Logarithmic profile of temperature in sheared and unstably stratified atmospheric boundary layers

Yu Cheng
Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, USA

Qi Li
School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA

Dan Li
Department of Earth and Environment, Boston University, Boston, Massachusetts 02215, USA

Pierre Gentine
Department of Earth and Environmental Engineering and Department of Earth and Environmental Sciences, Columbia University, New York, New York 10027, USA

(Received 9 April 2020; accepted 25 February 2021; published 11 March 2021)

The impact of buoyancy on the mean velocity, temperature, and scalar concentration profiles in the lower atmosphere is typically investigated within the framework of Monin-Obukhov similarity theory (MOST). MOST is the theoretical foundation for parametrizing surface-atmosphere exchanges in nearly all weather, climate, and hydrological models. According to MOST, the classic logarithmic profiles of mean velocity and temperature break down as the buoyancy effects become important. However, recent studies on turbulent Rayleigh-Bénard convection and natural convection along vertical walls suggest that the mean temperature in the near-surface region still follows a logarithmic profile. Motivated by these new results, we study the mean potential temperature profile in sheared and unstably stratified atmospheric boundary layers using direct numerical simulations and field observations. We find that the mean potential temperature profile remains logarithmic across a wide range of stability parameters, which characterizes the relative importance of buoyancy versus shear effects. Compared to MOST, our results suggest that the buoyancy force does not modify the logarithmic nature of the mean potential temperature profile, but instead modulates its slope, which is no longer universal and differs from $\frac{1}{\kappa}$, where κ is the von Kármán constant. This study provides another perspective on scalar turbulence in the atmospheric boundary layer.

DOI: 10.1103/PhysRevFluids.6.034606

I. INTRODUCTION

The existence of a universal logarithmic mean velocity profile in the near-wall region of turbulent shear flows has been supported by laboratory measurements [1–3], atmospheric observations [4], and direct numerical simulations (DNSs) [5,6] following early dimensional analysis [7,8]. Similarly, the logarithmic profile for mean temperature in the near-wall region was first reported in the boundary layer over a heated flat plate in 1929 [9], and later proposed theoretically [10–12].
and supported by DNS of channel flow [13–17] and pipe flow [18], where the flow field is free from buoyancy effects and temperature is treated as a passive scalar. However, the mean velocity [19,20] and temperature [21–24] profiles cannot be adequately described by the universal log law when buoyancy influences the flow field. To account for these buoyancy effects on the mean velocity and temperature fields, Monin-Obukhov similarity theory (MOST) [25] is often invoked.

MOST is widely used for describing the mean velocity and temperature profiles and their connections to turbulent fluxes in the atmospheric surface layer, which is located within approximately the lowest 10% of the atmospheric boundary layer (ABL) [26]. In the atmospheric surface layer, the flow is influenced by both shear and buoyancy. MOST is the theoretical foundation for formulating surface boundary conditions for numerical weather prediction [27] and climate models [28–30]. In essence, MOST [25] corrects the logarithmic profiles of mean wind, potential temperature, and scalar concentrations using stability correction functions. According to MOST, the log law for mean velocity and potential temperature gradually breaks down as the stability-dependent correction functions become more important.

However, recent work has reported logarithmic temperature profiles with varying slopes (as compared to the universal log law that has a slope of \(1/\kappa\), where \(\kappa\) is the von Kármán constant) under different buoyant conditions in the near-wall regions of turbulent Rayleigh-Bénard convection [31–33] and natural convection along vertical walls [34]. This is at odds with the traditional paradigm in the atmospheric literature stating that the mean temperature profile in the atmospheric surface layer follows a power law under highly convective conditions [35], which can be viewed as an asymptotic state of MOST (i.e., the so-called local free convection [36]). Interestingly, the temperature log law reported by these recent studies seems to be more prevalent than the velocity log law since the former is observed in extremely buoyant flows [33] in addition to the neutral shear flows near the wall. This motivates us to examine the potential existence of a temperature log law in turbulent flows driven by both shear and buoyancy, e.g., the unstably stratified ABL.

