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ABSTRACT: The two-resistance mechanism (TRM) attribution method, which was designed to analyze the urban–rural
contrast of temperature, is improved to study the urban–rural contrast of heat stress. The improved method can be applied
to diagnosing any heat stress index that is a function of temperature and humidity. As an example, in this study we use it to
analyze the summertime urban–rural contrast of simplified wet bulb globe temperature (SWBGT) simulated by the Geo-
physical Fluid Dynamics Laboratory land model coupled with an urban canopy model. We find that the urban–rural con-
trast of SWBGT is primarily caused by the lack of evapotranspiration in urban areas during the daytime and the release of
heat storage during the nighttime, with the urban–rural differences in aerodynamic features playing either positive or nega-
tive roles depending on the background climate. Compared to the magnitude of the urban–rural contrast of temperature,
the magnitude of the urban–rural contrast of SWBGT is damped due to the moisture deficits in urban areas. We further
find that the urban–rural contrast of 2-m air temperature/SWBGT is fundamentally different from that of canopy air tem-
perature/SWBGT. Turbulent mixing in the surface layer leads to much smaller urban–rural contrasts of 2-m air tempera-
ture/SWBGT than their canopy air counterparts.

SIGNIFICANCE STATEMENT: Heat leads to serious public health concerns, but urban and rural areas have differ-
ent levels of heat stress. Our study explains the magnitude and pattern of the simulated urban–rural contrast in heat
stress at the global scale and improves an attribution method to quantify which biophysical processes are mostly respon-
sible for the simulated urban–rural contrast in heat stress. We highlight two well-known causes of higher heat stress in
cities: the lack of evapotranspiration and the stronger release of heat storage. Meanwhile, we draw attention to the veg-
etation types in rural areas, which determine the urban–rural difference in surface roughness and significantly affect the
urban–rural difference in heat stress. Last, we find the urban–rural contrasts of 2-m air temperature/SWBGT are largely
reduced relative to their canopy air counterparts due to the turbulent mixing effect.
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1. Introduction

Prolonged exposure to heat leads to serious health prob-
lems such as heat exhaustion, heatstroke, and heart diseases
(Matthies et al. 2008). In 2003 and 2010, Europe and Russia
experienced unprecedented heatwaves, causing around 40 000
and 55000 deaths, respectively (Robine et al. 2008; Barriopedro
et al. 2011). More recently in June 2021, the Pacific Northwest
of the United States and Canada experienced record-breaking
high temperatures far above 1048F, leading to spikes in death
and sharp increases in hospital visits (World Meterological
Organization 2021). Heat is now widely recognized as the num-
ber one weather killer in the United States (National Weather
Service 2021).

Urban residents are often believed to experience higher
heat stresses due to the higher temperatures in cities com-
pared to the surrounding suburban and rural areas, which is

known as the urban heat island (UHI) effect. Much effort has
been made to understand the influence of cities on weather
and climate (Howard 1833; Landsberg 1981; Oke 1978; Seto
and Shepherd 2009, and references therein), especially the
UHI effect (Oke 1981, 1982; Yow 2007; Grimmond 2007;
McCarthy et al. 2010; Oleson 2012). Nowadays it is known
that the UHI effect is caused by many factors, including the
lack of vegetation, the use of man-made materials with large
thermal admittance, the radiative trapping effect of the three-
dimensional urban canyon, and the anthropogenic heat emis-
sions in cities (Oke et al. 2017). Increasingly sophisticated
urban parameterizations have been developed to represent
urban land surface and hydrological processes in numerical
weather prediction models, global climate models, and Earth
system models, allowing the simulation of UHI intensities
across time and space (Masson 2000; Kusaka et al. 2001;
Oleson et al. 2008b,a; Grimmond et al. 2010, 2011; Oleson
et al. 2011; Li et al. 2016a,b; Best and Grimmond 2015).

However, ambient temperature is not the only environmen-
tal component of heat stress (Fanger 1972). When considering
human thermal comfort and heat-related health issues, it is
often important to also consider humidity because evapora-
tion of sweat is a primary method for the human body to dissi-
pate heat (Sherwood and Huber 2010). Although the urban
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temperature is generally higher than the rural temperature,
the humidity levels in cities are often lower than those in rural
areas (Oke et al. 2017), offsetting some of the enhanced heat
stresses induced by the UHI effects (Chakraborty et al. 2022).
Other factors such as radiation and wind speed also play im-
portant roles (Fanger 1972) and a large number of heat stress
indices exist in the literature with different assumptions built
into them (Anderson et al. 2013; Buzan et al. 2015).

In the climate modeling literature, a primary focus of previ-
ous studies has been quantifying how heat stress changes un-
der a warming climate (Willett and Sherwood 2012; Dunne
et al. 2013; Zhang et al. 2021). Only a handful of studies spe-
cifically examined the urban–rural contrast of heat stress and
how urban and rural heat stresses respond to climate change
differently. Based on simulations with the Community Cli-
mate System Model whose land component, the Community
Land Model (CLM), includes an urban canopy model (UCM),
Fischer et al. (2012) found that the humidity deficits offset the
enhanced heat stresses in urban areas due to the UHI effects,
but only weakly. Moreover, they reported that the positive
urban–rural contrast of heat stress is most pronounced at night
and over midlatitudes and subtropics. Oleson et al. (2015) ex-
amined five heat stress indices [i.e., the National Weather Ser-
vice heat index, the apparent temperature, the simplified web
bulb globe temperature (SWBGT), the humidex, and the
discomfort index] over North America using CLM. They
highlighted that both the present-day urban–rural contrast
of heat stress and the climate change impact on heat stress
are highly dependent on which heat stress index is used and
the urban density.

Different from previous work which largely focused on
simulating the urban–rural contrast of heat stress in histori-
cal and future climates, the goal of this study is to quantify
which biophysical processes (and their parameterizations)
are mostly responsible for the simulated urban–rural con-
trast of heat stress by a global model. The premise is that
only by doing so can we explain the magnitude and pattern
of the simulated urban–rural contrast of heat stress by a
model, as well as the differences in the simulated results by
different models. To accomplish this, we develop an attribu-
tion method for the urban–rural contrast of heat stress indices
that are functions of temperature and humidity, building on a
recent method (Rigden and Li 2017) that has been used to at-
tribute the urban–rural contrast of temperature (or the UHI
intensity). Then we apply the improved method to analyzing
the urban–rural contrast of SWBGT simulated by the Geo-
physical Fluid Dynamics Laboratory land model coupled with
a UCM.

Here we note that recent studies reported biases associated
with the SWBGT relative to the web-bulb globe temperature
(WBGT) (Grundstein and Cooper 2018; Kong and Huber
2022) because the SWBGT does not consider wind and radia-
tion factors, which vary with the vegetation density and/or
land surface type (Middel et al. 2021). Nonetheless, the use
of SWBGT in this study serves as an example to demon-
strate how the improved method can be applied to analyzing
any heat stress indices as long as they are only functions of
temperature and humidity, including the National Weather

Service heat index, the apparent temperature, the humidex,
and so on (Anderson et al. 2013). The improved method
does not apply to heat stress indices that are also functions
of wind speed and radiation (e.g., the WBGT and the dis-
comfort index), the attribution analysis of which is left for
future studies.

