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Abstract
This study analyses budgets of second-order turbulence moments over a real urban canopy
using large-eddy simulation. The urban canopy is representative of the City of Boston, MA,
United States and is characterized by a significant height variability relative to themean build-
ing height. The budgets of double-averaged Reynolds-stress components, scalar fluxes, and
scalar variances are examined with a focus on the importance of the dispersive terms above
the mean building height. Results reveal the importance of the wake (dispersive) production
term, in addition to the shear production term, in the turbulence kinetic energy (TKE), stream-
wise velocity variance and scalar variance budgets well above the mean building height. In
this region, the turbulent and dispersive transport terms are smaller than the production and
dissipation terms. Nonetheless, the dispersive transport terms in the TKE and scalar variance
budgets can be as important as their turbulent counterparts. The subgrid-scale dissipation
term is the main sink in the TKE, vertical velocity variance and scalar variance budgets. In
the momentum and scalar flux budgets, the pressure-strain correlation term and the pressure
gradient-scalar interaction term are the significant sink terms, respectively. Our analysis high-
lights the complexity associated with the budgets of second-order turbulence moments over
real urban canopies and has important implications for developing urban parameterizations
for weather and climate models.

Keywords Large-eddy simulation · Turbulence · Second-order moment budgets · Urban
roughness sublayer

1 Introduction

Accurate modeling of turbulent flows and associated transport processes within and above
urban environments is crucial for many applications, including the prediction of pollutant
dispersion (Walton et al. 2002; Britter and Hanna 2003; Gromke et al. 2008; Glazunov et al.
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2016;Auvinen et al. 2017), the quantification of pedestrian thermal comfort (Krayenhoff et al.
2020; Nazarian and Lee 2021), and the estimation of building energy consumption (Zhao
and Magoulès 2012; Javanroodi et al. 2022). During the past decades, substantial efforts
have been devoted to characterizing turbulence and turbulent transport inside the so-called
urban roughness sublayer (RSL) (Rotach 1999; Masson 2006; Fernando et al. 2010). The
established paradigm is that the urban RSL spans from the street level to roughly two to five
times the mean building height (Oke et al. 2017); in this layer, turbulence and its associated
transport are strongly influenced by the individual urban roughness elements (e.g., buildings,
trees) and are thus both vertically and horizontally inhomogeneous (Rotach 1993; Oikawa
and Meng 1995; Kastner-Klein et al. 2001; Britter and Hanna 2003).

The grid resolution in numerical weather prediction (NWP) models is too coarse to
explicitly resolve individual roughness elements (Skamarock et al. 2008). To account for
the impact of the roughness elements on the resolved-scale exchange processes between
the urban canopies and the atmosphere, it is hence common to homogenize the governing
equations at the horizontal grid resolution of NWP models (Chen et al. 2011). The horizon-
tal grid resolution of NWP models is typically a few kilometers (the neighborhood scale),
over which some degree of statistical homogeneity in the canopy morphology and resulting
flow statistics might be expected (Britter and Hanna 2003). Given that the urban canopy
domain is not simply connected (or it is multiply connected), the coarse-graining operation
has to be based on the volume-averaging theorem (Whitaker 1967), whose theoretical and
implementation details for flow over rough surfaces are discussed in Nikora et al. (2007),
Mignot et al. (2009), Xie and Fuka (2018) and Schmid et al. (2019). When time- and spatial-
averaging (hereafter double-averaging) operations are performed in a multiply-connected
domain, additional terms arise in the averaged equations besides the turbulent fluxes, namely
the dispersive fluxes (Mahrt 1987). The turbulent fluxes are caused by temporal deviations
from the temporally-averaged flow, while the dispersive fluxes arise from the spatial correla-
tions of temporally-averaged flow quantities over the spatial averaging scale. The dispersive
fluxes and related dispersive terms in the budget equations for turbulence moments remain
poorly understood and their contributions to the flow dynamics are often overlooked.

Previous studies of turbulencemoment budgets in flow over urban canopies have primarily
focused on the turbulence kinetic energy (TKE) budget (Louka et al. 2000; Bou-Zeid et al.
2009; Christen et al. 2009; Giometto et al. 2016; Blackman et al. 2017; Tian et al. 2021;
Blunn et al. 2022). Much less is known about the budgets of momentum and scalar fluxes, as
well as scalar variances over urban canopies. This is in sharp contrast to the attention these
budgets received in studies over vegetative canopies (Meyers and Baldocchi 1991; Dwyer
et al. 1997; Katul et al. 2009, 2013; Viana Parente Lopes et al. 2021; Watanabe et al. 2021).
Moreover, motivated by the need to understand the physical system in its simplest form, the
majority of previous studies have considered idealized urban canopy configurations such as
arrays of aligned or staggered cuboids (Castro et al. 2006; Yakhot et al. 2006; Blackman et al.
2017; Tian et al. 2021); these canopies are characterized by a few length scales and hence
lend themselves to analytical treatment. As shown in recent work, the dynamics of turbulent
transport in idealized conditions might profoundly differ from their real-world counterparts
(Giometto et al. 2016; Inagaki et al. 2017; Auvinen et al. 2020; Akinlabi et al. 2022). To
bridge this knowledge gap, we conduct a budget study over a real urban canopy. Specifically,
we focus on quantifying the double-averaged budgets for second-order turbulence moments.
We propose to use large-eddy simulations (LESs) because field studies of turbulence budgets
have been restricted to one or few locations (Rotach 1993; Christen et al. 2009; Santiago and
Martilli 2010). The LES technique has been applied to study the budgets of second-order
turbulencemoments over vegetation (Dwyer et al. 1997; Yue et al. 2008; Viana Parente Lopes
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et al. 2021) and urban canopies (Bou-Zeid et al. 2009; Giometto et al. 2016; Tian et al. 2021).
However, compared to previous work, our contribution is novel because we examine for the
first time the momentum and scalar fluxes, as well as scalar variance budgets over a real
urban environment.

In what follows, a standard notation is used where xi = (x, y, z) are the Cartesian coordi-
nates (i.e., x, y, z represent the streamwise, spanwise and vertical directions, respectively),
and u, v, w are the streamwise, spanwise and vertical velocity components (resolved byLES),
respectively; and s represents a passive scalar (e.g., the concentration of pollutants etc.).
The Einstein summation convention for repeated indices is used. The overbar (.) and angu-
lar brackets 〈.〉 denote time and spatial (volume) averaging, respectively. Double-averaging
(DA) refers to taking the average in time first and then in space. The prime and double prime
denote temporal and spatial deviations, respectively. Namely, X

′ = X − X is the temporal
fluctuation of X (i.e., deviations from the temporally-averaged X ) and X

′′ = X − 〈
X

〉
is the

spatial deviation of X from its spatial average
〈
X

〉
.

This paper is organized as follows: Sect. 2 provides the theoretical framework and presents
the double-averaged budgets of second-order moments in a multiply-connected domain; the
large-eddy simulation model and the simulated case are presented in Sect. 3; Sect. 4 presents
the analysis of second-order moment budgets and conclusions are drawn in Sect. 5.

2 Theoretical Framework

2.1 Volume Averaging

The volume averaging operation is carried out over horizontal slab of thickness �z. Two
types of volume averaging need to be distinguished. The first is intrinsic averaging (Nikora
et al. 2007), where the averaging volume includes the ambient air only. The second is extrinsic
(or superficial) averaging (Schmid et al. 2019), where averaging is performed over the entire
horizontal slab (i.e., including the volume occupied by solid elements such as buildings and
trees). Intrinsic averaging is widely used in the literature to characterize flow fields over
vegetation canopies (Wilson and Shaw 1977; Raupach and Shaw 1982), gravel beds (Nikora
et al. 2007), rigid canopies (Raupach et al. 1991; Coceal et al. 2006; Xie et al. 2008) and real
urban canopies (Giometto et al. 2016; Akinlabi et al. 2022). The intrinsic averaging operation
is the natural approach for this study for two reasons. The first is that the resulting statistics are
more representative of typical values inside the fluid. The second is that intrinsically-averaged
dispersive fluxes are zero for a constant velocity field (due to the zero spatial deviation of the
constant velocity field from its mean) but the superficially-averaged dispersive fluxes are not
necessarily zero.

For a volume (V ) centered at location xi that composes of fluids (with volume V f ) and
solid elements (with volume Vs), we define the intrinsic average of a temporally averaged
variable F as:

〈
F

〉
(xi ) = 1

V f (xi )

∫

β∈V f (xi )

F(β)dx dy dz. (1)
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2.2 Double-Averaged Budgets of Second-Order TurbulenceMoments

Double-averaged budgets are obtained by first averaging the flow field in time and then in
space using the intrinsic volume-averaging operations on temporally averaged fields. The
time-averaged budget equations have been extensively studied and can be found in classical
textbooks (Stull 1988; Garratt 1992). Therefore, in the following, we only briefly discuss the
volume-averaging rules for flow in urban canopies (Schmid et al. 2019). We define a time-
and intrinsically-averaged quantity 〈ϕ〉, where the intrinsic and time-averaging operations
commute. In the following, the quantity 〈ϕ〉 is termed the double-averaged ϕ. However,
based on the volume averaging theorem (Whitaker 1967), the intrinsically-averaged spatial
gradient of ϕ is not equal to the spatial gradient of 〈ϕ〉, but rather:

〈
∂ϕ

∂xi

〉
= 1

αp

∂αp〈ϕ〉
∂xi

+ 1

V

∫

β∈A f s (x)

ϕ(β)nid A

= ∂〈ϕ〉
∂xi

+ 〈ϕ〉
αp

∂αp

∂xi
+ 1

V

∫

β∈A f s (x)

ϕ(β)nid A, (2)

where αp = 1−λp and λp is the plan area fraction defined as the fraction of space occupied
by the solid elements in a given averaging volume. The function αp is needed to account for
the change of the fluid volume V f with height, which is important for real urban canopies
(Giometto et al. 2016). For generality, αp is written as a function of xi in Eq. 2 (and Eq. 5
below) following Schmid et al. (2019). The surface integral represents the effect of the
solid–fluid interface and is zero when ϕ is any of the velocity components due to the no-slip
boundary conditions. A f s(x) is the solid–fluid interface contained in the averaging volume
V (x) while ni is the unit normal vector of A f s pointing from the fluid phase into the solid
phrase. For more details about the surface integral in Eq. 2, readers are referred to Mignot
et al. (2009) and Schmid et al. (2019).