We start by pointing out that it is well recognized that MOST does not explain all important surface-layer statistics. Notable examples include the horizontal velocity variances and spectra [37–41]. In particular, the boundary layer height \(z_i\), not considered by MOST, has been shown to be important in describing the horizontal velocity spectra and, more importantly for our work, the temperature spectra in the atmospheric surface layer [42–44]. For instance, Tong and Ding [45] added a wave-number-dependent horizontal length scale to explain surface-layer similarity in addition to the MOST stability parameter. Therefore, it is not unreasonable to ask whether the temperature field is affected by the boundary layer height in a way that may not be captured by MOST. In particular, is there still a log law for the mean temperature profile, and if so, does the slope of the logarithmic temperature profile depend on the boundary layer height?

II. METHODS

A. Direct numerical simulations

The ABL has been studied using large eddy simulations (LESs) [46–48]. However, uncertainties exist when subgrid-scale turbulence closures are applied near the wall [49,50] and wall-modeled LESs for atmospheric studies is often based on MOST [46,51–53]. Recently, DNS has been used to study the convective ABL [23,49,54–56], which can resolve the full range of turbulence scales although the Reynolds number is smaller than that in the real atmosphere. In this study, we use five DNS experiments to study ABLs under weakly unstable, highly unstable, and free convective conditions. Key information of the five DNS experiments is summarized in Table I and more details can be found elsewhere [49,57,58].

The four simulations (named Sh40, Sh20, Sh5, and Sh2) are forced with varying mean geostrophic wind and hence have different stability conditions. For these simulations, the incompressible Navier-Stokes equations with Boussinesq approximation are solved using the code
TABLE I. Key parameters of the simulated ABLs ranging from weakly unstable conditions to free convective conditions. Reₙ is the friction Reynolds number, z_i is the boundary layer height, u_sp is the friction velocity, and ν is the kinematic viscosity. L is the Obukhov length, and Lₜ, Lₓ, and Lᵧ are the domain sizes in the x, y, and z directions, respectively. Δz₊ = (Δz u_sp)/ν, Δz₊ and Δz₊ are the spatial grid resolutions denoted by inner units in the x, y, and z directions, respectively. κₒ is the inverse of the temperature log law slope. The range of temperature log law is also indicated using z⁺, zₒ, and z⁺.

<table>
<thead>
<tr>
<th>DNS data</th>
<th>Reₙ</th>
<th>z_i/L</th>
<th>Lₓ/Lₜ</th>
<th>Lᵧ/Lₜ</th>
<th>Δz₊ (Δz₊)</th>
<th>Δz₊</th>
<th>κₒ</th>
<th>Log-law range in z⁺</th>
<th>Log-law range in zₒ</th>
<th>Log-law range in z⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sh40</td>
<td>1900</td>
<td>−1.7</td>
<td>1.52</td>
<td>8.92</td>
<td>1.13</td>
<td>0.68</td>
<td>140.3–260.3</td>
<td>−0.23—−0.12</td>
<td>0.071–0.14</td>
<td></td>
</tr>
<tr>
<td>Sh20</td>
<td>1243</td>
<td>−7.1</td>
<td>1.5</td>
<td>11.02</td>
<td>2.65</td>
<td>2.36</td>
<td>84.8–151.0</td>
<td>−0.74—−0.44</td>
<td>0.062–0.10</td>
<td></td>
</tr>
<tr>
<td>Sh5</td>
<td>554</td>
<td>−105.1</td>
<td>1.5</td>
<td>4.95</td>
<td>1.19</td>
<td>12.35</td>
<td>36.8–67.8</td>
<td>−11.50—−6.25</td>
<td>0.060–0.11</td>
<td></td>
</tr>
<tr>
<td>Sh2</td>
<td>309</td>
<td>−678.2</td>
<td>1.5</td>
<td>2.87</td>
<td>0.71</td>
<td>28.59</td>
<td>22.1–30.0</td>
<td>−56.57—−41.75</td>
<td>0.062–0.083</td>
<td></td>
</tr>
</tbody>
</table>

