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Characterizing uncertainty in 
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Dan Li4, Chris R. Vernon   1, Casey D. Burleyson   1 & Jennie S. Rice   1

Land surface models such as the Community Land Model Version 5 (CLM5) are essential tools for 
simulating the behavior of the terrestrial system. Despite the extensive application of CLM5, limited 
attention has been paid to the underlying uncertainties associated with its hydrological parameters 
and how these uncertainties affect water resource applications. To address this long-standing issue, 
we use five meteorological datasets to conduct a comprehensive hydrological parameter uncertainty 
characterization of CLM5 over the hydroclimatic gradients of the conterminous United States. Key 
datasets produced from the uncertainty characterization experiment include: a benchmark dataset 
of CLM5 default hydrological performance, parameter sensitivities for 28 hydrological metrics, and 
large-ensemble outputs for CLM5 hydrological predictions. The presented datasets will assist CLM5 
calibration and support broad applications, such as evaluating drought and flood vulnerabilities. 
The datasets can be used to identify the hydroclimatological conditions under which parametric 
uncertainties demonstrate substantial effects on hydrological predictions and clarify where further 
investigations are needed to understand how hydrological prediction uncertainties interact with other 
Earth system processes.

Background & Summary
The seasonal variability of streamflow has led civilization to rely on built infrastructure, such as levees and 
dams, for flood control, water supply, crop production, and clean electricity1–4. With extreme events increasing 
under a changing climate, reliable hydrological predictions are key to improving strategic planning and the 
operation of water infrastructure5–10. Large-scale land surface models (LSMs) have long been essential tools for 
predicting future hydrology. LSMs are used in Earth-system model frameworks to link land surface processes 
with other, interacting processes to predict the impacts of a changing climate and evolving human systems11–14. 
Here we focus on one of the most dominantly used LSMs, the latest version of the Community Land Model 
(CLM), CLM515. CLM5 is the land component of the Community Earth System Model, the Euro-Mediterranean 
Center on Climate Change coupled Earth System model16, and the Norwegian Earth System Model17. Because 
of the structural complexity and computationally expensive nature of CLM5, limited attention has been given 
to addressing uncertainties in its default hydrological parameters and how these uncertainties might impact 
hydrological predictions and subsequent decision-making18–20.

In practice, CLM5 users typically adopt the default parameter values provided by developers. These values 
are estimated based on limited/empirical data or calibrated deterministic values reported in the literature for a 
limited number of basins21. Moreover, prior hydrological calibration efforts for LSMs frequently only use one 
error metric (e.g., Nash-Sutcliffe Efficiency [NSE])21–23, which narrows their focus to one aspect of the flow dura-
tion curve (i.e., high flows) and can lead to significant inadvertent biases in hydrological predictions. Neglecting 
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parameter uncertainties also can lead to biased decision-making. For example, ignoring parameter uncertainty 
in riverine flood prediction biases homeowners’ house-elevation decisions results, potentially resulting in higher 
projected economic costs24. Ignoring parameter uncertainty in crop yield projection under climate change biases 
crop insurance policies25. As a result, uncertainty characterization (UC) of hydrological parameters in LSM 
predictions is critical to informing how model parameterization influences model outcomes and applications26. 
For this work, we define UC as “model evaluation under alternative hydrological parameterization hypotheses to 
explore their implications for model output uncertainty”27.

To support the broad adoption of UC in CLM5 applications, we developed benchmark CLM5 hydrological 
datasets based on extensive UC of CLM5 hydrological parameters for 464 basins that are part of the Catchment 
Attributes and Meteorology for Large-sample Studies (CAMELS)28,29 basins over the conterminous United States 
(CONUS). The original CAMELS data set includes 671 headwater-type basins with minimal human influence 
across the CONUS. CAMELS provides basin area information from two different sources: the national geo-
spatial fabric polygon30 and the United States Geological Survey Geospatial Attributes of Gages for Evaluating 
Streamflow version II database31. Following the recommendation of Addor, et al.28 not to use basins with large 
area discrepancies between the two sources, we identified 464 out of the 671 basins with a basin area relative 
difference of less than 2% as suitable for CLM5 evaluation.