The paper is organized as follows: Section 2 describes the
model simulations and the attribution method; section 3
discusses the results; section 4 concludes the study; section 5
discusses the implications.

2. Methods

a. Model simulations

In this study, we use outputs from an offline global simula-
tion conducted with the Geophysical Fluid Dynamics Labora-
tory (GFDL) land model (LM4.0), coupled with a UCM. The
simulation, at a resolution of 28 3 2.58, is forced by a 50-yr
(1949–2000), 3-hourly, 18 dataset, which is based on a combi-
nation of observational and reanalysis data (Sheffield et al.
2006). We recycle the first 30-yr forcing to the period of
1700–1948 to spin up the model, and the simulation covers
from 1949 to 2000. In this study, we focus on the summer
seasons in 1981–2000, defined as June, July, and August in the
Northern Hemisphere and December, January, and February
in the Southern Hemisphere. We only analyze grid cells with
urban fractions larger than 0.1%.

A brief description of the model structure is given here. In
this modeling system, there can exist five different land-use/
land-cover types (i.e., natural vegetation, secondary vegeta-
tion, grassland, pasture, and urban), which will be called tiles
hereafter, in a grid cell. Among them, the nonurban tiles (i.e.,
natural vegetation, secondary vegetation, grassland, and pas-
ture) are treated as rural tiles. The urban tile includes a roof
component and a canyon component. The canyon component
further includes the pervious ground, the impervious ground,
the walls, and the vegetation inside the canyon. Detailed pa-
rameterizations of physical processes in urban areas, including
those associated with urban vegetation, can be found in Li
et al. (2016a). Validation of the UCM’s performance at flux
sites can be found in Li et al. (2016a). Large-scale validation
of simulated urban and rural temperatures can be found in
Liao et al. (2021). The fraction of different tiles is defined
through the land cover input dataset used in phase 6 of the
Coupled Model Intercomparison Project protocol. Hence, the
fraction of the urban land, as well as the fractions of other
land types, evolves in the simulation period (Li et al. 2016b).

Both LM4.0 and UCM can be viewed as multi-source mod-
els (Bonan 2019) in the sense that the vegetation and the soil
ground for the rural land (or the building and the canyon floor
for the urban land) have their own energy budgets and sur-
face temperatures (e.g., Tsoil, Tveg, Tbuilding, Tground in Fig. 1a).
Note that Fig. 1 is a simplified schematic and is not to scale.
The urban canyon, for example, is more complicated and is
composed of four facets (the walls, the impervious surface at
the ground, the pervious ground, and the vegetation above
the pervious ground). The connection between these different
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surface temperatures is the so-called canopy air temperature
(Tca), where the sensible and latent heat fluxes from different
facets are aggregated and passed to the atmospheric model
(see Fig. 1a). The canopy air temperature is different from the
air temperature (denoted as Ta) at the bottom of the atmo-
spheric model, the height of which is usually on the order of
20–50 m. The canopy air temperature is also different from
the so-called 2-m air temperature (T2), which is computed by
interpolating the surface-layer temperature profile to 2 m
above the displacement height (zd). The zd can be regarded as
the level at which the mean drag on the surface appears to act
(Jackson 1981), which is close to zero if there is no canopy
(vegetation or urban). The value of zd can be on the order of
10 m for tall canopies (Garratt 1994, Table A6 therein).

Like most other land surface models, the model used here
assumes that within the same grid cell, urban and rural tiles
share the same atmospheric conditions (see Fig. 1a). Hence
atmospheric variables (SWin, LWin, Ta, qa, and P) will not
contribute to urban–rural differences when urban and rural
tiles are in the same grid cell. This assumption breaks down
when comparing urban and rural conditions in different grid
cells (e.g., in high-resolution simulations) but works for our
analyses, which focus on urban–rural differences in the same
grid cell. Recall that the spatial resolution of our simulation is
28 3 2.58. When comparing urban and rural conditions in dif-
ferent grid cells, this assumption can be relaxed [see an exam-
ple in Wang and Li (2021)]. To summarize, Tca and T2 are
different between urban and rural tiles within the same grid
cell while Ta is identical (Fig. 1).

Similarly, we define the specific humidity at the bottom of
the atmospheric model (qa), the canopy air specific humidity
(qca), and also the 2-m specific humidity (q2). We further de-
fine heat stress indices based on these temperatures and hu-
midities. In this study, we use the SWBGT (W) (Willett and
Sherwood 2012; Fischer et al. 2012; Oleson et al. 2015), which
is a unitless heat stress index calculated from ambient air tem-
perature T (K) and water vapor pressure e (Pa) as

W 5 0:567(T 2 273:15) 1 0:003 93e 1 3:94: (1)

Since the water vapor pressure is related to specific humidity
q (kg kg21) and air pressure P (Pa) through q 5 0.622e/P, the
above equation can be also written as

W 5 0:567(T 2 273:15) 1 0:006 32Pq 1 3:94: (2)

Therefore, due to the different temperatures/humidities de-
fined earlier (see Fig. 1), we have three different SWBGTs:
one at the bottom of the atmospheric model (Wa), which is
the same between urban and rural tiles; one in the canopy air
(Wca), which represents the ambient heat stress within the
canopy; one at 2 m above the displacement height (W2), which
lies in between the canopy and the lowest level of the atmo-
spheric model. Hereafter we refer to 2 m above the displace-
ment height as the 2-m level for simplicity.

In this study, we are interested in understanding the differ-
ences between urban and rural tiles in terms of their tempera-
tures and SWBGTs. Since the urban and rural tiles share the
same atmospheric conditions, the urban–rural contrasts of

FIG. 1. (a) A schematic of the temperature and humidity definitions. The superscripts u and r represent urban and
rural tiles, respectively. Subscripts ca and 2 represent canopy air and 2 m above the displacement height, respectively.
SWin, LWin, Ta, qa, and P refer to the incoming shortwave radiation, incoming longwave radiation, the air tempera-
ture at the bottom of the atmospheric model, the specific humidity at the bottom of the atmospheric model, and the
pressure, respectively. These quantities are identical for urban and rural tiles. However, urban and rural tiles have dif-
ferent sensible (H) and latent heat (LE) fluxes, different canopy air/2-m air temperatures as well as humidities, and
different surface temperatures. (b) A schematic of how the 2-m air temperature is interpolated between the canopy
air temperature and the air temperature at the bottom of the atmospheric model. Since the displacement heights and
roughness lengths are different between urban and rural tiles, the canopy air and 2-m air temperature and humidity
are not necessarily defined as the same physical height for urban and rural tiles. ra refers to the bulk aerodynamic re-
sistance to convective heat transfer between the canopy air and the bottom of the atmospheric model, while r′a refers
to the aerodynamic resistance to convective heat transfer between the 2-m level and the bottom of the atmospheric
model. Although logarithmic temperature profiles are shown here for schematic purposes, the temperature profiles,
in reality, are not always logarithmic due to thermal stratification.
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canopy air and 2-m air temperature and SWBGT must be
caused by the urban–rural differences in surface biophysical
properties such as albedo, roughness length, heat capacity,
etc. However, these biophysical factors make unequal contri-
butions to the urban–rural contrasts of canopy air and 2-m air
temperature and SWBGT. Quantifying the contribution of
each factor requires an attribution method.

b. The attribution method

1) THE TRM METHOD

The essence of the two-resistance mechanism (TRM)
method (Rigden and Li 2017) is to derive an analytical solu-
tion for the surface temperature Ts (K) based on the energy
balance equation for a bulk surface, from which the sensi-
tivity of Ts to various biophysical factors can be directly
computed. The connection between the bulk surface tem-
perature defined in the TRM method and the canopy air
and 2-m air temperature discussed above will be elaborated
on later.