Microhh ReL 80 −100171.6 1 1.87 0.19 0.21 68.68 10 10.0–12.0 −15153.14–−12540.53 0.13–0.15

described in Li et al. [49] (for Sh2, Sh5, and Sh20) and Heerwaarden et al. [59] (for Sh40). A sponge layer is prescribed at the top 25% of the computational domain to prevent the reflection of gravity waves [48]. The potential temperature is initially set to increase with height in the top 50% of the computational domain to prescribe a stably stratified condition. The boundary condition for the temperature field is a constant flux at the surface and zero flux at the top of the computational domain. Periodic boundary conditions are employed in the horizontal x and y directions since the statistical properties of turbulence in the ABL are nearly homogeneous when the external forcing is uniform [46]. The grid points are nx × ny × nz = 1200 × 800 × 602 for the dataset Sh2, 1200 × 800 × 626 for both Sh5 and Sh20, and 640 × 640 × 3328 for Sh40 in streamwise (x), spanwise (y), and vertical (z) directions, respectively. The stability parameter z_i/L is −1.7, −7.1, −105.1, and −678.2 (from weakly to highly convective) for Sh40, Sh20, Sh5, and Sh2, respectively. Here z_i is the convective boundary layer height, L = u_sp/ν is the Obukhov length [60], u_sp is the friction velocity, κ is again the von Kármán constant and is assumed to be equal to 0.4, g = 9.81 m² s⁻¹ is the gravitational acceleration, Θ_r is a reference potential temperature, θ_r ≡ ν/ν₉|z=0 is a temperature scale, ν₉ is the thermal diffusivity, and Θ is the horizontally averaged potential temperature at height z. The friction Reynolds number Reₙ ≡ [u_spz_i/v] = z_i/δ_v is 1900, 1243, 554, and 309 for Sh40, Sh20, Sh5, and Sh2, respectively. Here v is the kinematic viscosity and δ_v ≡ v/u_sp is the viscous length scale.

To assess the asymptotic behavior in extremely convective conditions, we also employ another simulation of free convection (named Microhh ReL and similar to the one in Heerwaarden et al. [58]), which uses a constant temperature boundary condition at the surface with a stability parameter of z_i/L = −100 171.6. The grid points are nx × ny × nz = 1536 × 1536 × 768. Heerwaarden et al. [58] observed Reynolds number similarity in their simulations and concluded that the DNS results may be extrapolated to higher Reynolds numbers. The selected time step for analysis in each DNS experiment is the time when the system is almost in steady state [58].

B. Field observations

The Cabauw Experimental Site for Atmospheric Research (CESAR) [61,62] (4.926° E, 51.97° N) in the Netherlands has a tower of 213 m with observations at 2, 10, 20, 40, 80, 140, and 200 m above a grass field, thus providing unique multilevel temperature observations in the ABL. In this study we only use the data at the lowest six levels (up to 140 m). A number of 30-min data segments between 11:00 and 15:00 UTC in July 2019 are used as the raw data. These include temperature data and surface fluxes measured at 3 m, which have been quality controlled.
FIG. 1. Vertical profiles of normalized potential temperature and heat flux averaged in the x-y plane in different convective DNS data. w' is fluctuation of vertical velocity, θ' is fluctuation of potential temperature, and $\overline{\cdots}$ denotes averaging in the x-y plane. The black dashed line denotes the fitted log profile and the slope is shown. The blue line denotes the normalized heat flux in the log law region.

[62] and downloaded from the CESAR data archive. The boundary layer height z_i is retrieved from the Lufft CHM 15k ceilometer [63], which is used to detect the top of an elevated aerosol layer. The ceilometer backscatter profiles can be used to retrieve the ABL height as the ABL is presumably well mixed and there are significant differences between the aerosol content of the ABL and the free troposphere [64]. The average ABL height of each 30-min segment is used as the raw data.

