave-like perturbations are dynamically stable when the flow is characterized by a 
linearized Euler equation and when Rig exceeds some critical value. While this seemingly suggests that stable 
boundary layer flows would laminarize when Rig exceeds some critical value, this association of critical Rig with 
flow laminarization has been questioned (Galperin et al., 2007; Katul et al., 2014; Li et al., 2015; Zilitinkevich 
et al., 2007, 2013), namely, a critical Rig associated with flow laminarization is not supported by observational 
and modeling evidence. Nonetheless, many studies did report a maximum (sometimes also called critical but is 
called maximum in our study to avoid confusion) flux Richardson number (Rif) that indicates substantial changes 
in flow behaviors. When the atmospheric stability is weak (e.g., when the Rig is small), Rif increases nearly 
linearly with Rig. As the atmospheric stability becomes stronger, especially when the Rig exceeds a value of about 
0.2–0.25 (consistent with the values shown in Figure 2b), the Rif no longer increases (or a maximum value for Rif 
is attained). Previous studies have provided important theoretical insights into the meaning of this maximum Rif. 
Using a reduced model based on the return to isotropy concept, Bou-Zeid et al. (2018) showed that the maximum 
Rif is reached with zero vertical turbulent fluctuations (σw = 0). Differently, Katul et al. (2014) and follow-up 

Figure 2.  Relations between the friction velocity u* and (a) the mean wind speed U, (b) the horizontal Froude number Fh, 
(c) z/L, and (d) the gradient Richardson number Rig. Data points are medians in mean wind speed bins, which are the same as 
those shown in (a). The black dashed lines indicate critical values of (b) Fh, (c) z/L, and (d) Rig. Blue and red dashed lines in 
(c, d) indicate the upper and lower limits of the critical values at the 95% confidence, respectively.
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studies by Li et  al.  (2015) and Li  (2019) interpreted the maximum Rif as 
the threshold beyond which the Kolmogorov scaling is no longer a distinct 
feature for turbulent velocity and temperature spectra, which is consistent 
with observational data presented in Grachev et al. (2013).

In this regard, our results have three important implications. First, our results 
imply that the turbulent flow in stable boundary layers does not become lami-
nar under strong stratification when Rig exceeds 0.2–0.25 (see Figure 2d). 
Instead, the flow transitions to a weak turbulence regime characterized by 
pancake vortices, which provide a finite amount of turbulent mixing. Second, 
our model differs from that of Bou-Zeid et  al.  (2018) in that our model 
considers the structural characteristics of turbulence eddies and the transition 
identified by our model does not correspond to zero vertical turbulent fluctu-
ations (i.e., two-dimensional turbulence). Previous studies have demonstrated 
that stably stratified turbulence still has a forward energy cascade, rather than 
an inverse energy cascade (Gucci et al., 2023; Sozza et al., 2015). Thus, it is 
important to recognize that although pancake vortices “look like” two dimen-
sional, their dynamics remain three dimensional. Third, our model shares 
similarity with that of Katul et al. (2014) in that the spectra of horizontal and 
vertical velocity follow the Kolmogorov scaling at high wavenumber (Equa-
tions 3 and 4). The fact that our model results deviate from observational 
data when 𝐴𝐴 𝐴𝐴ℎ < 𝐹𝐹ℎ𝑐𝑐 (Figure  1) suggests that 𝐴𝐴 𝐴𝐴ℎ = 𝐹𝐹ℎ𝑐𝑐 is the point beyond 
which some key assumptions of our model break down. For example, veloc-
ity spectra in buoyancy subrange may differ from those described by Equa-
tions  3 and  4 when Fh  <  Fhc, as Kelvin–Helmholtz instabilities generated 
within pancake layers (Deloncle et al., 2008) can lead to the emergence of 
internal gravity waves. In this sense, Fhc has similarities with the maximum 
Rif suggested by Katul et al. (2014). However, we should emphasize that our 

model is formulated based on the horizontal Froude number while the model of Katul et al.  (2014) yields an 
outcome regarding the flux Richardson number. Future work examining the connection between the critical hori-
zontal Froude number, the maximum flux Richardson number, and internal gravity waves is welcome.