Let us start with the energy balance equation for an infi-
nitely thin surface layer that is horizontally homogeneous:

Rn 5 SWin(1 2 a) 1 «LWin 2 «sT4
s 5 H 1 LE 1 G, (3)

where Rn (W m22) is the net radiation, SWin (W m22) is the
incoming shortwave radiation, LWin (W m22) is the incoming
longwave radiation, a is the surface albedo, « is the surface
emissivity, s (W m22 K24) is the Stefan–Boltzmann constant,
H (W m22) is the sensible heat flux, LE (W m22) is the latent
heat flux, and G (W m22) is the ground heat flux or heat stor-
age. TheH and LE terms are further parameterized by the re-
sistance concepts (Monteith and Unsworth 2008):

H 5
rcp
ra

(Ts 2 Ta), (4)

LE 5
rLy

ra 1 rs
[q*(Ts) 2 qa], (5)

where r (kg m23) is the air density, cp (J kg21 K21) is the
specific heat of air at constant pressure, Ly (J kg

21) is the la-
tent heat of vaporization, q*(Ts) is the saturated specific hu-
midity at Ts following q*(Ts) 5 0.622e*(Ts)/P, where e*(Ts)
(Pa) is the saturation vapor pressure that can be computed
from Ts using the Clausius–Clapeyron relation. The term ra
(s m21) is the aerodynamic resistance, which represents the
efficiency of convective heat transfer between the surface
and the atmosphere and is related to wind speed, roughness
length, and stability conditions (Garratt 1994). The smaller
the ra is, the more efficient convective heat transfer be-
comes. The term rs (s m21) is the surface resistance repre-
senting how far the surface is away from saturation, which is
dependent on the water availability and vegetation charac-
teristics (Garratt 1994). The smaller the rs is, the closer the
surface is to saturation.

Substituting Eqs. (4) and (5) into Eq. (3) and linearizing the
emitted longwave radiation term and the saturated specific
humidity term (Rigden and Li 2017) yields

Ts 2 Ta 5

l0 R*
n 2 G 2

rLy

ra 1 rs
[q*(Ta) 2 qa]

{ }

1 1 fTRM
, (6)

where R*
n 5 SWin(12 a)1 «LWin 2 «sT4

a , fTRM 5 (r0/ra){11
(d/g)[ra/(ra 1 rs)]}, d 5 de*/dT|Ta

r0 5 rcpl0, g 5 cpP/(0:622Ly),
and l0 5 1/(4«sT3

a ).
With Eq. (6), one could study the change in surface temper-

ature (Ts) due to changes in any forcing or parameter (Liao
et al. 2018; Wang et al. 2019, 2020b; Moon et al. 2020). As
alluded to earlier, we are interested in using Eq. (6) to diag-
nose the differences between urban and rural tiles within the
same grid cell simulated by the numerical model. In this case,
there are no urban–rural differences in terms of SWin, LWin,
Ta, qa, and P. We also neglect the urban–rural difference in
emissivity due to its small role as demonstrated elsewhere
(Liao et al. 2018; Wang et al. 2020b). Therefore, we attribute
the urban–rural difference in surface temperature (DTs) to
urban–rural differences in the albedo, aerodynamic resis-
tance, surface resistance, and ground heat flux via the first-
order Taylor expansion, as follows:

DTs 5
Ts

a
Da 1

Ts

ra
Dra 1

Ts

rs
Drs 1

Ts

G
DG: (7)

Full expressions of the partial derivatives (called the sensitivi-
ties hereafter) can be found in the supplemental material. The
product of the sensitivity and the difference [(Ts/X)DX] is
denoted as the contribution of the variable X to DTs.

2) EXTENDING THE TRM METHOD TO HEAT STRESS

In this section, we extend the original TRM method, which
was designed to study the urban–rural contrast of tempera-
ture, to study the urban–rural contrast of heat stress. For a
bulk surface, the latent heat flux can also be parameterized by
the difference between the surface specific humidity qs and
the atmospheric specific humidity qa as

LE 5
rLy

ra
(qs 2 qa): (8)

Here rs does not show up in the denominator because the ac-
tual specific humidity at the surface (qs), instead of the satu-
rated surface specific humidity, is used. Comparing Eq. (8) to
Eq. (5) gives

qs 5
ra

ra 1 rs
[q*(Ts) 2 qa] 1 qa: (9)

Analogous to the attribution of urban–rural difference in sur-
face temperature, the urban–rural difference in the surface
specific humidity can be expressed as

Dqs 5
qs
a

Da 1
qs
ra

Dra 1
qs
rs

Drs 1
qs
G

DG: (10)

Furthermore, based on Eq. (2), the urban–rural difference in
surface SWBGT can be expressed as

DWs 5 0:567DTs 1 0:00632PDqs, (11)
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where DTs and Dqs are from Eqs. (7) and (10), respectively.
Namely, the contribution of the generic variable X to DWs

can be expressed as [0:567(Ts/X)1 0:006 32P(qs/X)]DX.
As mentioned earlier, although this study only analyzes the

SWBGT, the methodology can be applied to other heat stress
indices (e.g., the National Weather Service heat index, the ap-
parent temperature, the humidex). Some of these indices are
functions of relative humidity and/or dewpoint temperature,
but since relative humidity and dewpoint temperature are func-
tions of temperature and specific humidity (with given pressure),
they pose no additional challenge for this method. In general, if a
heat stress index (HS) can be expressed as HS5 f(T, q), where f
is a known function, its change can thus be linked to changes in
T and q through DHS5 (f /T)DT 1 (f /q)Dq. Furthermore,
the attribution method can be further improved to study mixed
effects between temperature and humidity by using a second-
order (or higher-order) Taylor expansion (see Chen et al. 2020)
through

DHS 5
f
T

DT 1
f
q

Dq 1
1
2

2f
T2 (DT)2 1

2f
q2

(Dq)2
[

1 2
2f
Tq

DTDq

]
:

In the present study, we only focus on the first-order Taylor
expansion while neglecting the second- and higher-order
terms and the mixed effects because these terms are usually
of smaller magnitude relative to the first-order terms. How-
ever, they can be important when the assumptions underlying
Taylor expansion start to break down (e.g., when the urban–
rural differences of biophysical factors are no longer suffi-
ciently small) or when one is specifically interested in the cou-
pling and interaction of the biophysical factors.