The raw data are filtered based on two criteria: the mean scaling temperature θ_* in the 30-min sampling period has to be negative and the boundary layer height z_i is larger than 700 m. The first criterion is used to ensure that the ABL is under unstable conditions. Since we would like to include as many measurements as possible (especially those at 140 m) to cover a wide range of z, we further require that the boundary layer height z_i is large enough so that the measurements are within the atmospheric surface layer. These two criteria yield 36 different 30-min periods in July 2019.

III. RESULTS

A. Existence of a temperature log law

Similarly to Kader and Yaglom [11], the difference between the mean (horizontal average in the x-y plane) potential temperature Θ at each height z and the mean potential temperature Θ_h at the lowest DNS grid is normalized by the temperature scaling parameter θ_*. The normalized temperature $(\Theta - \Theta_h)/\theta_*$, when plotted against $z^+ \equiv z/\delta_v$, shows a logarithmic profile in certain ranges in all five DNS experiments (Fig. 1; Microhh ReL shown in Fig. S1 of the Supplemental Material [65]). Similarly to the neutral channel flow study of Lee and Moser (2015) [5], a plateau of $\frac{z^+ \delta_v}{\theta_*}$ is more indicative of the existence of a temperature log law (Fig. 2; Microhh ReL shown in Fig. S2 of the
FIG. 2. The dimensionless temperature gradient $\frac{\partial \theta}{\partial z}$ in different DNS experiments. The black dashed line denotes the average $\frac{\partial \theta}{\partial z}$ in the log law region. The widely used Monin-Obukhov similarity function proposed by Businger et al. [67] is also shown and denoted as “MOST.”

Supplemental Material). In our study, the black dashed lines (plateau) in Fig. 2 are used to denote the vertical ranges where the temperature log law exists.

Over these vertical ranges, the coefficient of determination R^2 for the relation between $(\Theta - \Theta_1)/\theta_1$ and $\ln(z^+)$ is 1.00, emphasizing their linear relation. In contrast, the normalized velocity U/\bar{u}, where U is the mean streamwise velocity, does not follow a log law in the temperature log law ranges (details in the Supplemental Material) under more convective conditions ($R^2 \leq 0.22$ at $z_i/L \leq -105.1$). The deviation of the mean velocity profile from a log law due to buoyancy effects [20] is expected, and is also suggested by MOST. The failure to observe a velocity log law and constant momentum flux in highly convective conditions in the DNS experiments might also be related to the low Reynolds number [5]. Our finding of distinct behaviors of mean temperature and velocity is consistent with a previous study on turbulent natural convection [34].

The variations of turbulent heat flux $w'\theta'$ (computed as $\frac{\max (w'\theta') - \min (w'\theta')}{\max (w'\theta')}$) in the vertical ranges where the temperature log law exists (denoted by the blue color in Fig. 1) are 12% (Sh40), 1% (Sh20), 1% (Sh5), 0.2% (Sh2), and 0.7% (Microhh ReL), respectively. The magnitude of these variations, which is on the order of $\sim 1\%$ to $\sim 10\%$, is broadly consistent with the constant-flux layer concept in the atmosphere [26]. According to Wyngaard (2010) [66], the variation of turbulent fluxes in the atmospheric surface layer should scale with the ratio of the atmospheric surface layer height to the ABL height, which is about $\sim 10\%$. Here it is noted that a constant surface heat flux is prescribed for Sh40, Sh20, Sh5, and Sh2 while a constant surface temperature is prescribed for Microhh ReL.