Five common meteorological forcing datasets are also used to characterize the forcing data selection effects. 
As shown in Fig. 1, the datasets consist of three parts for each meteorological data type:

	 1.	 Performance of CLM5 default hydrological parameters on hydrological predictions using 28 error metrics 
that capture different flow regimes, evapotranspiration (ET) regimes, and extreme conditions.

	 2.	 Large-ensemble (~1,300) hydrological CLM5 outputs that account for hydrological parameter uncertain-
ties at each basin.

	 3.	 Site-level and regional hydrological parameter sensitivity analysis results that clarify the parametric con-
trols for CLM5 hydrological predictability for 28 error metrics.

The 28 error metrics provide a diagnostic evaluation of how closely the model simulates watershed behavior 
and support the application of CLM5 in a wide range of studies such as flood and drought prediction, reservoir 
operation and management, hydrological prediction under anthropogenic influence, etc. For instance, reservoir 
modelers prioritize capturing monthly flows and annual water balances, while ecosystem modelers generally 
emphasize the importance of predictions pertaining to seasonal low flow or general low flow regimes. In the 
error metrics dataset, users can select the metric of interest or a weighted multi-objective metric depending on 
the application.

Although the datasets are generated at gauged CAMELS basins, the full set of 464 basins are clustered to 
facilitate regional-scale analysis and extend the results to ungauged basins/grid cells over the CONUS. These 
datasets intend to offer guidance for future CLM5 hydrological applications, including parameter calibration, 
by reducing parameter dimensionality, identifying the behavioral values of sensitive parameters, characterizing 
forcing selection effects, and diagnosing potentially inadequate model structure and parameterization.

Methods
CLM5 configuration data.  Observational datasets used for CLM5 UC include unregulated daily flow 
observations for 1980–2014 from the CAMELS dataset, which consists of headwater-type basins with minimal 
human impacts over the CONUS (Fig. 2a). Monthly ET data at 0.05° grid cell are acquired from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) products32. The basins range in size from about 4 to 25,791 km2, 
with a median basin size of about 436 km2. The basin mean elevations range from about 15 m in the Delaware to 
3,529 m in the Southern Rocky Mountains, with a median elevation of 458 m.

The five common gridded meteorological forcing datasets include data from Phase 2 of the North American 
Land Data Assimilation System (NLDAS-2)33, Parameter-elevation Regressions on Independent Slopes Model 
(PRISM)34, Daymet35, Livneh36, and dynamically downscaled European Centre for Medium-Range Weather 
Forecasts Reanalysis v537 using the Weather Research and Forecasting (WRF-ERA5) model38.

Both NLDAS-2 and WRF-ERA5 include hourly precipitation, air temperature, wind speed, surface pressure, 
specific humidity, and shortwave and longwave radiation data at a 1/8° grid cell over the CONUS. The Livneh 
data provide daily precipitation, maximum and minimum temperature, and wind speed information at a 1/16° 
grid cell over the CONUS. Livneh wind speed data are acquired from the National Centers for Enviromental 
Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis39. PRISM and Daymet data 
provide daily precipitation as well as maximum and minimum temperature information at 4 km and 1 km grid 
cells over the CONUS, respectively. We use the Mountain Micro Climate Simulator algorithm40 to disaggregate 
daily Livneh, PRISM, and Daymet data into an hourly scale and generate surface pressure, specific humidity, and 
shortwave and longwave radiation data. Because wind speed data are not provided in PRISM and Daymet data, 
wind speed is taken from the NLDAS-2 data. The NLDAS-2 data are based on the North American Regional 
Reanalysis41, a major improvement over the earlier NCEP-NCAR reanalysis. All temporal disaggregation is done 
using the open source Python package MetSim42.

The land surface data including land unit type, soil properties, and plant functional type are acquired from 
the CLM5 input dataset for the CLM5 configuration setting at a 1/8° grid cell over CONUS13. The CLM5 land 
surface data are derived from a variety of sources such as the Moderate Resolution Imaging Spectroradiometer 
(MODIS) Vegetation Continuous Fields product, the Global Land One-km Base Elevation Project, and the 
International Geosphere-Biosphere Programme, among others15. In addition to the CLM5 land surface data, we 
also include the 1-km grid cell baseflow index43 (upscaled to 1/8° grid cell) over the CONUS for basin clustering. 
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At each CAMELS basin, we estimate the basin mean meteorological forcing, ET, land surface data, and baseflow 
index from the overlapped grid cells using the area-weighted average method.