3) APPLICATION OF THE ATTRIBUTION METHOD TO

DIAGNOSING THE NUMERICAL MODEL OUTPUTS

We need to address the following three questions before
applying the attribution method discussed above to diagnos-
ing the numerical model outputs. First, which temperature
and SWBGT in the numerical model represent the bulk sur-
face temperature (Ts) and the bulk surface SWBGT (Ws) in
the attribution method, respectively? Second, at which time
scale should the attribution analysis be conducted? Third,
how to ensure that the attribution method reasonably cap-
tures the simulated urban–rural differences in Ts and Ws by
the numerical model? In this section, we address these three
questions.

There is no single correct answer to the question of which
temperature in the numerical model represents (or approxi-
mates) the bulk surface temperature (Ts) in the attribution
method. In our opinion, the best approximation for this par-
ticular numerical model is the canopy air temperature. There
are two reasons supporting this argument (with more details
presented in the supplemental material). First, the total sur-
face sensible heat flux is usually computed based on the differ-
ence between the canopy air temperature and the air

temperature at the bottom of the atmospheric model in nu-
merical models such as the LM4.0 and UCM used here. There-
fore, from the atmospheric model’s perspective, the canopy air
temperature is the temperature at which the total surface sen-
sible heat flux is generated (or at which the different heat sour-
ces on the land are aggregated). In other words, the canopy air
temperature would be identical to the surface temperature for
a bulk surface with the same total sensible heat flux and ther-
mal roughness length (Garratt 1994). Second, the canopy air
temperature agrees reasonably well with the radiative surface
temperature inferred from the simulated outgoing longwave
radiation via the Stefan–Boltzmann law (see Fig. S1 in the
supplemental material). This is consistent with the findings in
Li and Bou-Zeid (2014).

To proceed, we will use the canopy air temperature (Tca) to
approximate Ts in the TRM attribution method. Similarly, we
also use the canopy air humidity (qca) to represent qs and use
the extended TRM attribution method [Eq. (11)] for analyz-
ing the canopy air SWBGT. The other variables needed for
the attribution can then be derived. For example, the aerody-
namic resistance and the surface resistance are inferred using
Eqs. (4) and (5), given the simulated Tca, H, and LE, and the
forcing variables Ta and qa. The albedo is inferred using the
outgoing and incoming shortwave radiation, and the ground
heat flux is a default output. Note that sometimes the inferred
ra is negative when applying the TRM method (or other simi-
lar methods such as the intrinsic biophysical mechanism; see
Chen and Dirmeyer 2016) to diagnosing numerical model out-
puts because numerical models are often dual- or multisource
models while these attribution methods are designed for a
bulk surface. The negative ra (and also rs) are removed from
our analysis, following previous work (Liao et al. 2018; Wang
et al. 2020b; Wang and Li 2021).

In terms of time scales, the default outputs are 3-hourly,
consistent with the temporal resolution of the forcing. They
are first separated into daytime and nighttime data. For sim-
plicity, we assume that daytime is when the incoming short-
wave radiation is greater than 25 W m22 and nighttime is
when it is less than 25 W m22. We then average the 3-hourly
data to monthly daytime/nighttime data and perform the attri-
bution at the monthly scale, following Liao et al. (2020). The
attribution results are further averaged across 20 summers
(1981–2000).

To ensure that the attribution method captures the simu-
lated urban–rural differences in temperature and SWBGT by
the numerical model, the sensitivities [partial derivatives in,
e.g., Eq. (7)] are weighted averages of both urban and rural sen-
sitivities. The weights are calibrated to best match the urban–
rural differences calculated from the TRM method with those
simulated by the numerical model, that is, by minimizing the
root-mean-square error, following Liao et al. (2018).

4) FROM CANOPY AIR TEMPERATURE/SWBGT TO

2-M AIR TEMPERATURE/SWBGT

The TRM method discussed above is used to diagnose
urban–rural contrasts of canopy air temperature/SWBGT.
However, it is common to use the 2-m air temperature and
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SWBGT to quantify the near-surface microclimatic conditions
in the literature, even though the interpretation of “2-m”

height can be ambiguous over tall canopies. Here we extend
the TRM method to diagnosing urban–rural contrasts of 2-m
air temperature and SWBGT. The computation and physical
interpretation of the 2-m air temperature and SWBGT are de-
tailed in the supplemental material.

Based on the concept of constant-flux layer, Wang and Li (2021)
derived an expression for the 2-m air temperature T2, as follows:

T2 5
r′a
ra
(Tca 2 Ta) 1 Ta, (12)

where r′a is the aerodynamic resistance to convective heat trans-
fer between the 2-m level and the atmosphere (see Fig. 1b).
With this expression, the sensitivities of T2 to various biophysi-
cal factors can be computed. Similarly, one can derive the sensi-
tivities of 2-m specific humidity using the bulk parameterization
for latent heat flux, and thus the 2-m SWBGT (detailed in the
supplemental material).

3. Results

Figures 2 and 3 show the simulated urban–rural differences of
canopy air temperature (DTca; Figs. 2a,b), canopy air SWBGT

FIG. 2. Simulated urban–rural contrasts (D 5 urban2 rural) of (a) daytime canopy air temperature (Tca), (b) nighttime canopy air tem-
perature, (c) daytime canopy air SWBGT (Wca), and (d) nighttime canopy air SWBGT. The green boxes in (a) define the boundary of 11
regions: North America (NAm), Central America (CAm), South America (SAm), Europe (EU), Western Africa (WAf), Eastern Africa
(WAf), Middle East (ME), North Asia (NAs), Central Asia (CAs), Eastern Asia (EAs), Australia/New Zealand (ANZ).

FIG. 3. Simulated urban–rural contrasts (D 5 urban2 rural) of (a) daytime 2-m air temperature (T2), (b) nighttime 2-m air temperature,
(c) daytime 2-m SWBGT (W2) and (d) nighttime 2-m SWBGT.
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(DWca, Figs. 2c,d), 2-m air temperature (DT2, Figs. 3a,b), and
2-m SWBGT (DW2, Figs. 3c,d) during the daytime and night-
time, respectively. It is evident that the simulated urban–rural
contrasts show large differences between daytime and nighttime,
as well as strong spatial variabilities. We will first focus on under-
standing the general patterns in the daytime and nighttime re-
sults (sections 3a–3c), and then discuss the spatial variability
(section 3d).