With these rules, the budget equations for double-averaged second-order moments can
be obtained using the following procedure. First, we average each term in time and space.
Second, we switch the order of spatial averaging and differentiation following Eq. 2. Third,
we expand the spatial averaging of the product of ϕi and ϕ j following:

〈
ϕiϕ j

〉 = 〈
ϕi

〉〈
ϕ j

〉 + 〈
ϕ′′
i

〉〈
ϕ j

〉 + 〈
ϕi

〉〈
ϕ′′
j

〉
+

〈
ϕ′′
i ϕ

′′
j

〉

= 〈
ϕi

〉〈
ϕ j

〉 +
〈
ϕ′′
i ϕ

′′
j

〉
. (3)

Note that
〈
ϕ′′〉 = 0 due to the averaging rules. The spatial averaging of the product of ϕi

and the gradient of ϕ j reads:
〈
ϕi

∂ϕ j

∂xi

〉
= 〈ϕi 〉

〈
∂ϕ j

∂xi

〉
+ 〈

ϕi
′′〉

〈
∂ϕ j

∂xi

〉
+ 〈ϕi 〉

〈
∂ϕ j

′′

∂xi

〉
+

〈
ϕi

′′ ∂ϕ j
′′

∂xi

〉

= 〈ϕi 〉
〈
∂ϕ j

∂xi

〉
+ 〈ϕi 〉

〈
∂ϕ j

′′

∂xi

〉
+

〈
ϕi

′′ ∂ϕ j
′′

∂xi

〉
. (4)

In this case,
〈
∂ϕ j

′′
∂xi

〉
does not disappear, as can be seen from Eq. 2, namely:

〈
∂ϕ′′

∂xi

〉
=

〈
∂ϕ

∂xi

〉
−

〈
∂〈ϕ〉
∂xi

〉
=

〈
∂ϕ

∂xi

〉
− ∂〈ϕ〉

∂xi
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= 〈ϕ〉
αp

∂αp

∂xi
+ 1

V

∫

β∈A f s (x)

ϕ(β)nid A. (5)

When applying the double averaging procedure to analyzingLES outputs, wemake further
simplification by assuming horizontal homogeneity at scales beyond the spatial averaging
scale (i.e., ∂〈ϕ〉

∂x = ∂〈ϕ〉
∂ y = 0), stationarity (i.e., ∂〈ϕ〉

∂t = 0), and no large-scale subsidence,
(i.e., 〈w〉 = 0). Furthermore, because of the assumption of horizontal homogeneity at scales
larger than the spatial averaging scale, αp becomes also only a function of z and thus only
∂αp
∂z = dαp

dz is non-zero. In Appendix 1, we follow the above-mentioned procedure to derive
the budget equations for double-averaged second-order moments.

2.2.1 Reynolds Stress

The budget equation for double-averaged Reynolds stress tensor reads:

0 = − 1

αp

dαp

〈
u′
i u

′
k
′′
w′′

〉

dz
︸ ︷︷ ︸

T d
ik

−
(〈

u′
kw

′
〉d〈ui 〉

dz
+

〈
u′
iw

′
〉d〈uk〉

dz

)

︸ ︷︷ ︸
Ps
ik

−
(〈

u′
ku

′
j
′′ ∂ui ′′

∂x j

〉
+

〈
u′
i u

′
j
′′ ∂uk ′′

∂x j

〉)

︸ ︷︷ ︸
Pw
ik

−
(〈

u′
ku

′
j

〉〈∂ui ′′

∂x j

〉
+

〈
u′
i u

′
j

〉〈∂uk ′′

∂x j

〉)

︸ ︷︷ ︸
Pm
ik

− 1

αp

⎛

⎜⎜⎜⎜⎜⎜
⎝

d
〈
u′
iw

′u′
k

〉

dz︸ ︷︷ ︸
T t
ik

+ 1

ρ

⎛

⎝
∂αp

〈
p′u′

k

〉

∂xi
+

∂αp

〈
p′u′

i

〉

∂xk

⎞

⎠

︸ ︷︷ ︸
T p
ik

⎞

⎟⎟⎟⎟⎟⎟
⎠

+ 1

ρ

(〈

p′ ∂u
′
k

∂xi

〉

+
〈

p′ ∂u
′
i

∂xk

〉)

︸ ︷︷ ︸
SPik

− 1

αp

dαp

〈
u′
iτ

′SGS
k3

〉

dz
− 1

αp

dαp

〈
u′
kτ

′SGS
i3

〉

dz
︸ ︷︷ ︸

Dik

+
〈

τ ′SGS
i j

∂u′
k

∂x j

〉

+
〈

τ ′SGS
jk

∂u′
i

∂x j

〉

︸ ︷︷ ︸
εik

, (6)

where Ps
ik is the shear production term, Pw

ik is the wake (dispersive) production term, Pm
ik is

the rate of work of the temporally averaged velocity fluctuations against the shear production
(given that αp varies with height, Pm

ik �= 0), which is called the form induced production
term hereafter, T t

ik is the turbulent transport term, T d
ik is the dispersive transport term, T p

ik is
the pressure transport term, SPik is the pressure-strain correlation or pressure redistribution
term, Dik is the SGS transport term and εik is the SGS dissipation term. The SGS third-
order velocity correlations and SGS pressure-strain correlation are negligible above the mean
building height; they will be incorporated into the budget residual term. In general, Eq. 6
shows that each component of the Reynold stress is produced by shear production (Ps

ik), wake
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production (Pw
ik ) and form induced production (Pm

ik ), transported by turbulent transport (T
t
ik),

dispersive transport (T d
ik), pressure transport (T

p
ik ) and SGS transport (Dik), and dissipated

by εik . It is assumed that εik takes place at small scales where the local isotropy of the
Kolmogorov hypothesis prevails. As a result, the Reynold stress dissipation is modeled as
an isotropic tensor and its deviatoric part is incorporated into the pressure-strain correlation
term (making this term a sink for this case). The isotropic part of εik is computed using
the SGS model. This procedure is standard in second-order turbulence closure modelling
(Heinze et al. 2015).

2.2.2 TKE

The budget equation for TKE is simply the trace of Eq. 6 multiplied by 1/2. It reads:

0 = − 1

2αp

⎛

⎝
dαp

〈
u′
i u

′
i
′′
w′′

〉

dz

⎞

⎠

︸ ︷︷ ︸
T d
T K E

−
(〈

u′
iw

′
〉d〈ui 〉

dz

)

︸ ︷︷ ︸
Ps
T K E

−
(〈

u′
i u

′
j
′′ ∂ui ′′

∂x j

〉)

︸ ︷︷ ︸
Pw
T K E

−
(〈

u′
i u

′
j

〉〈∂ui ′′

∂x j

〉)

︸ ︷︷ ︸
Pm
T K E

− 1

αp

⎛

⎜⎜⎜⎜⎜⎜
⎝

1

2

dαp
〈
u′
i u

′
iw

′〉

dz︸ ︷︷ ︸
T t
T K E

+ 1

ρ

⎛

⎝
dαp

〈
p′w′

〉

dz

⎞

⎠

︸ ︷︷ ︸
T p
T K E

⎞

⎟⎟⎟⎟⎟⎟
⎠

− 1

αp

dαp

〈
u′
iτ

′SGS
i3

〉

dz
︸ ︷︷ ︸

DT K E

+
〈

τ ′SGS
i j

∂u′
i

∂x j

〉

︸ ︷︷ ︸
εT K E

, (7)

where the definition for Ps
T K E , P

w
T K E , P

m
T K E , T

t
T K E , T

d
T K E ,T

p
T K E and DT K E are similar to

the definitions given in Eq. 6 and εT K E is the TKEdissipation. The pressure-strain correlation
is not in the TKE budget because it only acts to redistribute energy between the components.
In general, Eq. 7 shows that TKE is produced by shear production Ps

T K E , wake production
Pw
T K E and Pm

T K E , redistributed by turbulent transport T t
T K E , dispersive transport T d

T K E ,
pressure transport T p

T K E and SGS transport DT K E and finally dissipated by the work of SGS
stresses onto the resolved field εT K E (Christen et al. 2009; Giometto et al. 2016).

2.2.3 Vertical Scalar Flux

The budget equation for the vertical scalar flux reads:

0 = − 1

αp

dαp

〈
w′s′′′w′′

〉

dz
︸ ︷︷ ︸

T d
SF

−
(

1

αp

〈
w′w′

〉dαp〈s〉
dz

)

︸ ︷︷ ︸
Ps
SF

−
(〈

u
′
j s

′ ′′ ∂w′′

∂x j

〉
+

〈
w′u ′

j

′′ ∂s′′

∂x j

〉)

︸ ︷︷ ︸
Pw
SF

−
(〈

s′u ′
j

〉〈∂w′′

∂x j

〉
+

〈
w′u ′

j

〉〈 ∂s′′

∂x j

〉)

︸ ︷︷ ︸
Pm
SF

− 1

αp

dαp

〈
w′w′s′

〉

dz
︸ ︷︷ ︸

T t
SF

− 1

ρ

〈

s′ ∂ p′
∂z

〉

︸ ︷︷ ︸
PS

123



Budgets of Second-Order Turbulence Moments over a Real Urban Canopy

− 1

αp

dαp

〈
s′τ ′SGS

33

〉

dz
− 1

αp

dαp

〈
w′τ ′SGS

s,3

〉

dz
+

〈

τ ′SGS
3 j

∂s′
∂x j

〉

+
〈

τ ′SGS
s, j

∂w′
∂x j

〉

︸ ︷︷ ︸
DSF

− 1

V

(∫
s′τ ′SGS

3 j n j d A + w′u′
j

∫
sn j d A

)
,

︸ ︷︷ ︸
ψSF

(8)

where the definitions for Ps
SF , P

w
SF , P

m
SF , T

t
SF and T d

SF are similar to the definitions in
Eq. 6. PS is the pressure gradient-scalar interaction (a de-correlation term) and DSF include
SGS terms; ψSF represents the surface integral terms arising from the volume averaging
theorem. We point out that in deriving Eq. 6, the pressure term in the time-averaged Reynold

stress tensor u
′
i u

′
k budget equation is split into two terms (see Appendix 1 for details). On

the contrary, for scalar flux budget equation, this pressure term cannot be split. The SGS
components of PS have been shown to be non-negligible in the scalar flux budget (Khanna
1998; Heinze et al. 2015). Due to difficulties in evaluating the SGS components of PS and
the surface integral terms over complex urban geometry via the LES model used in our study
(to be introduced later), this work incorporates them into the budget residual along with the
SGS component of the turbulent transport term.