Basin clustering.  A total of 22 physical features are selected for each CAMELS basin for clustering 
(Supplementary Table 1). We classify the 22 features into five categories (topography, land use, soil properties, 
climate, and other) depending on their function44. Several features within each category are highly correlated (i.e., 
pairs of features that exhibit a Pearson correlation coefficient >0.7). We remove these redundant features and 
select one representative feature from each correlated group, adding them to independent features that are not 
strongly correlated with any others. For example, ELEV and STD_ELEV in the “Topography” category are highly 
correlated, so only ELEV is used in the clustering. SOIL_COLOR is not strongly correlated with other features 
within the “Soil” category, but is strongly correlated with SLOPE in the “Topography” category. Thus, we did not 
keep SOIL_COLOR in the clustering analysis. We used a final total of 17 features in the clustering. Note that we 
do not include streamflow as a clustering criterion. This will allow the clustering analysis to be applied areas of 

Fig. 1  A schematic view of the CLM5 benchmark hydrological datasets. In step 2, about 1,300 ensemble 
parameter sets are generated using a Latin Hypercube Sampling method to produce about 1,300 ensemble time 
series and error metrics. The same ensemble parameters and error metrics are used in step 3 to generate at-site 
and regional parameter sensitivity scores as well as behavioral sensitive parameters.

https://doi.org/10.1038/s41597-023-02049-7


4Scientific Data |          (2023) 10:187  | https://doi.org/10.1038/s41597-023-02049-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

the CONUS where no flow records are available. We use the k-means++ clustering45,46 with the bootstrapping 
method to find a stable and reproducible clustering system.

Multiple clusters (cluster size 3 to 10) are tested in the clustering process to identify the optimal number of 
clusters. First, we randomly partition 90% of the 464 basins as training sets and leave the remaining 10% as vali-
dation sets for each cluster number. We then bootstrap 70% of the training sets 40 times and build 40 clustering 
models. Finally, we classify the validation sets and select the cluster number with highest reproducibility based 
on four cluster similarity indices: (1) the Rand Index47, (2) the Adjusted Rand Index48, (3) the Jaccard Index49, 
and (4) the Fowlkes–Mallows Index50. Our results suggest that a cluster size of seven has the highest similarity 
measures for all four indices. Therefore, we use seven clusters for regional analysis (Fig. 2a). Figure 2b shows the 
50,629 1/8° grid cells over the CONUS grouped into 7 corresponding clusters.

Fig. 2  (a) The 464 CAMELS basins and seven clusters defined by the reproducible k-means++ algorithm. 
(b) CONUS 1/8° grid cells placed into the same seven clusters. White areas indicate that lakes and wetland are 
removed in clustering.
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CLM5 hydrological parameters.  We used the CLM5 Perturbed Parameter Ensembles version, 
recently developed at NCAR51, to perform land surface simulations and produce hydrological datasets. The 
CLM5-Perturbed Parameter Ensembles configuration allows users to perturb default parameter values. For spa-
tially distributed parameters such as soil porosity and hydraulic conductivity, spatially uniform scaling factors are 
introduced to preserve the underlying structure. Parameters related to hydrological processes in CLM5 can be 
classified into six groups: (1) canopy water, (2) surface water, (3) soil water, (4) subsurface water, (5) snow, and (6) 
evaporation. In this study, we include parameters that cover all six groups in an attempt to gain a comprehensive 
understanding of the role of CLM5 hydrological parameters in hydrological predictions. Based on previous stud-
ies18–20 and discussions with CLM5 core developers (i.e., the co-authors D. Kennedy and S. Swenson), we iden-
tified 15 hydrological parameters that likely have dominant impacts on the simulation of surface and subsurface 
runoff, evaporation, canopy water, snow, and soil moisture. Table 1 shows the default parameter values and their 
prior ranges based on the expert judgement of CLM5 developers.