For DTca and DWca, the most striking feature is that some
regions exhibit negative values in the daytime, such as Central
America, West Africa, and Central Asia. The negative day-
time DTca and DWca in these regions will be discussed in detail
later. At night, DTca and DWca are mostly positive. By com-
paring the results for DTca and DWca, one can see that DWca is
smaller than DTca, especially in areas with positive values of
both. This is due to the humidity deficits in urban areas,
namely, urban areas are generally hotter but drier, as alluded
to earlier. Hence the enhanced heat stresses in the urban
areas by the positive UHI effects are partially offset by the
humidity deficits.

Comparing Figs. 3a and 3b to Figs. 2a and 2b reveals that
DT2 has similar spatial patterns as DTca but with much smaller
magnitude and with more negative values during the daytime.
The smaller magnitude of DT2 than DTca is due to the role of
turbulent mixing. In the surface layer (between the land
model and the lowest level of the atmospheric model), turbu-
lent eddies transport mass, momentum, and heat from the
surface to the atmosphere or vice versa (Stull 1988). The tur-
bulent transport is responsible for the logarithmic profiles
under neutral conditions (or the profiles described by Monin–
Obukhov similarity theory under thermally stratified condi-
tions) in the surface layer, as illustrated in Fig. 1b. Although
urban land has biophysical properties that are different from
those of rural land and thus the surface conditions differ be-
tween the urban and rural land, such differences become
smaller as the urban and rural fluxes become mixed and even-
tually disappear when the fluxes reach the lowest level of the
atmospheric model.

With the turbulent mixing effects and the humidity deficits
in urban areas, the daytime DW2 (Fig. 3c) turns negative
worldwide. Although the nighttime DW2 (Fig. 3d) remains
positive, the mixing effects cause its magnitude to be smaller
than DWca.

We should highlight that DT2 and DW2 are not necessarily
fair indicators of near-surface air temperature and heat stress
differences between urban and rural areas, because T2 and
W2 are defined at 2 m above the displacement height and the
urban displacement height is often much larger than the rural
counterpart except for forests (Oke et al. 2017). As a result,
the height at which the 2-m air temperature is defined is usu-
ally different between urban and rural areas. We did not cor-
rect the definition of the 2-m level to be consistent with the
literature, but we note that some models try to correct such
effects by computing new temperature/humidity variables at
2 m above the ground (Meili et al. 2020) and other models
such as CLM have the 2-m air temperature defined differently
for urban and rural areas. In CLM (Oleson et al. 2013), Tca is
assigned to the 2-m air temperature directly for urban areas

while for rural areas the 2-m air temperature is defined at 2 m
above the displacement height and interpolated between Tca

and Ta. This partly explains why our results of DT2 are differ-
ent from those from CLM (Oleson et al. 2011).

Perhaps what is more meaningful is the comparison be-
tween the daytime and nighttime results. For Tca and Wca, the
urban–rural contrasts are stronger during the daytime; while
for T2 and W2, the urban–rural contrasts are stronger during
the nighttime. This is consistent with previous work showing
that the surface UHI is often stronger during the daytime,
while the near-surface UHI tends to be stronger at night (Oke
et al. 2017; Stewart et al. 2021; Venter et al. 2021).

It is important to stress that the aim of this study is not to
validate the results shown in Figs. 2 and 3. Instead, the goal
is to quantify the contributions of different biophysical fac-
tors to the simulated DTca, DWca, DT2, and DW2 using the
improved TRM attribution method. In the following, we
first present the sensitivities of Tca, Wca, T2, and W2 to bio-
physical factors, followed by the urban–rural differences in
biophysical factors. The products of the sensitivities and the
urban–rural differences, which represent the contributions
of different biophysical factors, are then presented. Last,
the regionally averaged attributions are shown to highlight
the spatial variability.

a. Sensitivities to biophysical factors

1) SENSITIVITIES OF HEAT STRESS AT THE CANOPY

AIR LEVEL

As the first step, we calculate the sensitivities of canopy air
temperature (Tca) and canopy air SWBGT (Wca) to biophysi-
cal factors (namely albedo, aerodynamic resistance, surface
resistance, and heat storage) based on the formulas presented
in the supplemental material. Because the results of Tca and
Wca are similar in terms of the global patterns, we only pre-
sent the results for Wca here (Fig. 4) while the sensitivities of
Tca to biophysical factors can be found in the supplemental
material (see Fig. S2).

First, the sensitivity of Wca to albedo is negative worldwide
during the daytime and is close to zero at night, as shown in
Figs. 4a,b. Intuitively, the larger the surface albedo, the more
solar radiation is reflected and the lower the Tca, as well as
the Wca, which explains the negative sensitivity in the day-
time. Figures 4c and 4d present the sensitivity of canopy air
heat stress to aerodynamic resistance (Wca/ra). It is clear
that Wca/ra is positive worldwide during the day, but much
smaller at night. As discussed in Liao et al. (2020), the positive
sensitivity during the daytime implies that when the land sur-
face becomes less efficient in transferring sensible heat to the
lower atmosphere (i.e., when ra increases), Wca tends to in-
crease. Figure 4e shows a positive signal of Wca/rs globally
during the daytime, indicating that Wca increases as the land
surface becomes less efficient in using energy for evapotrans-
piration (i.e., when rs increases). This effect is understandably
small during the nighttime (see Fig. 4f). Last, Figs. 4g and 4h
show the sensitivity of Wca to heat storage (Wca/G) during
the daytime and nighttime, respectively. Note that the ground
heat flux is defined to be positive downward and negative
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upward. Therefore, the fact that more ground heat flux goes
downward to deeper soil layers (or built materials) during
the daytime means a decrease in canopy air temperature
and heat stress, leading to negative daytime Wca/G. Con-
versely, the fact that more ground heat flux goes upward to
the surface during the night means an increase in canopy air
temperature and heat stress, also leading to negative night-
time Wca/G. Although Wca/G is negative for both day-
time and nighttime, the magnitude of Wca/G at night is
larger than that in the day, showing a stronger effect of heat
release on canopy air temperature and heat stress at night
than during the day.

2) SENSITIVITIES OF HEAT STRESS AT THE 2-M LEVEL

Similarly, we examine the sensitivity of W2 to albedo, sur-
face resistance, and heat storage (see Fig. S3). Compared to

the results for Wca, the sensitivities of W2 to albedo, surface
resistance, and heat storage show very similar patterns but
have a smaller magnitude, because these sensitivities are sim-
ply their counterparts for Wca multiplied by the factor r′a/ra,
which is smaller than unity [see Eqs. (S17)–(S20)].

The more complicated sensitivities are those to ra (i.e., aero-
dynamic resistance between the surface and the atmosphere)
and r′a (i.e., aerodynamic resistance between the 2-m level
and the atmosphere). Figure 5a shows that during the day-
time, the sensitivity of W2 to aerodynamic resistance (W2/ra)
is negative. This is contrary to the positive Wca/ra (see Fig. 4c).
That is because when it is less efficient in transferring heat
from the surface (or more precisely the height at which the
canopy air temperature is defined) to the atmosphere (i.e.,
ra increases), the air temperature and heat stress in the canopy
increase while the air temperature and heat stress at the 2-m
level decrease. However, if it is less efficient in transferring

FIG. 4. The sensitivities of canopy air SWBGT to (a),(b) albedo (Wca/a), (c),(d) aerodynamic resistance (Wca/ra), (e),(f) surface resis-
tance (Wca/rs), and (g),(h) heat storage (Wca/G) during (left) daytime and (right) nighttime.