2.2.4 Scalar Variance

The budget equation for the scalar variance reads:

0 = − 1

αp

dαp

〈
s ′2′′

w′′
〉

dz
︸ ︷︷ ︸

T d
SV

−2
〈
w′s′

〉 1

αp

dαp〈s〉
dz

︸ ︷︷ ︸
Ps
SV

−2

〈
s′u ′

j

′′ ∂s′′

∂x j

〉

︸ ︷︷ ︸
Pw
SV

−2
〈
s′u′

j

〉〈 ∂s′′

∂x j

〉

︸ ︷︷ ︸
Pm
SV

− 1

αp

dαp

〈
w′s′2

〉

dz
︸ ︷︷ ︸

T t
SV

− 1

αp

dαp

〈
s′τ ′SGS

s,3

〉

dz
︸ ︷︷ ︸

DSV

+
〈
τ ′SGS
s, j

∂s′

∂x j

〉

︸ ︷︷ ︸
εSV

− 1

V

(∫
s′τ ′SGS

s, j n j d A + 2
〈
s′u′

j

〉 ∫
sn j d A

)
,

︸ ︷︷ ︸
ψSV

(9)

where the definitions for Ps
SV , P

w
SV , P

m
SV , T

t
SV and T d

SV for the scalar variance are similar
to those in Eq. 6. DSV is the SGS transport for scalar, εSV is the dissipation and ψSV is the
surface integral terms that capture the effect of the solid–fluid interface. ψSV is incorporated
into the budget residual due to the difficulties associated with evaluating it in the LES model
used in our study.
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3 Model and Case Description

3.1 Large-Eddy SimulationModel

In this study, the PALMLESModel in revision 4901 (Maronga et al. 2015, 2020) is used. The
PALM solver numerically integrates the filtered, non-hydrostatic Navier–Stokes equations
in the Boussinesq-approximations form and the filtered transport equation for passive scalar
concentration. Filtered transport equations for two thermodynamicvariables, such as potential
temperature and total water specific humidity, can be solved but are not used in this study.
The filtering of these equations is carried out implicitly using the volume-based approach
(Schumann 1975) and employs the 1.5-order SGS closure model of Deardorff (1980). Using
a predictor–corrector method and iterative multigrid scheme (Hackbusch 1985), the mass
conservation of the flow is enforced by solving a Poisson equation for pressure perturbation.
The 5th orderWicker–Skamarock and the 2nd order central difference schemes are employed
to discretize the advection and diffusion schemes. Temporal discretization is done with the
3rd order Runge–Kutta scheme. The computational domain is spatially discretized using the
finite difference approach on Arakawa staggered C-grid (Arakawa and Lamb 1977). The
PALM model explicitly resolves the solid obstacles using the masking method (Briscolini
and Santangelo 1989) and hence does not need a parameterization to account for the effect
of the solid obstacle on the flow dynamics.

The PALM model has been widely used to study flows over both idealized (Letzel et al.
2008; Park et al. 2012; Gronemeier and Sühring 2019; Nazarian et al. 2020; Blunn et al.
2022) and real urban canopies (Kanda et al. 2013; Park et al. 2015; Gronemeier et al. 2017)
and it has been extensively validated (Fröhlich andMatzarakis 2020; Gronemeier et al. 2021;
Resler et al. 2021). Heinze et al. (2015) used the PALMmodel to study second-order moment
budgets in cloud topped boundary layers and found that the PALM model results agree with
the results of other LES models except for the TKE dissipation rate. The disagreement in the
TKE dissipation rate was attributed to truncation errors, which can be relatively large and
lead to artificial dispersion (especially at high wavenumbers) when using low order schemes
(Ghosal 1996; Giacomini and Giometto 2021). Uncertainties arising from these errors are
captured in the residual of our budget analysis and discussed in the result section.

3.2 Case Description andModel Set-Up

In this study, we focus on an area of about 2.6×2.1 km2 around Fenway–Kenmore square in
the City of Boston, Massachusetts, USA (see Fig. 1a). This geographical region is the same
as the one considered in Akinlabi et al. (2022). This region is located in the northern part of
Boston. The chosen domain contains a dense arrangement of building blocks, an irregular
distribution of narrow street canyons, a park in the northwest region, and the Charles River
in the north. The northeastern part is a business district with many high-rise buildings of
height above 100 m (e.g., the Prudential centre which is 227 m high), while the southwestern
part is the home to several hospitals (Boston children hospital, Beth Israel Medical centre,
Brigham andWomen’s hospital) and universities (Harvard school of public health, Emmanuel
college, Simmons university and Massachusetts College of Pharmacy and Health Sciences)
with moderately tall buildings of about 60–80 m. Figure 1 shows the map, the vertical
profile of the plan area fraction, and the building height distribution, and its probability
density function within the study area. The mean building height H is 18 m, and the standard
deviation σH is 16 m. The plan area fraction varies strongly with height and is 0.29 at the
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Fig. 1 a 3-D map of the area around Fenway–Kenmore square in the City of Boston, USA, with the Charles
River in the north, the Brigham andWomen’s hospital (about 75 m) in the southwest, and the Prudential centre
(maximum building height of 227 m) in the northeast. Imagery ©Google, b the vertical profile of the plan
area fraction, c building heights in the study area and d the probability distribution function (PDF) of building
heights

ground level. The distribution of building heights in our study area differs from previous
studies like Auvinen et al. (2020), whose building height distribution is relatively symmetric
with σH/H = 0.4 − 0.6. It is also different from the study by Giometto et al. (2016, 2017)
with a trimodal building height distribution and σH/H = 0.4. In our study, the distribution
is very skewed with σH/H = 0.89. Vegetation is not included in our simulation, which is
justified by its small plan area fraction (Giometto et al. 2016).

The domain is discretized in space using 864 × 720 × 360 grid points in streamwise,
spanwise and vertical directions, respectively. A horizontal grid spacing of 3m is used, which
has been shown in our previous work (Akinlabi et al. 2022) to be adequate in resolving the
buildings and street canyons in the domain. In the vertical direction, 3 m grid spacing is used
up to 300 m. Above this height, we apply a grid stretching with a factor of 1.005 until a
maximum value of 11 m is reached. This gives a domain height of 1.9 km. The boundary-
layer height is δ/H = 70, which satisfies the δ/H � 50 requirement (Jimenez 2004).
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The flow is driven by a constant geostrophic wind Ug = 3.5 m s−1 (an intermediate value
to represent a weakly sheared flow) in the west-to-east direction and neutral stratification is
assumed throughout the study. The no-slip wall boundary condition is imposed on all surfaces
(including the roofs, ground, and building walls) whereas a free-slip condition is applied at
the top of the domain.We apply an algebraic wall-layer model between the surface (including
the roofs, ground, and building walls) and the first computational grid level. To account for
the effects of low vegetation, structural details, and temporary structures, a SGS aerodynamic
roughness length z0,SGS = 0.01 m is used, which follows the recommendation of Basu and
Lacser (2017) that z0,SGS ≤ 0.02 × min(�z). The value min(�z) for this study is 1.5 m
because the first computational grid node is positioned at 0.5 �z. Cyclic boundary conditions
are imposed in the lateral directions to simulate an infinite repetition of the study area. This
setup is convenient as it does not require specification of an inflow boundary condition. The
boundary condition for the passive scalar equation is a surface flux 0.05 kg m−2 s−1, which
is imposed on all surfaces (including the roofs, ground and building walls). The simulation
runs for a spin-up period of 560T where T = H/u∗ to reach a steady state. Here T is
interpreted as the eddy-turnover time for the largest eddies in the urban canopy (Coceal et al.
2006). The friction velocity u∗ = 0.3 m s−1 is computed from the total kinematic surface
drag per unit floor area τ∗, i.e., u∗ = √

τ∗/ρ, where ρ is the air density (1 kg m−3) and
τ∗ is the sum of the form and skin-friction drag (Kanda et al. 2013). The simulation is then
pursued for another 240T to evaluate temporally averaged statistics, which has been verified
to be long enough for the statistics to reach convergence (Akinlabi et al. 2022).

4 Results and Discussion

4.1 Double-Averaged Flow Statistics

We start our analysis by examining the double-averaged flow statistics. The streamwise
velocity, vertical velocity, momentum flux, velocity variances, and the total pressure drag
are normalized by the friction velocity u∗. The scalar concentration is normalized with
s∗ = w′s′

0/u∗ where w′s′
0 = 0.05 kg m−2 s−1 is the surface scalar flux. The turbulent

scalar flux is normalized with u∗s∗. The vertical height is normalized with the mean building
height (H = 18 m). Figure 2 shows the normalized profiles of double-averaged streamwise
and vertical velocities and their variances, TKE, and the logarithm of the scalar concentration
and its variance. The streamwise velocity profile exhibits no inflection point, consistent with
profiles presented byprevious real urban canopy studieswith largeσH values (Park et al. 2015;
Inagaki et al. 2017; Akinlabi et al. 2022). The reason for this, as discussed by Makedonas
et al. (2021) andAkinlabi et al. (2022), is the large spread of velocities below the height Hmax,
indicating significant flowpenetration caused by the largeσH . As a result, cities designedwith
large σH could have higher mixing rates, which can positively impact urban air quality and
natural ventilation (Makedonas et al. 2021). The profile of the streamwise velocity follows the
conventional logarithmic formwell above the urban canopy. However, closer to the buildings,
the streamwise velocity profile deviates from the logarithmic form as it responds directly to
the urban canopy (see Fig. 2a). A logarithmic function is fitted to the streamwise velocity
profile in the [30H – 40H ] interval with a von Karman constant value of 0.4, yielding
an aerodynamic roughness length z0/H = 0.23 and a displacement height zd/H = 3.9.
The aerodynamic roughness length is comparable to z0/H = 0.21 if our urban canopy
parameters are substituted into the new aerodynamic surface parameterization equation of
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Fig. 2 Normalized profiles of a streamwise velocity juxtaposed with a reference logarithmic profile (roughness
length z0/H = 0.23 and displacement height zd/H = 3.9) and vertical velocity, b variances of streamwise

and vertical velocities turbulence kinetic energy TKE = 0.5
(〈
u′2 + v

′2 + w
′2

〉)
c logarithm of the scalar

concentration and its variance. The velocities are normalized with the friction velocity u∗ while the scalar
concentration is normalized with s∗. Dashed horizontal line indicates the mean building height H while the
solid horizontal line is the maximum building height Hmax

Kanda et al. (2013), while the displacement height is overestimated (i.e., zd/H = 2.22 using
the equation in Kanda et al. 2013). The reason for the difference in displacement height
estimates is beyond the scope of this work. Following our earlier work (Akinlabi et al. 2022),
we identify z/H = 30 height as the RSL thickness (similar to the fitting range used above).
This height corresponds to the 90th percentile of the dispersive flux profile. Dispersive fluxes
for the urban canopy under consideration were examined in detail in Akinlabi et al. (2022)
and will not be discussed here.

The double-averaged vertical velocity vanishes as expected from the use of periodic lateral
boundary condition. The normalized TKE has its maximum value of 3 around z/H = 5
and decreases with increasing height with major contribution from the streamwise velocity
variance (see Fig. 2b). The streamwise velocity variance peaks at z/H = 10while the vertical
velocity variance peaks at z/H = 3. The profile of the logarithm of scalar concentration is
almost uniform with height, even though almost all the source of the scalar concentration
is below z/H = 2 based on the boundary condition for the passive scalar. This uniformity
indicates an intense mixing of passive scalar from urban surfaces where it is released to
the atmosphere. This vigorous mixing may be caused by the significant flow penetration
discussed above. Here, we show the profile of the logarithm of the scalar and its variance to
highlight their variations better. The logarithm of normalized scalar variance has a maximum
value of 6 at z/H = 1.