Ensemble simulation and sensitivity analysis.  CLM5 is configured for each basin for ensemble sim-
ulation. For each basin, we sample 1,500 parameter sets from their uniform prior distributions using the Latin 
Hypercube Sampling (LHS) method52, which can effectively sample full parameter ranges by dividing the param-
eter space evenly for representative sample draws. This results in a total of 1,500 × 464 × 5 = 3,480,000 CLM5 
simulations. For the default and each ensemble parameter set, we run CLM5 in the satellite phenology mode for 
2005–2014. This 10-year simulation period represents the CONUS flooding climatology53 and contains extreme 
hydrological events, which are important for characterizing CLM5 predictability and uncertainty in simulating 
extreme events. These events include major flooding and droughts such as the 2005 Pacific Northwest drought, 
the 2012 central Great Plains drought, and the 2012–2016 California exceptional drought. Before the 10-year 
simulation, each CLM5 run was spun up for 25 years to equilibrate all states54. All simulations were performed on 
the National Energy Research Scientific Computing Center (NERSC) Cori high-performance computing (HPC) 
system.

Due to parameter interactions that may result in nonphysical states and failed runs, our goal was to obtain at 
least 1,000 successful CLM5 simulations for each of the 464 CAMELS basins for each forcing dataset. We found 
that about 10% of the 1,500 parameter sets failed to converge for several basins for each meteorological forcing, 
resulting in ~1,300 successful CLM5 runs in each basin for the parameter uncertainty characterization and sen-
sitivity analysis for each meteorological forcing. Investigating the runs that failed due to water balance error did 
not lead to any spatial or parameter-based patterns. All sampled parameters are within their physical ranges, but 
their complex interactions combined with local climates likely result in nonphysical simulated states and lead 
to failed runs. Different parameter sets failed in different basins and meteorological forcings, suggesting that 
parameter interactions vary with the basin and climate. Numerical experiments must be carefully designed to 
tease out the source of the error and relevant parameters for locations with different climate regimes. However, 
that work is beyond the scope of this study.

After producing the ensemble simulations, we use the Delta moment-independent sensitivity analysis method 
(Delta-MIM) to calculate the sensitivity score of the 15 hydrological parameters55,56. We selected Delta-MIM for 
this study because it does not require a specific sampling scheme and includes effects of high-order statistical 
moments in the response metrics of interest57. Delta-MIM exploits an empiric density-based measure that iden-
tifies the parameters that most influence the entire distribution of the response variable (i.e., it captures higher 
order interactive effects beyond mean and variance responses). For each parameter, the resulting Delta index 
measures the normalized expected shift in the distribution of the response variable induced by the parameter.

Name Parameter Definition (unit)
Relevant Hydrological 
Process

Default 
Value Prior Range

fff Decay factor for fractional saturated area (1/m) Surface runoff 0.5 [0.02, 5]

Nbf Drainage power exponent Subsurface runoff 1 [1, 2]

Kbf Scalar multiplier for base flow rate Subsurface runoff 0.01 [0.0005, 0.1]

Sy Minimum specific yield Subsurface runoff 0.02 [0.01, 0.02]

B Scalar multiplier for hydraulic conductivity power exponent Soil water 1 [0.8, 1.2]

ψsat Scalar multiplier for saturated soil matric potential Soil water 1 [0.1, 5]

ksat Scalar multiplier for saturated hydraulic conductivity Soil water 1 [0.1, 5]

Ѳsat Scalar multiplier for water content at saturation (porosity) Soil water 1 [0.8, 1.2]

Nmelt Parameter controlling shape of snow covered area Snow 200 [180, 220]

kacc Accumulation constant for fractional snow covered area Snow 0.1 [0.1, 0.4]

psno Maximum storage of snow on leaf surface (kg/m2) Canopy water 6 [1.4, 9.5]

plip Maximum storage of liquid water on leaf surface (kg/m2) Canopy water 0.1 [0.05, 2]

fwet Maximum fraction of leaf that may be wet prior to the occurrence of dripping Canopy water 0.05 [0.01, 0.5]

dmax Dry surface layer (DSL) parameter (mm) ET 15 [10, 60]

Ѳini Fraction of saturated soil for moisture value at which DSL initiates ET 0.8 [0.5, 1]

Table 1.  The 15 selected hydrological parameters, relevant processes, default values, and prior ranges.
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Diagnostic error metrics.  We include a total of 28 error metrics to comprehensively assess CLM5 per-
formance, uncertainty, hydrological parameter sensitivity to different flow regimes (e.g., high/low flows, water 
balance, etc.), and ET characteristics at different temporal scales (e.g., seasonal and annual). Table 2 presents these 
metrics. Their relevant scales and mathematical descriptions are provided in the Supplementary Information.