J OURNAL OF CL IMATE VOLUME 361812

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 02/21/23 08:24 AM UTC



heat from the 2-m level to the atmosphere (i.e., r′a increases),
the 2-m air temperature and heat stress increase, which ex-
plains the positive W2/r

′
a during the daytime (Fig. 5c). It

should be also pointed out that W2/r
′
a is of larger magnitude

than W2/ra, indicating that W2 is more affected by changes
in r′a than in ra. During the nighttime, W2/ra is very hetero-
geneous at the global scale and W2/r

′
a is weakly positive

(Figs. 5b,d).

b. Urban–rural differences in biophysical factors

We further compare the urban–rural differences in five bio-
physical factors. Figures 6a and 6b show a negative contrast in
albedo over most regions except for the western edge of
South America, equatorial Africa, the Mediterranean region,
and West Asia. The negative albedo differences imply that
the urban land is parameterized with a smaller albedo than
the rural land in the numerical model, while the positive al-
bedo differences indicate the opposite. Although the radiative
trapping effect tends to reduce the albedo of urban land, ur-
ban land does not always have a smaller albedo than rural
land, and the urban–rural albedo differences depend on the
characteristics of urban and rural land (e.g., urban form, rural
vegetation type) (Oke et al. 2017). Our results here also re-
flect this.

The daytime contrast of aerodynamic resistance (ra) shows
strong spatial variability, which is highly related to the rural
vegetation type. For example, in arid regions (i.e., Central
America, Middle East, and Central Asia), rural land is charac-
terized by vegetation of low height such as shrubs, sage
brushes, and grasses, which makes it less efficient for rural
land to transfer sensible heat to the atmosphere than urban
land. Therefore, the urban–rural contrast in aerodynamic re-
sistance (Dra) in drier regions tends to be negative, as opposed
to more humid regions where rural land has taller vegetation
and thus might have smaller ra than adjacent urban land (i.e.,
positive in Fig. 6c). At night, Dra shows a negative signal

almost everywhere (Fig. 6d), particularly in densely populated
regions (e.g., eastern North America, eastern South America,
Europe, East Asia, and Southeast Asia), indicating that cities
are more efficient in transferring heat from the surface to the
lower atmosphere at night. This is consistent with the stronger
release of ground heat storage in urban areas, creating more
unstable stratification in the urban surface layer. In contrast,
convective heat transfer is less efficient with the existence of a
stable surface layer in rural areas. Previous field studies have
confirmed a near-neutral or slightly unstable boundary layer in
cities while a stable boundary layer in rural areas during night-
time (Uno et al. 1992; Dupont et al. 1999).

The daytime contrast in surface resistance (rs) is found to
be positive almost everywhere (Fig. 6e), indicating that it is
much harder for urban areas to produce evapotranspiration
than rural areas. The nighttime Drs is much smaller than the
daytime counterpart and can be quite uncertain due to the
small latent heat flux at night (Fig. 6f). The urban–rural con-
trast in heat storage (DG) is positive during the daytime and
negative during the nighttime (Figs. 6g,h). This is caused by
the larger thermal admittance of surface materials in cities,
which allows urban surfaces to store more heat during the day
and thus release more heat at night (Oke et al. 2017; Grimmond
and Oke 1999).

The extra factor that only appears in the attribution of
urban–rural contrasts of 2-m air temperature and SWBGT is
the 2-m layer aerodynamic resistance (r′a). We find that Dr′a,
being negative, is weaker than Dra during the daytime (see
Figs. 6i,c), implying that most of the resistance to convective
heat transfer during the daytime lies between the surface and
the 2-m level. This is because the size of turbulent eddies re-
sponsible for heat transfer scales with the distance from the
surface (Katul et al. 2011; Li 2021). Between the surface and
the 2-m level, the eddies are smaller and thus heat transfer is
less efficient than their counterparts between the 2-m level
and the atmosphere. During the night, the magnitude of Dr′a

FIG. 5. The sensitivities of 2-m SWBGT to (a),(b) aerodynamic resistance (W2/ra), and (c),(d) 2-m aerodynamic resistance (W2/r
′
a)

during (left) daytime and (right) nighttime.
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increases and Dr′a is similar to Dra (see Figs. 6j,d), suggesting
that most of the resistance to convective heat transfer dur-
ing the nighttime lies between the 2-m level and the atmo-
sphere. In other words, the 2-m level becomes decoupled
from the atmosphere due to the stable stratification, leading
to stronger Dr′a.

c. Contributions of biophysical factors

By multiplying the sensitivities (Fig. 4) and the urban–rural
differences (Fig. 6), the contributions from these biophysical
factors to the urban–rural contrast of canopy air SWBGT
(DWca) are computed, as shown in Fig. 7. In the same way, we
quantify the contributions to the urban–rural contrasts of 2-m

FIG. 6. The contrasts between urban and rural areas (D 5 urban 2 rural) in (a),(b) albedo (a), (c),(d) aerodynamic resistance (ra),
(e),(f) surface resistance (rs), (g),(h) heat storage (G), and (i),(j) 2-m aerodynamic resistance (r′a) during (left) daytime and (right) night-
time. Note that the r′a is only relevant for the attribution of 2-m air temperature and 2-m SWBGT in Fig. 3.
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SWBGT (W2) (see Fig. 8), canopy air temperature (Tca) (see
Fig. S5), and 2-m air temperature (T2) (see Figs. S4 and S6).

Before discussing the attribution results, we first use the nu-
merical model simulated DWca (or DTca) to evaluate the TRM
method by comparing the numerical model simulated results to
the sum of the contributions from all biophysical components
in the TRM method. It can be seen that the TRM attribution
method is able to capture the numerical model simulation re-
sults with small root-mean-square errors (see Figs. S7 and S8).
Nevertheless, at the 2-m level, the TRM-modeled DW2 and
DT2 become more scattered compared to the simulated ones,
which suggests that the extension of the TRM attribution
method to the 2-m level introduces more uncertainties. This is
not too surprising considering that the magnitudes of DW2 and
DT2 are smaller than their canopy air counterparts.