As detailed in Table I, the logarithmic temperature profiles are found in the range $0.06 \leq z/z_i \leq 0.14$ for Sh40 ($z_i/L = -1.7$), Sh20 ($z_i/L = -7.1$), Sh5 ($z_i/L = -105.1$), and Sh2 ($z_i/L = -678.2$). This is again consistent with the typical ratio of the atmospheric surface layer height to the ABL height ($\sim 10\%$) [26]. We note that the temperature log law range in terms of z^+ is very different for
different DNS experiments, which implies some Reynolds-number dependence. The temperature log law range for the least buoyant DNS experiment Sh40 (Reτ = 1900, zi/L = −1.7) is 140.3 ≤ z+ ≤ 260.3, which compares well with the velocity log law range 3Reτ1/2 ≤ z′ ≤ 0.15Reτ (corresponding to 131 < z+ < 285 when Reτ = 1900) in turbulent shear flows according to Marusic et al. [3]. Importantly, using the MOST stability parameter, the temperature log law is found to exist even when zi/L < −10 (e.g., in Sh2 which has zi/L ≈ −50). This is surprising as MOST would have predicted that the mean temperature profile deviates strongly from the log law under such conditions [see Fig. 2(d)]. This highlights the fundamental difference between our results and MOST.

The slope of the temperature log law is not constant but instead decreases from 1/(1.69κ) to 1/(71.48κ) when zi/L decreases from −1.7 to −678.2 (Fig. 1). This is in contrast with the universal log law for mean velocity in turbulent shear flows which has a constant slope of 1/κ [3]. Such variations of the temperature log law slope have been also observed in studies of turbulent Rayleigh-Bénard convection [31]. We will examine the variation of the temperature log law slope later.

The field observations at the Cabauw Experimental Site for Atmospheric Research are at much higher Reynolds numbers (9.8 × 10⁶ ≤ Reτ ≤ 3.7 × 10⁷). The normalized potential temperature (Θ − Θh1)/θ∗ is plotted against ln(z+) in all 36 periods (Fig. 3 and Figs. S3–S6 in the Supplemental Material), where Θ is the time-averaged potential temperature at heights of 10, 20, 40, 80, and 140 m above the land surface in a 30-min period, and Θh1 is the time-averaged potential temperature at 2 m in the same period. θ∗ is computed using turbulent fluxes measured at 3 m assuming that the measurements are taken in the constant-flux layer. One can see that (Θ − Θh1)/θ∗ seems to show a linear relation with ln(z+) over a wide range of stability conditions as compared to the nonlinear relation due to MOST, suggesting that the mean temperature profile follows a log law. When we fit a linear relation between (Θ − Θh1)/θ∗ and ln(z+), the coefficient of determination is higher than

FIG. 3. Vertical profiles of normalized potential temperature in four different unstable conditions at the Cabauw Experimental Site for Atmospheric Research in the Netherlands. R^2 denotes the coefficient of determination for the relation between $(\Theta - \Theta_{h1})/\theta^*$ and ln(z^+), and z_{10m}/L denotes the stability parameter z/L at $z = 10$ m. “MOST” denotes the computed temperature profiles based on Monin-Obukhov similarity theory.
0.7 in 29 of the 36 periods. We also compare the predicted temperature profile based on MOST \cite{68,69} with field observations and find deviations across the stability conditions examined here ($-5.22 \leq z/L \leq -0.19$, where $z = 10$ m) (Fig. 3). We note that the coefficient of determination is lower than 0.7 in 7 of the 36 periods, where there are also significant deviations from MOST (Fig. S6 in the Supplemental Material). This might be due to measurement uncertainties, thus these seven periods are not further used to compute the slope of the temperature log law (Fig. 4).

We point out that there have been few studies investigating the logarithmic nature of the mean potential temperature profile in the atmospheric surface layer. This is partly because field observations typically have very sparse vertical measurements (fewer than those used in our study) that do not permit one to validate the logarithmic behavior in the surface layer. As a result of the sparse measurements in the vertical direction and the large measurement uncertainties, a plateau of $\frac{\zeta \theta}{\theta_0^*} \frac{\partial}{\partial z}$ cannot be accurately identified in order to support a log law in field observations. In addition, MOST has been regarded as a cornerstone of ABL turbulence theory and thus most field studies analyzed data within the framework of MOST assuming its validity. Nonetheless, we highlight that previous field observations showed that the peak wave numbers of temperature spectra are related to ζ, as shown in our results.