The turbulent momentum and scalar fluxes as well as the pressure drag are presented in
Fig. 3. Only the resolved parts of the turbulent fluxes are presented since the subgrid-scale
fluxes are less than 6% of the sum of resolved and subgrid-scale fluxes above z/H = 1. The
turbulent momentum flux peaks at about z/H = 10 with magnitude twice as large as its
value at z/H = 40. A similar behavior is observed for the turbulent scalar flux, which peaks
at z/H = 4 (see Fig. 3b). The pressure drag, which is the major sink of momentum in the

urban canopy, decreases with height from its surface value
δ∫

0

1
ρ

〈
∂ p′′
∂x

〉
dz ≈ u2∗ to zero at Hmax

(see Fig. 3a).
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Fig. 3 Normalized profiles of a turbulent momentum flux and the pressure drag, b turbulent scalar flux. The
momentum flux and pressure drag in a are normalized by the squared friction velocity u∗ while the scalar
flux is normalized with u∗s∗. The dashed horizontal line indicates the mean building height H while the solid
horizontal line is the maximum building height Hmax

4.2 Budgets for Second-Order TurbulenceMoments

The budgets for second-order moments in the urban RSL are now discussed. Each term in
the TKE, velocity variances and Reynold stress budgets are normalized by H/u3∗. Those
for scalar flux and scalar variance are normalized by H/(s∗u2∗) and H/(u∗s2∗), respectively.
According to Akinlabi et al. (2022), the urban RSL for real urban canopies can extend
much higher than the traditional definition (i.e., z/H = 2 − 5) which is primarily based on
studies over idealized urban canopies. Using the height that corresponds to 90th percentile
of the dispersive flux profile as the beginning of the inertial sublayer, they argued that the
RSL extends to z/H = 30. Following Akinlabi et al. (2022), we will focus on the interval
z < 30H . Three layers are considered. The first layer is the traditionally defined urban RSL
(2H ≤ z ≤ 5H ) represented by the grey area in Figs. 4, 5, 6, 7, 8 and 9. We note that
this layer roughly covers the region where the lowest atmospheric grid (about 30–100 m)
in NWP and climate models with single-layer urban parameterizations often occurs. Above
this interval, two additional layers are considered: 5H < z ≤ 12H (the second layer) and
12H < z ≤ 30H (the third layer). The second layer spans from the top of the traditionally
defined urban RSL to Hmax, while the third layer are from Hmax to the top of the urban RSL.
Averages of each budget term within each layer are presented in Tables 1, 2, 3, 4, 5 and 6.

The relatively small residual R in the computed budget of second-order moments when z
is above H provides confidence in our numerical results. The residual terms contain all other
SGS components of the budget terms such as the SGS third-order velocity correlations and
the SGS pressure redistribution (see Heinze et al. 2015 for example). The residual below H
(see Figs. 4, 5, 6, 7, 8, 9) is primarily due to the spatial interpolation of variables in the near
wall regions required to compute some of the budget terms; this leads to numerical truncation
errors and degrades the quality of the computed budget. Hence, only the budgets at z/H > 1
will be analyzed.
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Fig. 4 The TKE budget terms normalized by H/u3∗. The grey region corresponds to 2H ≤ z ≤ 5H while the
dashed horizontal line is the maximum building height Hmax

4.2.1 TKE

Vertical profiles of terms in the TKE budget are shown in Fig. 4 while Table 1 shows the
percentage contribution of each term to the total source (+) or sink (−) in the considered
layer. The shear production Ps

T K E peaks at z/H = 1 where the strongest wind shear occurs
and decreases with height. This agrees with previous studies of boundary layer flows over
uniform strip or tree-like canopies (see Yue et al. 2008 and Böhm et al. 2013). Although
Ps
T K E decreases with height for z/H > 1, its contribution to the total source increases

with height because other production terms become even smaller with height (see Table 1).
The wake production Pw

T K E is the production rate of TKE in the wakes of buildings (i.e.,
converting wake kinetic energy to TKE) through the interaction between the local turbulent
stress and time-averaged strains. Pw

T K E also peaks at H and decreases to approximately zero
above z/H = 15. Below Hmax, Pw

T K E ≈ 0.5 Ps
T K E , in agreement with previous studies

of flow over real urban canopies (Giometto et al. 2016). This implies that Pw
T K E is non-

negligible over the urban canopy. Similar results have been presented in studies of flow over
other regular canopies (Raupach et al. 1991). The form-induced production term Pm

T K E is
negligible in our study (see Table 1). This result disagrees with Giometto et al. (2016), where
Pm
T K E is found to be non-zero in the vicinity of the inflection layer, accounting for 16% of

Ps
T K E . This disagreement is likely caused by the difference in σH . The difference between
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Fig. 5 The streamwise velocity variance budget terms normalized by H/u3∗. The grey region corresponds to
2H ≤ z ≤ 5H while the dashed horizontal line is the maximum building height Hmax

the two studies seems to suggest that the importance of Pm
T K E decreases or even becomes

negligible with large σH . Note that other factors such as the plan area fraction λp , the frontal
area fraction λ f = A f /Atotal (A f is the product of the building width and height) might
also be responsible for this disagreement. More detailed investigations of how Pm

T K E (as well
as similar terms in the budgets of other second-order moments) respond to changes in the
aforementioned parameters is beyond the scope of this analysis and is left for future work.

The transport terms are responsible for redistributing TKE vertically from regions of high
production to others. They serve as local sources/sinks of TKE (Roth and Oke 1993). Within
2H ≤ z < 12H , the turbulent transport term T t

TKE is negative and contributes to 10% of the
total sink of TKE (see Table 1). It changes sign at z/H = 2 and z/H = 13, contributing
5% of the total source above z/H = 15. Our result agrees with studies of flow over urban
canopies (Christen et al. 2009; Giometto et al. 2016) and field studies of flow over vegetation
canopies (Leclerc et al. 1990; Shen and Leclerc 1997). T d

T K E , T
p
T K E and DT K E are almost

zero in the studied height ranges (see Table 1). The result of DT K E agrees with Yue et al.
(2008).

The TKEdissipation rate εT K E is a significant sink of TKE.We compute εT K E as τ
′
i j S

′
i j =

τi j Si j − τi j Si j where Si j is the filtered shear rate tensor while τi j is the SGS stress tensor.
Experimental studies compute εT K E based on the energy spectra (e.g., Christen et al. 2009),
but this approach is known to overestimate εT K E (Heinze et al. 2015; Akinlabi et al. 2019).
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Fig. 6 The vertical velocity variance budget terms normalized by H/u3∗. The grey region corresponds to
2H ≤ z ≤ 5H while the dashed horizontal line is the maximum building height Hmax

Here we found that εT K E has a maximum value of 1.4 H/u3∗ at z/H = 1 (though it might
increase even more within z/H < 1) and decreases with height until it balances TKE
production at z/H > 20, after which Ps

T K E ≈ εT K E . Local contributions of εT K E to the
total sink rate of TKE range between 86% at 5H ≤ z < 12H to 93% at z/H > 12.

Based on these results, we conclude that for the real urban canopy studied here, the shear
production Ps

T K E , wake production P
w
T K E and dissipation of TKE εT K E are themajor players

in the TKE budget. They need to be parameterized in large-scale meteorological models due
to their significant contributions to the total source or sink of TKE in real urban canopy flows.
The contributions of turbulent transport T t

T K E to local TKE sources/sink are less than 15%
with significant height variability.

4.2.2 Velocity Variances

In this section, we further examine the budgets of streamwise and vertical velocity variances.
Tables 2 and 3 show the percentage contribution of each term to the total source (+) or sink
(−) in the considered layers and the profiles are shown in Figs. 5 and 6 respectively. Ps

11 and
Pw
11 are the key source terms in the budget of streamwise velocity variance, with peak values

of 2.5H/u3∗ and 0.8H/u3∗, respectively, at z/H = 1. The profiles of Ps
11 and Pw

11 are similar
in shape to Ps

T K E and Pw
T K E , respectively. Since Ps

33 = 0, the production of TKE due to
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Fig. 7 The momentum flux budget terms normalized by H/u3∗. The grey region corresponds to 2H ≤ z ≤ 5H
while the dashed horizontal line is the maximum building height Hmax

shear occurs through the horizontal velocity components (i.e., Ps
T K E ≈ 0.5(Ps

11 + Ps
22)).

This explains why the profile of Ps
11 is similar to that of Ps

T K E . Here it should be pointed out
that these results might be altered by thermal stratification which is absent in our study. Pw

33
is non-zero but contributes less than 10% to the total source rate of vertical velocity variance
(see Table 3), explaining why the profile of Pw

11 is similar to that of Pw
T K E . The form-induced

production terms Pm
11 and Pm

33 are negligible.
The anisotropy introduced by shear and wake productions is counteracted by the pressure-

strain correlation terms SP11 and SP33. SP11 and SP33 only act to redistribute TKEbetween
the components returning turbulence to the isotropic state—a process known as “isotropiza-
tion of turbulence” (Pope 2000; Hanjalić and Launder 2009). SP11 is negative while SP33

is positive throughout the considered height intervals. This implies that the vertical velocity
variance grows at the expense of the streamwise velocity variance. The dissipation rates (ε11
and ε33) in the velocity variance budgets are determined based on the assumption of local
isotropy at small scales i.e., ε11 ≈ ε33 ≈ 2

3εT K E . The percentage contribution of ε11 to
the total sink in the streamwise velocity variance budget is about 50% of the percentage
contribution of SP11, with the sum of SP11 and ε11 nearly balancing the production terms.
In the vertical velocity variance budget, SP33 nearly balances ε33.

All the transport terms (i.e., T t
11, T

t
33, T

d
11, T

d
33, T

p
11, T

p
33, D11 and D33) aremuch less critical

in the velocity variance budgets. T t
11 and T

t
33 make about 5-10% contribution to the total sink

while the other transport terms are even smaller compared to other terms in the velocity
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Fig. 8 The scalar flux budget terms normalized by H/(u2∗s∗). The grey region corresponds to 2H ≤ z ≤ 5H
while the dashed horizontal line is the maximum building height Hmax

variance budgets (see Tables 2, 3). In summary, the production, pressure-strain correlation
and dissipation terms play significant roles in the velocity variance budgets.

4.2.3 Momentum Flux

Before we present the momentum flux budget, it is important to make a remark related to its
interpretation. Unlike the velocity and scalar variances that are non-negative, the momentum
flux can have either sign. As a result, any term in the momentum flux budget is treated a
source term if it has the same sign as the momentum flux itself and a sink term if it has
the opposite sign. To avoid any confusion, we multiply both side of the budget equation for
double averaged Reynolds stress tensor with a negative sign so that a negative and positive
term is a sink and source term, respectively.