Lastly, we demonstrate that the mean wind speed threshold proposed by Sun et al. (2012) can be recovered from 
our theory. To do so we employ the stability-corrected logarithmic wind profile, which reads

𝑈𝑈𝑠𝑠 =
𝑢𝑢∗𝑠𝑠

𝜅𝜅

(

ln

(

𝑧𝑧

𝑧𝑧0

)

+ 𝑎𝑎𝑚𝑚
𝑧𝑧

𝐿𝐿𝑠𝑠

)

,� (14)

where the subscript s for u* and L indicates the transition at Fhc = 0.28 (in practice the results at Fhc = 0.28 are 
approximately estimated by the averages over the range 0.26 < Fh < 0.3 to reduce uncertainty), am = 5 is a constant, 
and z0 is the roughness length which is taken to be 0.03 m following Van de Wiel et al. (2003). A comparison 
between the calculated Us and the mean wind speed threshold identified by Sun et al. (2012) (denoted observed 
Us) is shown in Figure 3, with an average difference of the two profiles less than 0.5 m s −1. In Equation 14, we 
assume u*s and Ls to be height-independent, although in reality, u*s and Ls are slightly height-dependent, which 
may contribute to the slight underestimation of Us below z = 30 m.

5.  Conclusions and Discussion
The transition from moderate to weak turbulence regimes remains a challenge for stable boundary layer param-
eterizations in numerical weather and climate models. In this study, we propose a non-dimensional index for 
characterizing such transitions by invoking the development and evolution of pancake vortices. The length scale 
constraint of pancake vortices is introduced into a theoretical model, and the results show that a critical horizontal 
Froude number Fhc = 0.28 is capable to characterize the transition of turbulence regimes, which is supported by 
the CASES-99 data set. The critical values of z/L and Rig corresponding to Fhc are also estimated in this study; 
the mean values with 95% confidence intervals are 2.15 ± 0.39 for z/L and 0.241 ± 0.026 for Rig, respectively. 
While a z-dependent mean wind speed threshold was utilized to identify the transition in previous studies (Sun 

Figure 3.  The vertical profiles of calculated Us (blue line) by Equation 14. 
The red dots indicate observed Us in Sun et al. (2012). The shading indicates 
95% confidence intervals for the calculated Us.

 19448007, 2023, 18, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
105304 by B

oston U
niversity, W

iley O
nline L

ibrary on [19/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

SHAO ET AL.

10.1029/2023GL105304

8 of 10

et al., 2012), we find that the mean wind speed threshold can be recovered from Fhc through the stability-corrected 
logarithmic wind profile.

The findings in this study have broad implications. For instance, Sandu et al. (2013) reported that the representa-
tion of stably stratified turbulence in numerical weather prediction models remains a challenge, especially for 
the weak turbulence regime. Ren et al. (2022) documented that the rapid accumulation of pollutants is related to 
weak turbulence during heavy haze. The knowledge of the transition of turbulence regimes can be directly used 
to constrain the validity range of Monin-Obukhov similarity theory in numerical simulations for weather and 
pollutants dispersion. Although numerical models do not directly provide values of Lh, Lh can be linked to σu and 
ϵ through Equation 5, which are available in some turbulence parameterizations (Zilitinkevich et al., 2007, 2013). 
But future work needs to address how pancake vortices affect turbulent mixing efficiency and how to parameter-
ize such mixing processes in numerical models. How pancake vortices differ from two-dimensional turbulence 
also needs to be studied. Moreover, the applicability of Fhc over mountainous regions requires further inves-
tigations because large-scale internal gravity waves induced by topography can transfer energy to turbulence 
(Sun et al., 2015). This process can potentially disturb the slicing process by zigzag instability due to enhanced 
connection between adjacent layers.

Data Availability Statement
The CASES-99 data set used in this study for turbulence variable calculation can be downloaded at https://www.
eol.ucar.edu/content/integrated-surface-flux-facility-during-cases99. The code for turbulence variables calcula-
tions in this study is available at https://github.com/ShaoXin123/SBL_TurbulenceTransition.
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