Now we turn to the general patterns of the attribution re-
sults (Fig. 7). Here we use the same color bar for all the

factors in order to highlight their relative magnitude. During
the daytime, albedo plays the least role in DWca among all
biophysical factors (see Figs. 7a,b). That is because the model
prescribes a very small urban–rural difference in albedo,
which is on the order of 1022 (see Figs. 6a,b). Other factors
show stronger effects than albedo. Specifically, surface resis-
tance contributes positively while heat storage contributes
negatively during the daytime (see Figs. 7e,g), due to the com-
bining effect of the large sensitivities (Fig. 4) and the large
urban–rural differences in terms of these two factors (Fig. 6).
Daytime effects of aerodynamic resistance show stronger spa-
tial variability than other factors (Fig. 7c). At night, aerody-
namic resistance and ground heat storage dominate the
urban–rural difference in the canopy air SWBGT, with nega-
tive and positive contributions, respectively (Figs. 7d,h). Al-
bedo and surface resistance have negligible effects at night
(see Figs. 7b,f). The effect of ground storage shows a similar

FIG. 7. The contributions to DWca from (a),(b) albedo [(Wca/a)Da], (c),(d) aerodynamic resistance [(Wca/ra)Dra], (e),(f) surface resis-
tance [(Wca/rs)Drs], and (g),(h) heat storage [(Wca/G)DG] during (left) daytime and (right) nighttime.
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magnitude between day and night, while others are weaker at
night than during the day.

Furthermore, by comparing the results of DWca (Fig. 7) and
DTca (Fig. S5), it is evident that the general patterns are simi-
lar but the effects of all four biophysical factors on DWca are
reduced in terms of the magnitude due to the humidity

deficits in cities. In particular, surface resistance is the most
dampened component such that the magnitude of the contri-
bution of surface resistance to DWca is around 25% of that to
DTca. Closer inspection reveals that the magnitude of the sen-
sitivity of Wca to rs is about 25% of the sensitivity of Tca to rs.
This result is again due to the fact that while the lack of

FIG. 8. The contributions to DW2 from (a),(b) albedo [(W2/a)Da], (c),(d) aerodynamic resistance [(W2/ra)Dra], (e),(f) surface resis-
tance [(W2/rs)Drs], (g),(h) heat storage [(W2/G)DG], and (i),(j) 2-m aerodynamic resistance [(W2/r

′
a)Dr′a] during (left) daytime and

(right) nighttime.
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evapotranspiration makes urban areas hotter, it also makes
urban areas drier and hence slightly offsets the increase in
DWca when compared to the increase in DTca.

At the 2-m level, results for albedo, surface resistance, and
ground storage (see Fig. 8) exhibit much smaller magnitude
than those at the canopy air level due to turbulent mixing.
During the daytime, the main contributors are surface resis-
tance (positive) and ground storage (negative), and there are
no significant contributions of albedo and aerodynamic resis-
tance. Nevertheless, it is worth noting that aerodynamic resis-
tance makes the opposite contributions to DW2 and DWca (cf.
Fig. 8 and Fig. 7). This is because the sensitivity of W2 to ra
has an opposite sign as the sensitivity of Wca to ra as discussed
in section 3a. As for the 2-m aerodynamic resistance (r′a) (see
Figs. 8i,j), it consistently exerts negative effects because the
majority of regions display negative urban–rural difference in
r′a (as in Figs. 6i,j). As a result, the negative contribution from
ground storage (Fig. 8g) together with the negative contribu-
tion from the 2-m aerodynamic resistance causes a negative
daytime DW2 (see Fig. 3c). During the night, only ground stor-
age (positive) and the 2-m aerodynamic resistance (negative)
play a role in DW2 (see Figs. 8h,j).

d. Regionally averaged attributions of DTca, DT2, DWca,
and DW2

Because the urban–rural differences in temperature and
SWBGT display an evident dependence on geographic loca-
tions (see Figs. 2 and 3), in this section results are analyzed in
the manner of regional averages. Region boundaries are de-
fined in a similar way as McCarthy et al. (2010) (see Fig. 2a
with the region abbreviations defined in the caption). Figure 9

shows the regional averages of DTca, DT2, DWca, and DW2

during the daytime and nighttime. Comparing the upper pan-
els against the lower ones, the similarity between the averaged
urban–rural contrasts of temperature and SWBGT shows up
clearly over all regions. The regional averages of daytime
DTca and DWca are positive except in the Middle East, Central
America, Central Asia, and West Africa. During the night-
time, all regions but the Middle East show positive values of
DTca and DWca. In terms of the 2-m air temperature and
SWBGT, the regional averages of DT2 and DW2 mostly vanish
during the day except for Central America and West Africa
while exhibiting weakly positive signals at night. Note that the
error bars are very large especially for regions with negative
DT2 and DW2, indicating significant spatial variability within
each region. After case-by-case investigations of all 11
regions, we select North America, Central America, South
America, and the Middle East to highlight four distinctive
regional patterns of the urban–rural differences in heat stress
and their attributions (Fig. 10). The results for the urban–
rural differences in temperature are presented in Fig. S9.

Starting off from the canopy air level, in North America,
surface resistance (rs) is the leading cause of the positive DTca

during the daytime (Fig. S9a), indicating the dominant role of
evapotranspiration in controlling the urban–rural differences
in canopy air temperature in this region. Such results are con-
sistent with the finding of previous studies that the relation-
ship between surface UHI and background climate is largely
explained by evapotranspiration (Li et al. 2019; Manoli et al.
2019). For daytime Wca (Fig. 10a), the contribution of surface
resistance remains strong but aerodynamic resistance plays
an equally important role. Heat storage (G) has a strong

FIG. 9. Regional averages of urban–rural contrasts of (a),(b) canopy air temperature (DTca) and 2-m air temperature (DT2), (c),(d) can-
opy air SWBGT (DWca) and 2-m SWBGT (DW2) during (left) daytime and (right) nighttime. The error bars are the standard error and in-
dicate the spatial variability.
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negative effect (Fig. S9a and Fig. 10a). When the negative
contribution of heat storage exceeds the positive contribution
of surface resistance, daytime urban–rural contrasts of Tca

and Wca become negative, as in the case of Central America
(Fig. S9c and Fig. 10c) and other regions with negative
temperature/SWBGT differences (not shown). Close inspec-
tion reveals that the numerical model prescribes very large
thermal admittance for urban roofs in these regions (Jackson
et al. 2010; Oleson et al. 2011; Oleson and Feddema 2020;
Wang et al. 2020a). Since the capability of a surface to store
heat is largely governed by thermal admittance, this explains
why these regions have very strong negative contributions
from heat storage during the daytime. Previous studies also
showed that the urban heat sink could occur during the

daytime when urban surfaces have greater heat absorption
and when rural areas have dry, bare soil with low thermal iner-
tia and low evaporative cooling (Carnahan and Larson 1990).