Data Records
The CLM5 hydrological datasets are publicly available in comma-separated value (.csv) and netcdf (.nc) formats 
and hosted in the MultiSector Dynamics – Living, Intuitive, Value-adding, Environment (MSD-LIVE) data 
repository58. Due to page limitation, Table 3 only provides an example of the data structures, data files, and var-
iables. Full data descriptions can be found in the README file in the repository.

Technical Validation
The accuracy and precision of the CLM5 ensemble streamflow simulations depend on partitioning the “behavio-
ral” and “nonbehavioral” parameter sets using streamflow measurements, which differ for each error metric and 
threshold value. Simulations that produce error metrics that fall within user-defined acceptable performance 
metric ranges are considered “behavioral”, while those that fall outside these ranges are “non-behavioral”. In the 
following discussion, we use CLM5 ensemble simulations driven by the NLDAS-2 meteorological forcing data 
as an example and perform similar analyses for the other meteorological forcing datasets. Figure 3 shows the 
spread of regional monthly runoff in 7 clusters using two different constraints to partition behavioral parameter 
sets: (1) annual flow bias within 10% and (2) annual flow bias within 10% and monthly NSE higher than 0.5. 
Despite biases in a few regions (i.e., underestimating the summer flow in Cluster 2-Pacific and a flow peak time 
mismatch in Cluster 4-Rockies), the behavioral ensemble simulations that satisfy either constraint significantly 
improve default parameter simulation for all clusters and better reproduce observed flow. Using the single best 
performing set based on the monthly KGE metric, CLM5 skill for simulating monthly streamflow in 2005–2014  
can be improved from 0.8586 with the default parameters to 0.8637 in Cluster 1-Northeast, from 0.6476 to 
0.7278 in Cluster 2-Pacific, from ‒0.3448 to 0.9110 in Cluster 3-AZ/NM, from 0.4089 to 0.4750 in Cluster 
4-Rockies, from ‒0.5674 to 0.8624 in Cluster 5-Great Plains, from 0.2836 to 0.7974 in Cluster 6-Midwest, and 
from 0.6004 to 0.9233 in Cluster 7-Southeast.

Variable Error Metric Unit Relevance

Flow

Daily Kling Gupta Efficiency (KGE) — Multiobjective metric

Daily Mean Absolute Error (MAE) m3/s Overall daily flow

Daily Nash Sutcliffe Efficiency (NSE) — High daily flow

Daily Root Mean Square Error (RMSE) m3/s High daily flow

Daily Transformed Root Mean Square Error (TRMSE) m3/s Low daily flow

Daily Variance Bias — Daily flow variability

Monthly KGE — Multiobjective metric

Monthly MAE m3/s Overall monthly flow

Monthly NSE — High monthly flow

Monthly RMSE m3/s High monthly flow

Monthly TRMSE m3/s Low monthly flow

Monthly Variance Bias — Monthly flow variability

Annual Volume Bias — Total water balance

Flow Regime Quantile 0–10% (Q0–10) Volume Bias — Low flow water balance

Q10–25 Volume Bias — Low flow water balance

Q25–50 Volume Bias — Moderate flow water 
balance

Q50–75 Volume Bias — Moderate flow water 
balance

Q75–90 Volume Bias — High flow water balance

Q90–100 Volume Bias — High flow water balance

Winter (DJF) Volume Bias — Seasonal water balance

Spring (MAM) Volume Bias — Seasonal water balance

Summer (JJA) Volume Bias — Seasonal water balance

Fall (SON) Volume Bias — Seasonal water balance

ET

Annual Bias — Total water balance

Winter (DJF) Bias — Seasonal water balance

Spring (MAM) Bias — Seasonal water balance

Summer (JJA) Bias — Seasonal water balance

Fall (SON) Bias — Seasonal water balance

Table 2.  Description of the 28 error metrics.
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Main Folder File Naming Convention & Description Data Description*