Vertical profiles of terms in the budget of momentum flux are shown in Fig. 7 while the
layer-wise percentage contribution of each term to the total layer source or sink are presented
in Table 4. Approximate equilibrium exists between Ps

13 and the pressure redistribution term
SP13 above z/H = 15, which agrees with Raupach et al. (1986). For all the considered
layers, T t

13 has a sink contribution of around 4–11%, i.e., it is larger than other transport
terms. However, the same term becomes a source below 2H . The significance of T t

13 over
rough surfaces is not a new finding and has been reported by Maitani (1979) and Raupach
(1981). Here we simply note that the momentum flux budget over real urban canopies has
not been analyzed thus far. The closest comparison is the momentum flux budget for plant
canopies based on measurements from Meyers and Baldocchi (1991). Our findings agree
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Fig. 9 The scalar variance budget terms normalized by H/(u∗s2∗). The grey region corresponds to 2H ≤ z ≤
5H while the dashed horizontal line is the maximum building height Hmax

Table 1 Percentage contribution

of Ps
T K E , P

w
T K E , P

m
T K E , T

t
T K E ,

T d
T K E ,T

p
T K E , DT K E and εT K E

to the total source and sink for the
considered layers

2H ≤ z ≤ 5H 5H < z ≤ 12H 12H < z ≤ 30H

Ps
T K E 69% (+) 75% (+) 91% (+)

Pw
T K E 31% (+) 23% (+) 9% (+)

Pm
T K E 0% 0% 0%

T t
T K E 9% (−) 13% (−) 3% (−)

T d
T K E 0% 2% (+) 4% (−)

T p
T K E 0% 1% (−) 0%

DT K E 0% 0% 0%

εT K E 91% (−) 86% (−) 93% (−)

(+) and (−) denote a source and sink of TKE, respectively

with Meyers and Baldocchi (1991) and Raupach et al. (1986) regarding the dominant role
of the shear production term Ps

13 and the pressure-strain correlation term SP13 above the
canopy.
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Table 2 Percentage contributions

of Ps
11, P

w
11, P

m
11, T

t
11, T

d
11,T

p
11,

SP11, D11 and ε11 to the total
source and sink for the
considered layers

2H ≤ z ≤ 5H 5H < z ≤ 12H 12H < z ≤ 30H

Ps
11 74% (+) 79% (+) 91% (+)

Pw
11 26% (+) 20% (+) 9% (+)

Pm
11 1% (−) 1% (−) 0% (+)

T t
11 5% (−) 9% (−) 6% (−)

T d
11 0% 1% (+) 1% (−)

T p
11 0% 0% 0%

D11 0% 0% 0%

ε11 34% (−) 29% (−) 28% (−)

SP11 60% (−) 61% (−) 65% (−)

(+) and (−) denote a source and sink of streamwise velocity variances,
respectively

Table 3 Percentage contributions

of Ps
33, P

w
33, P

m
33, T

t
33, T

d
33,T

p
33,

SP33, D33 and ε33 to the total
source and sink for the
considered layers

2H ≤ z ≤ 5H 5H < z ≤ 12H 12H < z ≤ 30H

Ps
33 0% 0% 0%

Pw
33 8% (+) 9% (+) 3% (+)

Pm
33 1% (+) 0% 0%

T t
33 8% (−) 8% (−) 3% (+)

T d
33 0% 2% (+) 4% (−)

T p
33 1% (+) 4% (−) 1% (−)

D33 0% 0% 0%

ε33 92% (−) 88% (−) 95% (−)

SP33 90% (+) 89% (+) 94% (+)

(+) and (−) denote a source and sink of vertical velocity variances,
respectively

Table 4 Percentage contributions

of Ps
13, P

w
13, P

m
13, T

t
13, T

d
13,T

p
13,

SP13 and D13 to the total source
and sink for the considered layers

2H ≤ z ≤ 5H 5H < z ≤ 12H 12H < z ≤ 30H

Ps
13 97% (+) 85% (+) 94% (+)

Pw
13 2% (+) 7% (+) 6% (+)

Pm
13 1% (+) 0% 0%

T t
13 4% (−) 11% (−) 5% (−)

T d
13 0% 0% 1% (−)

T p
13 5% (−) 8% (+) 4% (−)

D13 0% 0% 0%

SP13 91% (−) 89% (−) 90% (−)

(+) and (−) denote a source and sink of momentum fluxes, respectively
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Table 5 Percentage contribution

of Ps
SF , P

w
SF , P

m
SF , T

t
SF , T

d
SF

and PS to the total source and
sink for the considered layers

2H ≤ z ≤ 5H 5H < z ≤ 12H 12H < z ≤ 30H

Ps
SF 100% (+) 96% (+) 98% (+)

Pw
SF 1% (−) 4% (+) 2% (+)

Pm
SF 0% 0% 0%

T t
SF 15% (−) 21% (−) 5% (−)

T d
SF 1% (−) 0% 1% (−)

PS 83% (−) 79% (−) 94% (−)

(+) and (−) denote a source and sink of scalar fluxes, respectively

Table 6 Percentage contribution

of Ps
SV , P

w
SV , P

m
SV , T

t
SV , T

d
SV ,

DSV and εSV to the total source
and sink for the considered layers

2H ≤ z ≤ 5H 5H < z ≤ 12H 12H < z ≤ 30H

Ps
SV 63% (+) 91% (+) 95% (+)

Pw
SV 25% (+) 7% (+) 1% (+)

Pm
SV 5% (−) 1% (−) 0%

T t
SV 4% (+) 7% (−) 4% (+)

T d
SV 8% (+) 2% (+) 1% (−)

DSV 0% 0% 0%

εSV 95% (−) 92% (−) 99% (−)

(+) and (−) denote a source and sink of scalar variances, respectively

4.2.4 Scalar Flux

The results for the scalar flux budget are shown in Fig. 8 and Table 5. Compared to the TKE,
velocity variance, and momentum flux budgets, the scalar flux budget and the scalar variance
budget to be discussed in the following section still have relatively large residuals at the lower
heights since the SGS components of PS and the surface integral terms are incorporated into
the budget residual. The residuals gradually decrease with height and become zero around
2H and 4H in the scalar flux budget and the scalar variance budget, respectively. Hence,
the results below 2H and 4H for the scalar flux budget and the scalar variance budget,
respectively, should be interpreted with caution.

For the scalar flux budget, the terms Ps
SF , P

w
SF and PS have their extrema near the surface,

where large gradients of s occur. Ps
SF and PS terms dominate the budget at z/H > 2 while

Pw
SF is also important at z/H < 2,with the caveat that the residual remains large for z/H < 2.

Ps
SF is positive (since 〈s〉 is a decreasing function of height) above z/H = 1 and is nearly

balanced by the pressure gradient-scalar interaction PS, which acts to destroy scalar flux.
T t
SF is negative within the range 2H ≤ z ≤ 15, similar to the turbulent transport term for

momentum flux. Above 12H , T t
SF may be neglected since its contribution to the budget is

only 5%. All other terms are rather small (less than 5% contribution) (see Table 5).
Similar to the momentum flux budget, the scalar flux budget over real urban canopies has

not been analyzed so far. Hence, a direct comparison of our findings with previous results
is not possible. Profiles of Ps

SF and T t
SF agree with those in Coppin et al. (1986), in which

scalars were emitted within a plant canopy in a wind-tunnel. Unfortunately, all other terms
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were not computed in their study. Our finding regarding the dominance of Ps
SF and PS also

agrees with the simplified analysis of the scalar flux budget in the inertial sublayer (Garratt
1992).

4.2.5 Scalar Variance

In the budget of scalar variance, Ps
SV decreases with height from its peak near the surface.

Pw
SV also gradually decreases from its peak value near the surface and becomes negligible

at z/H = 6 (see Fig. 9). The form-induced production term Pm
SV is generally small. Hence,

the production term Ps
SV is the major source term above z/H = 6, which is balanced by

the scalar dissipation εSV (see Table 6). εSV is estimated similarly as the TKE dissipation

εT K E as τ ′
s, j

∂s′
∂x j

= τs, j
∂s
∂x j

− τs, j
∂s
∂x j

where τs, j is the SGS scalar flux, computed by the

SGS model. Ps
SV and εSV are dominant terms in the scalar variance budget, in agreement

with findings from Coppin et al. (1986). Other terms are minor except the transport terms
T t
SV (below 4H ) and T d

SV and DSV (below 2H ). However, we stress again that the residuals
below 4H are significant and thus the results below 4H should be interpreted with caution.

4.3 Relative Importance of the Dispersive Terms to the Reynolds Terms

As discussed in the introduction, due to difficulties in their measurement and simulation,
dispersive terms such aswake production and dispersive transport have received less attention
than their Reynolds counterparts. Results in Sect. 4.2 indicate that these dispersive budget
terms may be important, especially within the first layer (2 ≤ z/H ≤ 5).

In this section,we contrast the dispersive andReynolds budget termsby examining the ratio
of their absolute values for the entire urban canopy considered in our model domain. These
are labelled as “Ref” in Figs. 11 and 12. The ratios have been averaged over the considered
layers. We do not present this ratio for the streamwise and vertical velocity variances since
Ps
33 is zero and this ratio for the streamwise velocity variance is similar to that of TKE. The

symbol 〈ϑ〉v in Figs. 11 and 12 indicates that the profile ϑ is averaged within the given height
range.

Figure 11 shows the relative importance of wake production terms. For TKE, the ratio
of wake production term to shear production term decreases from 0.5 at 2 ≤ z/H ≤ 5 to
approximately zero at z/H = 15. For scalar variance, the ratio of wake production term to
shear production term also decreases with height, from a value of 0.4 at 2 ≤ z/H ≤ 5 and
approximately zero at z/H > 5. The ratios of wake production term to shear production term
for momentum and scalar fluxes exhibit similar profiles: they increase from 2 < z/H ≤ 5 to
their peak values at 5 < z/H ≤ 12 and then decreasewith height. Peak values formomentum
and scalar fluxes are however relatively small (about 0.15).

The ratio of dispersive to turbulent transport terms is presented in Fig. 12 for the considered
budget equations. Even though the magnitude of transport terms is small relative to the
production terms in general (see Sect. 4.2), the dispersive transport terms can be significant
relative to their turbulent counterparts. The relative importance of dispersive transport of TKE
increases from about 0.1 at 2 < z/H ≤ 5 to over 1 at 12 < z/H ≤ 15 and then decreaseswith
height. The ratios

〈∣∣T d
13

∣∣/
∣∣T t

13

∣∣〉
v
and

〈∣∣T d
SF

∣∣/
∣∣T t

SF

∣∣〉
v
are less than 0.2 throughout the studied

height ranges. For the scalar variance, the ratio of dispersive transport term to the turbulent
transport decreases monotonically with height from the peak value of 1.7 at 2 < z/H ≤ 5.
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In summary, the dispersive terms are more critical in the TKE and scalar variance budgets
than in the flux budgets. Their ratios to the corresponding Reynolds terms can be about 0.5
to 1 in the TKE and scalar variance budgets.