In South America (Fig. S9e and Fig. 10e), the positive effect
from aerodynamic resistance (ra) to DTca and DWca becomes
very large and even exceeds that from surface resistance in
terms of DWca during the daytime, which leads to positive
DTca and DWca. In contrast, aerodynamic resistance (ra)
makes a large negative contribution in the Middle East (Fig.
S9g and Fig. 10g), causing DTca and DWca to be negative.
These results are broadly consistent with recent work on the
spatial variability of daytime surface UHI (Zhao et al. 2014;
Li et al. 2019; Manoli et al. 2019). Cities in humid climates
(South America) are often surrounded by forests, which

FIG. 10. Regionally averaged attribution results for urban–rural contrasts of canopy air SWBGT (DWca) and 2-m SWBGT (DW2) over
(a),(b) North America (NAm), (c),(d) Central America (CAm), (e),(f) South America (SAm), and (g),(h) Middle East (ME) during (left)
daytime and (right) nighttime. DWca and DW2 are represented by yellow and brown bars over daytime and by blue and dark blue bars over
nighttime. GFDL represents the simulated DWca and DW2 by the numerical model. TRM represents the sum of the four contributions calcu-
lated from the TRM method. The terms a, ra, rs, G, and r′a represent the contributions from albedo, aerodynamic resistance between the
surface and the atmosphere, surface resistance, heat storage, and aerodynamic resistance between the 2-m level and the atmosphere, respec-
tively. The error bars are the standard error and indicate the spatial variability.
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might convect heat more efficiently than buildings. Hence
aerodynamic resistance makes a positive contribution to day-
time DTca and DWca. On the other hand, in dry regions (Mid-
dle East) rural areas are characterized by short vegetation
and deserts, and cities can have a higher convection efficiency,
as discussed in section 3b. As a result, the contribution from
aerodynamic resistance becomes strongly negative and the
positive contribution from surface resistance is weak in these
dry regions, which therefore causes negative daytime DTca

and DWca.
During the night, the attribution results are more consistent

across different regions (e.g., North America, Central America,
and South America), characterized by a dominant positive con-
tribution from the ground heat storage and thus positive DTca

and DWca (see Figs. S9b,d,f and Figs. 10b,d,f). However, in the
Middle East, the negative effect of aerodynamic resistance ex-
ceeds the positive effect of heat storage release, resulting in neg-
ative DTca and DWca.

Concerning the 2-m level results, the urban–rural contrast
of all variables becomes nearly zero during the day regard-
less of regions as a result of strong mixing (Figs. S9a,c,e,g
and Figs. 10a,c,e,g). Similar to what was found in Venter et al.
(2021) and Stewart et al. (2021), the magnitude of the simulated
DTca (which is closer to the surface UHI in the observations)
far exceeds that of DT2 (which is closer to the near-surface UHI
in the observations). At night, the primary heat source of the
near atmosphere comes from heat storage accumulated in the
daytime (Oke et al. 2017; Grimmond and Oke 1999). As a re-
sult, these four regions have slightly positive DT2 and DW2 dur-
ing the night, with a magnitude much less than their canopy air
counterparts.

4. Conclusions

In this study, we develop a methodology to quantify the
physical processes contributing to the urban–rural difference
in heat stress based on the two-resistance mechanism (TRM)
method. The improved TRM method is applied to diagnosing
urban–rural contrast of canopy air temperature/SWBGT sim-
ulated by the GFDL LM4.0 coupled with a UCM. Results
indicate that contributions of the four biophysical factors
(albedo, aerodynamic resistance, surface resistance, and
ground heat flux or heat storage) to the urban–rural differ-
ences in canopy air SWBGT (DWca) vary diurnally and geo-
graphically. The urban–rural contrasts of canopy air SWBGT
(DWca) and canopy air temperature (DTca) share similarity,
but the magnitude of DWca is smaller due to moisture deficits
in cities.

We further apply the attribution framework to study four
regions (North America, Central America, South America,
and the Middle East). In North America, surface resistance
makes a stronger contribution than ground heat flux during the
daytime, while it is the opposite in Central America. Aerody-
namic resistance can make positive (e.g., North America and
South America), negligible (e.g., Central America), or negative
(e.g., Middle East) contributions during the daytime. The night-
time results are more consistent across geographic regions with
mostly positive urban–rural differences in temperatures and

heat stresses due to the strongly positive contributions from
heat storage. Only in the Middle East does the negative contri-
bution of aerodynamic resistance overweight the positive con-
tribution from ground heat flux at night.

We also extend the method to studying the 2-m air temper-
ature/SWBGT. A new biophysical factor, the 2-m level aero-
dynamic resistance (r′a), is introduced in the attribution
framework. Overall, DW2 and DT2 share similar patterns as
DWca and DTca, respectively, but with much smaller magni-
tude due to turbulent mixing in the surface layer.

5. Discussion

This study has several implications that are important to ap-
preciate. First, the methodology to quantitatively attribute
urban–rural differences in heat stress is generic and can be ap-
plied to any heat stress index that is a function of temperature
and humidity. Therefore, it allows for the intercomparison of
different heat stress indices as well as the intercomparison of
different numerical models. However, we caution that this
method is not applicable to heat indices that are also functions
of radiation and wind speed. Further development of attribu-
tion methods for more complicated heat stress indices is still
needed.

Second, the traditional definition of 2-m air temperature
and heat stress does not necessarily facilitate a clean compari-
son between urban and rural thermal conditions. Since urban
areas often have a much larger displacement height, the so-
called “2-m” air temperature (and heat stress) correspond to
a higher physical height in urban areas than in rural areas.
This might partly explain why the model yields negative day-
time urban–rural differences in heat stress. Some models try
to correct such effects in an ad hoc way, but it remains unclear
what constitutes a clean comparison in numerical models that
do not resolve the temperature/humidity profiles within the
urban canopy.

Third, the attribution method used in this study highlights
two well-known causes of the positive urban–rural differences
in temperatures and heat stresses: the lack of evapotranspira-
tion (a daytime effect) and the stronger release of heat stor-
age (a nighttime effect). However, the daytime urban–rural
contrasts of canopy air temperature and heat stress are found
to be negative in places where urban areas are surrounded by
short vegetation (e.g., arid regions) so that urban areas have
lower aerodynamic resistances and in places where urban ma-
terials have very large thermal admittance. These factors have
been less studied but are physically possible. They highlight
that it is critical for numerical models to prescribe the correct
roughness lengths and thermal properties to capture the urban–
rural contrasts of temperature and heat stress.

Fourth, while the attribution method can shed many in-
sights, applying it to diagnosing numerical model outputs
should proceed with caution. The attribution method is devel-
oped for a bulk surface. However, numerical models often
treat urban (and rural) areas as having multiple heat sources
and sinks. As a result, it is not straightforward to construct a
bulk surface temperature using numerical model outputs. Ex-
tending the TRM attribution method to the 2-m level is more
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challenging. As the magnitude of simulated urban–rural dif-
ferences in temperature and heat stress at the 2-m level is
smaller, the TRMmodeled urban–rural differences in temper-
ature and heat stress at the 2-m level are more scattered.
Moreover, some parameters needed by the attribution
method and inferred from numerical model outputs (e.g.,
aerodynamic resistance) might become physically meaning-
less (e.g., aerodynamic resistance is negative). The current
practice is to simply discard such data. Further developments
of attribution methods are needed to verify the consequence
of such a practice.

Last but not least, it is worth noting that the attribution
method, as a diagnostic method, does not provide any infor-
mation regarding the validity of the numerical model results
against real-world observations. Validation against observa-
tions is outside the scope of this study but is critical for estab-
lishing confidence in the numerical model results.
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