1500_ensemble_parameters.csv
Description of 1,500 parameter sets

Data Dimension: 1,501 (R) × 16 (C). C1: Parameter set ID; 
C2‒C16: 15 hydrological parameters in the same order as 
listed in Table 1

Features_CAMELS_basins.csv
Feature values of 464 CAMELS basins used for clustering

Data Dimension: 465 (R) × 27 (C). C1: Number; C2: Basin 
ID; C3: Latitude; C4: Longitude; C5: Cluster ID; C6‒C27: 22 
feature as listed in Supplementary Table 1

Features_CONUS_cells.csv
Feature values of 50,629 1/8° grid cells over the CONUS

Data Dimension: 50,630 (R) × 26 (C). C1: Number; C2: 
Latitude; C3: Longitude; C4: Cluster ID; C5‒C26: 22 feature 
as listed in Supplementary Table 1

[Met]_forcing/e.g., NLDAS2_
forcing/

Parameter_id.csv
~1,300 parameter set ID that successfully finish CLM5 
runs for all 464 basins

Data Dimension: ~1,300 (R) × 1 (C). C1: Successful 
parameter set ID, consistent with the 1500_ensemble_
parameters.csv

[Met]_forcing/Flow_series_
default_parameter

Daily streamflow (in m3/s) time series of CLM5 simulations from 2005‒2014 using default parameters (extracted from the 
netcdf files) for 464 CAMELS basins

[basin ID_daily].csv e.g., 01030500_daily.csv
Data Dimension: 3,651 (R) × 5 (C). C1‒C3: dates (year, 
month, day); C4: CLM5 flow; C5: observed flow from 
CAMELS datasets

[Met]_forcing/Flow_series_
ensemble_parameter

Ensemble daily streamflow (in m3/s) time series of CLM5 simulations from 2005‒2014 using ~1,300 parameter sets 
(extracted from the netcdf files) for 464 CAMELS basins

[basin ID_daily_ensemble].csv
e.g., 01030500_daily_ensemble.csv

Data Dimension: 3,651 (R) × ~1,300 (C). C1‒C~1300: 
CLM5 daily flow using the ensemble parameters. 
Consecutive number is used in the column which is 
associated with parameter ID in Parameter_id.csv

[Met]_forcing/Flow_ET_
metrics

28 error metric values for the default parameter run and ~1,300 ensemble parameter runs for the 464 CAMELS basins. 
Units are shown in the CLM5_default_parameter_28_metrics.csv

CLM5_default_parameter_28_metrics.csv
Data Dimension: 465 (R) × 33 (C). C1: Number; C2: Basin 
ID; C3: Latitude; C4: Longitude; C5: Cluster ID; C6‒C33: 
values of 28 error metrics as listed in Table 2

[CLM5_ensemble_metric].csv
e.g., CLM5_ensemble_daily_KGE.csv

Data Dimension: 465 (R) × ~1,300 (C). C1: Basin ID; C2: 
Latitude; C3: Longitude; C4: Cluster ID; C5‒C~1300: error 
metric values for ensemble parameters. Consecutive number 
is used in the column which is associated with parameter ID 
in Parameter_id.csv

[Met]_forcing/Sensitivity_
scores

Normalized sensitivity score [0‒1] using the Delta moment-independent method for 28 error metrics at 464 CAMELS 
basins

[delta_metric].csv e.g., delta_daily_KGE.csv
Data Dimension: 465 (R) × 19 (C). C1: Basin ID; C2: 
Latitude; C3: Longitude; C4: Cluster ID; C5‒C19: 
Normalized sensitivity score for 15 hydrological parameters 
in the same order as listed in Table 1

Table 3.  Description of the CLM5 hydrological datasets. *Note: In “Data Description”, C = column, R = Row. 
C[i] indicates the ith column of a data file.

Fig. 3  Regional mean monthly flow using the NLDAS-2 forcing data in the 7 clusters. The green spread 
indicates all ~1,300 ensemble members. The red shading indicates the spread for parameter sets that have 
annual flow bias within 10% of the observed flows. The blue shading indicates the spread for parameter sets that 
have annual flow bias within 10% of the observed flows and an NSE value of monthly flow above or equal to 0.5.
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Usage Notes
The CLM5 hydrological datasets listed in Table 3 can be directly used for a wide variety of applications over 
different spatial scales ranging from local, to regional, to the full CONUS. We present the major three data usage 
applications here, but our choices are not exhaustive.