The next step is to determine the sensitivity of the relative importance of dispersive terms to
different urban geometric parameters. To do this, we partition our model domain (see Fig. 1a)
into four subdomains in the y-direction. The area for each subdomain is about 2.6×0.5 km2.
For this part of the analysis, the intrinsic spatial averaging is carried out over each subdomain

and hence the condition
〈
ϕ′′

〉
= 0 is satisfied. The building height distribution, the PDF of

building heights and the plan area fraction in each subdomain is presented in Fig. 10. The
ratios of the standard deviations of building height to the mean building heights (σH/H ) are
greater than 1 for subdomains 3 and 4 (subdomain 3 = 1.31, subdomain 4 = 1.04) but less
than 1 for the subdomains 1 and 2 (subdomain 1 = 0.72, subdomain 2 = 0.65).

Figure 11 shows the ratios of wake productions to shear productions for TKE, momentum
flux, scalar flux, and scalar variance in the subdomains. The importance of Pw

T K E decreases
with height in all subdomains. The ratio is larger than 1 for subdomain 4 for the layer
2 ≤ z/H ≤ 5 (see Fig. 11a). For the momentum/scalar fluxes, the ratios remain less than
0.15 for all subdomains. Still, subdomain 4 has the most significant values (see Fig. 11b,
c). For the scalar variance, the importance of wake production decreases with height for all
subdomains. Only in subdomain 4 is the ratio greater than 0.5 for the layer 2 ≤ z/H ≤ 5
(see Fig. 11d). All in all, these results suggest that the wake production, especially for TKE
and scalar variance, can become significant in the vicinity of tall buildings, as in subdomain
4. The enhanced importance of wake production in subdomain 4 suggests that the wake
production may depend on Hmax (or the ratio of Hmax and H ).

The ratios of dispersive transport to turbulent transport terms show a much wide range
of variabilities and do not exhibit any generalizable behaviors across the 4 subdomains. For
TKE, the ratio has the most significant value of 0.5 in subdomain 4 at the layer 2 ≤ z/H ≤ 5
(see Fig. 12a). For momentum flux, the ratio has the largest value of 6 in subdomain 4 in 12
< z/H ≤ 30. For scalar flux, the maximum value of the ratio is about 8 and again occurs in
subdomain 4 at the layer 2 ≤ z/H ≤ 5. However, for scalar variance, the most considerable
value of the ratio occurs in subdomain 2 at the layer 2 ≤ z/H ≤ 5 (see Fig. 12d). There seems
to be no single parameter that controls the relative importance of the dispersive transport, at
least over the real urban canopies studied here.

5 Conclusion

This study analyses budgets of double-averaged second-order turbulence moments over a
real urban canopy using large-eddy simulation. We focus on the budgets above the mean
building height, where residual terms are generally negligible. The TKE budget shows that
shear production is the primary source of TKE, whereas dissipation is the primary sink.
Interestingly, wake production is also an important contribution to the TKE budget.

The pressure-strain correlation terms play an essential role in the velocity variance budgets.
These terms redistribute energy between velocity components, thereby driving turbulence to
the isotropic state. Over the considered urban canopy, pressure-strain correlation terms are
responsible for the growth of the vertical-velocity variance at the expense of the streamwise
velocity variance, as commonly observed in shear flows.

Along with the shear production term, the pressure-strain correlation term plays a vital
role in the budget of momentum flux, where turbulent and pressure transport terms appear to
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Fig. 10 The building heights in the subdomains (left) and the distributions of building heights (right) showing
the mean building height H , maximum building height Hmax, standard deviation of building height σH and
plan area fraction λp in a subdomain 4 b subdomain 3 c subdomain 2 d subdomain 1

be of secondary importance. The budget of scalar flux is dominated by the shear production
and pressure gradient-scalar interaction terms, while the turbulent transport appears to be of
secondary importance. However, along with the shear production and the scalar dissipation
terms, the wake production, and turbulent and dispersive transport terms are important for
the budget of scalar variances in the 2 ≤ z/H ≤ 5 interval.

In addition to the above analysis, we also examine the relative importance of the dispersive
terms to the correspondingReynolds terms in ourmodel domain and in a range of subdomains.
To achieve this, our model domain is partitioned into four subdomains in the y-direction.

123



E. O. Akinlabi et al.

Fig. 11 Ratios of wake productions to shear productions, averaged over the considered z/H intervals for
a T K E , b momentum flux, c scalar flux and d scalar variance in 4 subdomains in Fig. 10 and the domain in
Fig. 1 denoted as “Ref”

For each case, the ratio of wake production to shear production and the ratio of dispersive
transport to turbulent transport averaged over different z/H intervals, are examined for TKE,
momentum flux, scalar flux and scalar variance budgets. The importance of wake production
of TKE and scalar variances decreases with height, and this importance appears to depend on
the maximum building height (or the ratio of maximum building height to the mean building
height), although more investigations are needed to confirm this. Wake production is less
significant for momentum and scalar flux budget equations. The dispersive transport terms
can be significant relative to their turbulent counterpart, but we could not identify any trend
of how these terms vary as a function of the morphological parameters over the considered
urban canopies.

Results from this work have implications for both single-layer and multi-layer urban
canopy parameterizations, which have been developed to represent the flow and transport
within and above neighborhoods in NWP and global climate models. Both single-layer (Mas-
son 2000; Kusaka et al. 2001) andmulti-layer (Martilli et al. 2002; Schoetter et al 2020) urban
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Fig. 12 Ratios of dispersive transport to turbulent transport terms averaged over the considered z/H intervals
for a T K E , b momentum flux, c scalar flux and d scalar variance in 4 subdomains in Fig. 10 and the domain
in Fig. 1 denoted as “Ref”

canopy parameterizations often assume horizontal homogeneity for canopies and neglect
dispersive fluxes and dispersive transport. Our work indicates that dispersive fluxes (and dis-
persive transport) over real urban canopies can be important even above the mean building
height. For single-layer urban canopy parameterizations coupled to an atmospheric model,
this finding raises the question of whether dispersive fluxes should be parameterized, in addi-
tion to turbulent fluxes, despite that the lowest atmospheric grid is often above the mean
building height. For multi-layer urban canopy parameterizations, our study supports and
complements recent work that emphasizes the importance of dispersive stress relative to
turbulent stress and the role of wake production in the TKE budget over idealized urban
canopies (Nazarian et al. 2020). Our results further highlight that multi-layer urban canopy
parameterization should properly consider the dissimilarity between momentum and scalar
transport over real urban canopies. Findings from this work are limited to neutrally strati-
fied ambient conditions; further investigations are needed to examine the impact of thermal
stratification (stable or unstable) on the considered flow statistics.
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Appendix 1: Derivation of the Double-Averaged Second-OrderMoment
Budget Equations

In this appendix, we show how the budgets of double-averaged second-order moments are
obtained. For simplicity, we only derive the budget equation for the double-averaged Reynold
stress tensor (Eq. 5) , scalar flux (Eq. 8) and scalar variance (Eq. 9). Budget equations for other
second-order moments can be obtained in a similar fashion. Note that all budget equations
are derived for neutral conditions with the Boussinesq approximation.

The LES resolved Reynold stress tensor u
′
i u

′
k budget equation is given as:

∂u′
i u

′
k

∂t
+ u j

∂u′
i u

′
k

∂x j
= − u′

ku
′
j
∂ui
∂x j

− u′
i u

′
j
∂uk
∂x j

− ∂u′
i u

′
j u

′
k

∂x j

− 1

ρ

(
u′
k∂ p

′
∂xi

+ u′
i∂ p

′
∂xk

)

−
⎛

⎝
u′
k∂τ ′SGS

i j

∂x j
+ u′

i∂τ ′SGS
jk

∂x j

⎞

⎠, (10)

where τ
′SGS
i j = −νt

∂u
′
i

∂xJ
is the SGS stress tensor and νt represents the SGS eddy viscosity.

The first term on the left-hand side of Eq. 10 represents the local change of u
′
i u

′
k while the

second is the advection of u
′
i u

′
k . On the right-hand side, the first two terms are the production

terms resulting from the interaction of the mean flow and turbulence while the third term can

be interpreted as the transport of u
′
i u

′
k by turbulent fluctuations (i.e., the turbulent transport

term). The fourth term represents the interaction of the fluctuating pressure and velocity fields
while the last term is the SGS term. After some algebraic manipulation on the last term, we
have:

∂u′
i u

′
k

∂t
+ u j

∂u′
i u

′
k

∂x j
= − u′

ku
′
j
∂ui
∂x j

− u′
i u

′
j
∂uk
∂x j

− ∂u′
i u

′
j u

′
k

∂x j
− 1

ρ

(
∂ p′u′

k

∂xi
+ ∂ p′u′

i

∂xk

)
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+ 1

ρ

(

p′ ∂u
′
k

∂xi
+ p′ ∂u

′
i

∂xk

)

− ∂

∂x j

(
u′
iτ

′SGS
jk

)
− ∂

∂x j

(
u′
kτ

′SGS
i j

)

+ τ ′SGS
i j

∂u′
k

∂x j
+ τ ′SGS

jk

∂u′
i

∂x j
. (11)

Now the pressure term is split into the pressure transport term (the fourth term on the
right-hand side) and the pressure-strain correlation term (the fifth term on the right-hand
side). The SGS term also includes four terms: the SGS diffusion terms (the sixth and seventh
term on the right-hand side) and the SGS dissipation terms (the eighth and nineth term on
the right-hand side). To facilitate derivations, we write the advection term on the left-hand
side of the above equation in its flux form by invoking the Boussinesq approximation:

∂u′
i u

′
k

∂t
+ ∂u ju′

i u
′
k

∂x j
= − u′

ku
′
j
∂ui
∂x j

− u′
i u

′
j
∂uk
∂x j

− ∂u′
i u

′
j u

′
k

∂x j
− 1

ρ

(
∂ p′u′

k

∂xi
+ ∂ p′u′

i

∂xk

)

+ 1

ρ

(

p′ ∂u
′
k

∂xi
+ p′ ∂u

′
i

∂xk

)

− ∂

∂x j

(
u′
iτ

′SGS
jk

)
− ∂

∂x j

(
u′
kτ

′SGS
i j

)

+ τ ′SGS
i j

∂u′
k

∂x j
+ τ ′SGS

jk

∂u′
i

∂x j
. (12)

Applying the intrinsic spatial averaging to the above equation and following the rules in
Eqs. 2 and 4, we have:

∂
〈
u′
i u

′
k

〉

∂t
+ 1

αp

∂αp

〈
u ju′

i u
′
k

〉

∂x j

= −
(〈

u′
ku

′
j

〉∂〈ui 〉
∂x j

+
〈
u′
i u

′
j

〉∂〈uk〉
∂x j

)
−

(〈
u′
ku

′
j
′′ ∂ui ′′

∂x j

〉
+

〈
u′
i u

′
j
′′ ∂uk ′′

∂x j

〉)

−
(〈

u′
ku

′
j

〉〈∂ui ′′

∂x j

〉
+

〈
u′
i u

′
j

〉〈∂uk ′′

∂x j

〉)
− 1

αp

∂αp

〈
u′
i u

′
j u

′
k

〉

∂x j

− 1

ραp

⎛

⎝
∂αp

〈
p′u′

k

〉

∂xi
+

∂αp

〈
p′u′

i

〉

∂xk

⎞

⎠ + 1

ρ

(〈

p′ ∂u
′
k

∂xi

〉

+
〈

p′ ∂u
′
i

∂xk

〉)

− 1

αp

∂αp

〈
u′
iτ

′SGS
jk

〉

∂x j

− 1

αp

∂αp

〈
u′
kτ

′SGS
i j

〉

∂x j
+

〈

τ ′SGS
i j

∂u′
k

∂x j

〉

+
〈

τ ′SGS
jk

∂u′
i

∂x j

〉

. (13)

Note that the surface integral does not show up in the above equation due to the no-slip
boundary conditions. We can further expand the advection term as:

1

αp

∂αp

〈
u ju′

i u
′
k

〉

∂x j
= 1

αp

∂αp
〈
u j

〉〈
u′
i u

′
k

〉

∂x j
+ 1

αp

∂αp

〈
u′
i u

′
k
′′
u j

′′
〉

∂x j

= 〈
u j

〉 1
αp

∂αp

〈
u′
i u

′
k

〉

∂x j
+ 1

αp

∂αp

〈
u′
i u

′
k
′′
u j

′′
〉

∂x j
. (14)
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Substituting into Eq. 13 gives:

∂
〈
u′
i u

′
k

〉

∂t
+ 〈

u j
〉 1
αp

∂αp

〈
u′
i u

′
k

〉

∂x j
+ 1

αp

∂αp

〈
u′
i u

′
k
′′
u j

′′
〉

∂x j

= −
(

〈u′
ku

′
j 〉

∂〈ui 〉
∂x j

+ 〈u′
i u

′
j 〉

∂〈uk〉
∂x j

)

−
(

〈u′
ku

′
j
′′ ∂ui ′′

∂x j
〉 + 〈u′

i u
′
j
′′ ∂uk ′′

∂x j
〉
)

−
(

〈u′
ku

′
j 〉〈

∂ui ′′

∂x j
〉 + 〈u′

i u
′
j 〉〈

∂uk ′′

∂x j
〉
)

− 1

αp

∂αp〈u′
i u

′
j u

′
k〉

∂x j

− 1

ραp

(
∂αp〈p′u′

k〉
∂xi

+ ∂αp〈p′u′
i 〉

∂xk

)

+ 1

ρ

(

〈p′ ∂u
′
k

∂xi
〉 + 〈p′ ∂u

′
i

∂xk
〉
)

− 1

αp

∂αp〈u′
iτ

′SGS
jk 〉

∂x j
− 1

αp

∂αp〈u′
kτ

′SGS
i j 〉

∂x j
+ 〈τ ′SGS

i j

∂u′
k

∂x j
〉 + 〈τ ′SGS

jk

∂u′
i

∂x j
〉. (15)

When we apply Eq. 15 to diagnosing our LES outputs, further simplifications can be
made. First, we assume horizontal homogeneity at scales beyond the spatial averaging scale,
consistent with the doubly periodic boundary conditions used in our LES. This assumption
does not imply that the flow is horizontally homogeneous at the grid cell scale. In fact,
the dispersive terms would not exist if horizontal homogeneity at the grid cell scale was
assumed. Rather, this assumption means that the volume-averaged flow fields (represented
by〈.〉) have no horizontal gradients. Therefore, ∂〈.〉

∂x = ∂〈.〉
∂ y = 0. Second, we analyze the

budgets at stationary conditions and hence ∂〈.〉
∂t = 0. Third, due to the use of doubly periodic

boundary condition and continuity, the mean vertical velocity is zero (i.e., no large-scale
subsidence, 〈w〉 = 0). Furthermore, because of the assumption of horizontal homogeneity
at scales beyond the spatial averaging scale, αp becomes also only a function of z and thus

only ∂αp
∂z = dαp

dz is non-zero. With these assumptions, we have:

0 = − 1

αp

dαp

〈
u

′
i u

′
k

′′
w

′′
〉

dz

−
(〈

u
′
kw

′
〉d〈ui 〉

dz
+

〈
u

′
iw

′
〉d〈uk〉

dz

)
−

(〈

u
′
ku

′
j

′′ ∂ui
′′

∂x j

〉

+
〈

u
′
i u

′
j

′′ ∂uk
′′

∂x j

〉)

−
(〈

u
′
ku

′
j

〉〈∂ui
′′

∂x j

〉

+
〈
u

′
i u

′
j

〉〈∂uk
′′

∂x j

〉)

− 1

αp

⎛

⎝
dαp

〈
u

′
iw

′u ′
k

〉

dz

⎞

⎠

− 1

ραp

⎛

⎝
∂αp

〈
p′u ′

k

〉

∂xi
+

∂αp

〈
p′u ′

i

〉

∂xk

⎞

⎠ + 1

ρ

(〈

p′ ∂u
′
k

∂xi

〉

+
〈

p′ ∂u
′
i

∂xk

〉)

− 1

αp

dαp

〈
u

′
iτ

′SGS
3k

〉

dz
− 1

αp

dαp

〈
u

′
kτ

′SGS
i3

〉

dz
+

〈

τ
′SGS
i j

∂u
′
k

∂x j

〉

+
〈

τ
′SGS
jk

∂u
′
i

∂x j

〉

. (16)
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To facilitate our analysis, we group and name the terms as follows:

0 = − 1

αp

dαp

〈
u

′
i u

′
k

′′
w

′′
〉

dz
︸ ︷︷ ︸
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〉
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+
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〉

+
〈

τ
′SGS
jk

∂u
′
i

∂x j

〉

︸ ︷︷ ︸
εik

, (17)

where Ps
ik is the shear production term, Pw

ik is the wake (dispersive) production term, Pm
ik

is the work of the temporally averaged velocity fluctuations against the shear production
(given that αp varies with height, Pm

ik �= 0, see Eq. 5), T t
ik is the turbulent transport term,

T d
ik is dispersive transport term, T p

ik is the pressure transport term, SPik is the pressure-strain
correlation, Dik is the SGS transport term and εik is the dissipation term. From the budget

equation for the Reynold stress tensor above, we can obtain the momentum flux
〈
w′u′

〉
and

velocity variances budget equations.
Similar steps can be followed to obtain the scalar flux budget equation as follows. The

LES resolved u′
i s

′ budget equation is given as:

∂u
′
i s

′
∂t

+ u j
∂u

′
i s

′
∂x j

= − s′u ′
j
∂ui
∂x j

− u
′
i u

′
j

∂s

∂x j
− ∂u

′
i u

′
j s

′

∂x j

− 1

ρ
s′ ∂ p′

∂xi
− s′ ∂τ ′SGS

i j

∂x j
− u′

i

∂τ ′SGS
s, j

∂x j
, (18)

where τ ′SGS
s, j = −kS

∂s′
∂x j

is the SGS scalar flux and kS represents the scalar diffusivity. All
terms in Eq. 18 have similar definitions to those in Eq. 10. On the left-hand side of Eq. 18, we
have the local change and advection terms. On the right-hand side, there are two production
terms, a transport term, a pressure gradient-scalar interaction term and two SGS terms. After
some algebraic manipulation of the last two terms and writing the advection term in its flux
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form, we have:

∂u′
i s

′
∂t

+ ∂u ju′
i s

′
∂x j

= − s′u′
j
∂ui
∂x j

− u′
i u

′
j

∂s

∂x j
− ∂u′

i u
′
j s

′

∂x j

− 1

ρ
s′ ∂ p′

∂xi
− ∂

∂x j

(
s′τ ′SGS

i j

)
− ∂

∂x j

(
u′
iτ

′SGS
s, j

)
+ τ ′SGS

i j
∂s′
∂x j

+ τ ′SGS
s, j

∂u′
i

∂x j
. (19)

Applying the intrinsic spatial averaging to the above equation and following the rules in
Eqs. 2 and 4, we have:

∂
〈
u′
i s

′
〉

∂t
+ 1

αp

∂αp

〈
u ju′

i s
′
〉

∂x j
+ 1

V

∫
u ju′

i s
′n jd A

= −
(〈

s′u′
j

〉∂〈ui 〉
∂x j

+
〈
u′
i u

′
j

〉 1

αp

∂αp〈s〉
∂x j

+
〈
u′
i u

′
j

〉 1
V

∫
sn j dA

)

−
(〈

s′u′
j
′′ ∂ui ′′

∂x j

〉
+

〈
u′
i u

′
j
′′ ∂s′′

∂x j

〉)
−

(〈
s′u′

j

〉〈∂ui ′′

∂x j

〉
+

〈
u′
i u

′
j

〉〈 ∂s′′

∂x j

〉)

− 1

αp

∂αp〈u′
i u

′
j s

′〉
∂x j

− 1

V

∫
u′
i u

′
j s

′n j dA − 1

ρ

〈

s′ ∂ p′
∂xi

〉

− 1

αp

∂αp

〈
s′τ ′SGS

i j

〉

∂x j

− 1

V

∫
s′τ ′SGS

i j n j dA − 1

αp

∂αp

〈
u′
iτ

′SGS
s, j

〉

∂x j
− 1

V

∫
u′
iτ

′SGS
s, j n j dA

+
〈

τ ′SGS
i j

∂s′
∂x j

〉

+
〈

τ ′SGS
s, j

∂u′
i

∂x j

〉

. (20)

We can further expand the advection term as:

1

αp

∂αp

〈
u ju′

i s
′
〉

∂x j
= 1

αp

∂αp
〈
u j

〉〈
u′
i s

′
〉

∂x j
+ 1

αp

∂αp

〈
u′
i s

′′′u j
′′
〉

∂x j

= 〈
u j

〉 1
αp

∂αp

〈
u′
i s

′
〉

∂x j
+ 1

αp

∂αp

〈
u′
i s

′′′u j
′′
〉

∂x j
. (21)

Substituting into Eq. 20 gives:

∂
〈
u′
i s

′
〉

∂t
+ 〈

u j
〉 1
αp

∂αp

〈
u′
i s

′
〉

∂x j
+ 1

αp

∂αp

〈
u′
i s

′′′u j
′′
〉

∂x j
+ 1

V

∫
u ju′

i s
′n j dA

= −
(〈

s′u′
j

〉∂〈ui 〉
∂x j

+
〈
u′
i u

′
j

〉 1

αp

∂αp〈s〉
∂x j

+
〈
u′
i u

′
j

〉 1
V

∫
sn j dA

)

−
(〈

s′u′
j
′′ ∂ui ′′

∂x j

〉
+

〈
u′
i u

′
j
′′ ∂s′′

∂x j

〉)
−

(〈
s′u′

j

〉〈∂ui ′′

∂x j

〉
+

〈
u′
i u

′
j

〉〈 ∂s′′

∂x j

〉)

− 1

αp

∂αp

〈
u′
i u

′
j s

′
〉

∂x j
− 1

V

∫
u′
i u

′
j s

′n j dA − 1

ρ

〈

s′ ∂ p′
∂xi

〉

− 1

αp

∂αp

〈
s′τ ′SGS

i j

〉

∂x j
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− 1

V

∫
s′τ ′SGS

i j n j dA − 1

αp

∂αp

〈
u′
iτ

′SGS
s, j

〉

∂x j
− 1

V

∫
u′
iτ

′SGS
s, j n j dA

+
〈

τ ′SGS
i j

∂s′
∂x j

〉

+
〈

τ ′SGS
s, j

∂u′
i

∂x j

〉

. (22)

When we make further simplification to Eq. 22 by assuming horizontal homogeneity at
scales beyond the spatial averaging scale, stationary conditions and no large-scale subsidence,
we have:

0 = − 1

αp

dαp

〈
u′
i s

′′′w′′
〉

dz
− 1

V

∫
u ju′

i s
′n jd A

−
(〈

s′w′
〉d〈ui 〉

dz
+

〈
u′
iw

′
〉 1

αp

dαp〈s〉
dz

+
〈
u′
i u

′
j

〉 1
V

∫
sn j d A

)

−
(〈

s′u′
j
′′ ∂ui ′′

∂x j

〉
+

〈
u′
i u

′
j
′′ ∂s′′

∂x j

〉)
−

(〈
s′u′

j

〉〈∂ui ′′

∂x j

〉
+

〈
u′
i u

′
j

〉〈 ∂s′′

∂x j

〉)

− 1

αp

⎛

⎝
dαp

〈
u′
iw

′s′
〉

dz

⎞

⎠ − 1

V

∫
u′
i u

′
j s

′n jd A − 1

ρ

〈

s′ ∂ p′
∂xi

〉

− 1

αp

dαps′τ ′SGS
i3

dz

− 1

V

∫
s′τ ′SGS

i j n j d A − 1

αp

dαp

〈
u′
iτ

′SGS
s,3

〉

dz
− 1

V

∫
u′
iτ

′SGS
s, j n j d A

+
〈

τ ′SGS
i j

∂s′
∂x j

〉

+
〈

τ ′SGS
s, j

∂u′
i

∂x j

〉

. (23)

Focusing on the vertical scalar flux (namely, i = 3) and noticing that
∫ (

u ju′
i s

′ + w′u′
j s

′ + w′τ ′SGS
s, j

)
n jd A = 0 because u′

j = u j = 0 at the fluid–solid interface,

the above equation becomes:

0 = − 1

αp

dαp

〈
w′s′′′w′′ 〉

dz
︸ ︷︷ ︸

T d
SF

−
(

1

αp

〈
w′w′

〉dαp〈s〉
dz

)

︸ ︷︷ ︸
Ps
SF

−
(〈

u
′
j s

′
′′ ∂w

′′

∂x j

〉

+
〈

w′u ′
j

′′ ∂s
′′

∂x j

〉)

︸ ︷︷ ︸
Pw
SF

−
(〈

s′u ′
j

〉〈∂w
′′

∂x j

〉

+
〈
w′u ′

j

〉〈 ∂s
′′

∂x j

〉)

︸ ︷︷ ︸
Pm
SF

− 1

αp

dαp

〈
w′w′s′

〉

dz
︸ ︷︷ ︸

T t
SF

− 1

ρ

〈

s′ ∂ p′
∂z

〉

︸ ︷︷ ︸
PS

− 1

αp

dαp

〈
s′τ ′SGS

33

〉

dz
− 1

αp

dαp

〈
w′τ ′SGS

s,3

〉

dz
+

〈

τ
′SGS
3 j

∂s′
∂x j

〉

+
〈

τ
′SGS
s, j

∂w′
∂x j

〉

︸ ︷︷ ︸
DSF
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− 1

V

(∫
s′τ ′SGS

3 j n j d A +
〈
w′u ′

j

〉 ∫
sn j d A

)
,

︸ ︷︷ ︸
ψSF

(24)

where the definitions for Ps
SF , P

w
SF , P

m
SF , T

t
SF and T d

SF are similar to those in Eq. 17. PS is
the pressure gradient-scalar interaction and DSF include the SGS terms; ψSF is the surface
integral term that arises from the averaging theorem.

The scalar variance budget equation can be obtained using similar steps. The LES resolved
s′2 budget equation is given as:

∂s′2
∂t

+ u j
∂s ′2

∂x j
= −2s′u′

j
∂s

∂x j
− ∂s′2u′

j

∂x j
− s′ ∂τ ′SGS

s, j

∂x j
. (25)

All terms in Eq. 25 have similar definitions to those in Eq. 10. The left-hand side of Eq. 25
has the local change and advection terms while the right-hand side has the production term,
transport term and SGS term. After some algebraic manipulation of the last term and writing
the advection term in its flux:form, we have

∂s ′2

∂t
+ ∂u j s

′2

∂x j
= −2s′u ′

j
∂s

∂x j
− ∂s ′2u

′
j

∂x j
− ∂

∂x j

(
s′τ ′SGS

s, j

)
+ τ

′SGS
s, j

∂s′
∂x j

. (26)

Applying the intrinsic spatial averaging to the above equation and following the rules in
Eqs. 2 and 4, we have:

∂
〈
s ′2

〉

∂t
+ 1

αp

∂αp

〈
u j s

′2
〉

∂x j
+ 1

V

∫
u j s

′2n jd A

= − 2

(〈
s′u ′

j

〉 1

αp

∂αp〈s〉
∂x j

+
〈
s′u ′

j

〉 1
V

∫
sn j dA

)
− 2

〈

s′u ′
j

′′ ∂s
′′

∂x j

〉

− 2
〈
s′u ′

j

〉〈 ∂s
′′

∂x j

〉

− 1

αp

∂αp

〈
s ′2u

′
j

〉

∂x j
− 1

V

∫
s ′2u

′
j n j dA − 1

αp

∂αp

〈
s′τ ′SGS

s, j

〉

∂x j

− 1

V

∫
s′τ ′SGS

s, j n j dA +
〈

τ
′SGS
s, j

∂s′
∂x j

〉

. (27)

We can further expand the advection term as:

1

αp

∂αp

〈
u j s

′2
〉

∂x j
= 1

αp

∂αp
〈
u j

〉〈
s ′2

〉

∂x j
+ 1

αp

∂αp

〈
s ′2

′′
u j

′′
〉

∂x j

= 〈
u j

〉 1
αp

∂αp

〈
s ′2

〉

∂x j
+ 1

αp

∂αp

〈
s ′2

′′
u j

′′
〉

∂x j
. (28)

Substituting into Eq. 27 gives:

∂
〈
s ′2

〉

∂t
+ 〈

u j
〉 1
αp

∂αp

〈
s ′2

〉

∂x j
+ 1

αp

∂αp

〈
s ′2

′′
u j

′′
〉

∂x j
+ 1

V

∫
u j s

′2n j dA
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= − 2

(〈
s′u ′

j

〉 1

αp

∂αp〈s〉
∂x j

+
〈
s′u ′

j

〉 1
V

∫
sn j dA

)
− 2

〈

s′u ′
j

′′ ∂s
′′

∂x j

〉

− 2
〈
s′u ′

j

〉〈 ∂s
′′

∂x j

〉

− 1

αp

∂αp

〈
s ′2u

′
j

〉

∂x j
− 1

V

∫
s ′2u

′
j n j dA − 1

αp

∂αp

〈
s′τ ′SGS

s, j

〉

∂x j

− 1

V

∫
s′τ ′SGS

s, j n j dA +
〈

τ
′SGS
s, j

∂s′
∂x j

〉

. (29)

When we make further simplification to Eq. 29 by assuming horizontal homogeneity at
scales beyond the spatial averaging scale, stationary conditions and no large-scale subsidence,
we have:

0 = − 1

αp

dαp

〈
s ′2

′′
w

′′
〉

dz
− 1

V

∫
u j s

′2n jd A

− 2

(〈
w′s ′

〉 1

αp

dαp〈s〉
dz

+
〈
s′u ′

j

〉 1
V

∫
sn j d A

)

− 2

〈

s′u ′
j

′′ ∂s
′′

∂x j

〉

− 2
〈
s′u ′

j

〉〈 ∂s
′′

∂x j

〉

− 1

αp

⎛

⎝
dαp

〈
w′s ′2

〉

dz

⎞

⎠ − 1

V

∫
s ′2u

′
j n j d A

− 1

αp

dαp

〈
s′τ ′SGS

s,3

〉

dz
− 1

V

∫
s′τ ′SGS

s, j n j d A +
〈

τ
′SGS
s, j

∂s′
∂x j

〉

. (30)

Noticing that
∫
(u j s′2+s′2u′

j )n jd A = 0 because u′
j = u j = 0 at the fluid–solid interface,

the above equation becomes:

0 = − 1

αp

dαp

〈
s ′2′′

w′′
〉

dz
︸ ︷︷ ︸

T d
SV

−2
〈
w′s ′

〉 1

αp

dαp〈s〉
dz

︸ ︷︷ ︸
Ps
SV

−2

〈
s′u ′

j

′′ ∂s′′

∂x j

〉

︸ ︷︷ ︸
Pw
SV

−2
〈
s′u ′

j

〉〈 ∂s′′

∂x j

〉

︸ ︷︷ ︸
Pm
SV

− 1

αp

dαp

〈
w′s ′2

〉

dz
︸ ︷︷ ︸

T t
SV

− 1

αp

dαp

〈
s′τ ′SGS

s,3

〉

dz
︸ ︷︷ ︸

DSV

+
〈

τ
′SGS
s, j

∂s′
∂x j

〉

︸ ︷︷ ︸
εSV

− 1

V

(∫
s′τ ′SGS

s, j n j d A + 2
〈
s′u ′

j

〉 ∫
sn j d A

)
,

︸ ︷︷ ︸
ψSV

(31)

where the definitions for Ps
SV , P

w
SV , P

m
SV , T

t
SV , T

d
SV and DSV are similar to those inEq. 17; εSV

is the scalar dissipation term; ψSV is the surface integral term that arises from the averaging
theorem.
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