	 1.	 Characterize meteorological and hydrological parameter uncertainty. For each meteorological forcing, the 
~1,300 hydrological parameter sets and their ensemble simulations can be directly used to study the impacts  
of hydrological parameter uncertainty on hydrological predictions. One notable example is assessing the 
relative role of parameter uncertainty and choice of meteorological forcing in simulating different flow 
regimes. For projection studies, users also can assess the relative roles of hydrological parameter uncertainty 
and climate or land use change uncertainty on future hydrological changes. At the CAMELS basin scale, 
users can directly employ the ensemble streamflow prediction datasets to characterize uncertainty. For 
ungauged basins in the CONUS, users can find the basin cluster as shown in Fig. 2b and then approximate 
parameter uncertainty with the spread of regional streamflow as shown in Fig. 3.

	 2.	 Guide hydrological parameter calibration (deterministic) and behavioral parameter selection (ensemble) at 
both CAMELS basins and ungauged basins. In practice, the accuracy and precision of the CLM5 ensemble 
streamflow simulations depend on the partitioning of behavioral and nonbehavioral parameter sets. Simu-
lations that produce error metrics that fall within user-defined acceptable performance metric ranges (e.g., 
NSE ≥ 0.5 in Fig. 3) are considered behavioral, while those that fall outside these ranges are non-behavio-
ral. Figure 4 shows the sensitivity scores of the 464 basins to the annual flow bias metric and the regional 
sensitivity scores to 28 error metrics for Cluster 1-Northeast, using NLDAS-2 forcing data as an example. 
These results can aid in future CLM5 hydrological parameter calibration efforts by reducing parameter 

Fig. 4  (a) The normalized sensitivity score of the 15 hydrological parameters to the annual flow bias metric at 
each basin in each cluster. (b) Regional normalized sensitivity score to 28 diagnostic error metrics using Cluster 
1-Northeast and NLDAS-2 forcing data as an example.
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dimensionality with sensitive parameters and identifying their behavioral values for different error metrics. 
At the CAMELS basin scale, users can directly select the best performance parameter set for their metric of 
interest (such as seasonal or annual flow bias for reservoir modeling) to perform deterministic simulations 
or select ensemble behavioral parameter sets with one or more metric constraints. At ungauged basins, 
users first identify their basin cluster number. They then use the regional sensitivity score such as Fig. 4b to 
identify the sensitive parameters and find their behavioral parameter values. The sensitivity scores for the 
28 error metrics can support a wide range of hydrological applications.

	 3.	 Aid CLM5 model developers in diagnosing potentially inadequate model structures and parameterizations. 
For example, Fig. 3 shows that no parameter set meets the constraint that monthly flow NSE is higher than 
0.5 in Cluster 4-Rockies using the NLDAS-2 forcing data. This indicates very poor performance and some 
errors in model structure for high flow simulation and timing in this region. The earlier peak flow may be 
related to CLM5’s lack of representation of sub-grid topographic variability and how it impacts solar radia-
tion, which is critical to correctly timing snow melt. The small value in the depth-to-bedrock parametriza-
tion for Cluster 2-Pacific (i.e., mean value of 1.08 m) may help explain the underestimation of summer low 
flow due to the predicted low soil water-holding capacity.

Note that CAMELS basins are small to mid-size basins with minimal human intervention. For users who are 
interested in modeling the large river systems typically influenced by human activities such as reservoir opera-
tions, these data sets can produce enhanced CLM5 runoff simulations as input for downstream river routing and 
water management models59,60.

Code availability
The CLM5 hydrological datasets are available to the public at https://doi.org/10.57931/1922953 in comma-
separated value (.csv) and netcdf (.nc) formats. This experiment used a modified version of CLM5 designed to 
allow easier parameterization and support machine-specific compilation. The modified source code is available at 
https://doi.org/10.5281/zenodo.665370461, forked from https://github.com/ESCOMP/CTSM/tree/branch_tags/
PPE.n11_ctsm5.1.dev030. Source codes that were used to develop and analyze the data are available at https://doi.
org/10.5281/zenodo.703911862. The MetSim disaggregation code is available at https://github.com/UW-Hydro/
MetSim.
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