B. Slope of the temperature log law

1. **Dimensional analysis**

In this section, the slope of the temperature log law is analyzed using dimensional analysis. The mean temperature profile in fully developed unstable boundary layer flows can be described by ν, ζ, u_r, z, and θ_*, which can form three nondimensional groups: $\frac{\zeta}{\delta_v}$, $\frac{\zeta}{\delta_v} \equiv \text{Re}_r$, and $\frac{\zeta}{L} = \frac{\kappa g}{\theta_0^*} \frac{\partial}{\partial z}$.

The mean temperature distribution can be written as $\Theta_0 - \Theta = \theta_0 F_0(\frac{\zeta}{\delta_v}, \frac{\zeta}{\delta_v} \frac{\zeta}{L})$, where Θ_0 is the mean potential temperature at the wall, and F_0 is a function of $\frac{\zeta}{\delta_v}$, $\frac{\zeta}{\delta_v}$, and $\frac{\zeta}{L}$. The log law region, $\frac{\zeta}{\delta_v} \frac{\zeta}{L}$, is independent of z as suggested by the DNS datasets, which is fundamentally different from the z-dependence profile according to MOST (Fig. 2). Similarly to the argument for velocity gradient in Pope \cite{70}, the temperature gradient $\frac{\partial \Theta}{\partial z}$ can be written as

$$\frac{\partial \Theta}{\partial z} = \frac{\theta_*}{\zeta} \Phi\left(\frac{z_i}{\delta_v}, \frac{z_i}{L}\right),$$

where Φ is a function of $\frac{z_i}{\delta_v}$ and $\frac{z_i}{L}$.
where Φ is a function of $\frac{z}{\delta_v}$ and $\frac{z}{L}$. Integrating from a reference height z_r to z and denoting $\frac{1}{\kappa_\theta} \equiv \Phi\left(\frac{z}{\delta_v}, \frac{z}{L}\right)$ yield

$$\frac{\Theta - \Theta_r}{\theta_e} = \frac{1}{\kappa_\theta} \ln \left(\frac{z}{z_r}\right),$$

(2)

where Θ_r is a reference potential temperature at some reference height z_r near the wall. We can normalize both z and z_r by δ_v to recast the equation in terms of $z^+ = z/\delta_v$, but this will not affect the slope $1/\kappa_\theta$, which is a function of z_i/L and z_i/δ_v. z_i/L represents the buoyancy effects and z_i/δ_v represents the Reynolds number effects. This dimensional analysis points out the relevant parameters that affect the slope of the temperature log law, but the exact relations remain to be determined from numerical experiments or field observations.

2. DNS and field observations

The DNS datasets (Sh40, Sh20, Sh5, Sh2, and Microhh ReL) suggest that κ_θ/κ increases nonlinearly with increasing $-z_i/L$ [Fig. 4(a)]. That is to say, as buoyancy effects increase, the slope of the temperature log law deviates more from that of the neutral turbulent shear flow. In the Sh40 experiment ($-z_i/L = -1.7$) with the weakest buoyancy effects, $\kappa_\theta/\kappa = 1.69$, thus we expect that κ_θ/κ approaches 1 in the “neutral limit” without buoyancy effects assuming that the turbulent Prandtl number in the neutral limit is equal to 1 [71,72]. It is worth noting that κ_θ/κ may still depend on the Reynolds number in the “neutral limit”, which is consistent with the dependence of temperature profiles on the Reynolds number in previous DNS experiments neglecting buoyancy effects [13–18]. In the “free convection limit”, κ_θ/κ might further increase with increasing $-z_i/L$ but the increasing rate is not as large as that in less buoyant conditions [Fig. 4(a)]. Consistent with the DNS datasets, κ_θ/κ increases with increasing $-z_i/L$ in field observations [Fig. 4(a)]. In terms of the dependence on the Reynolds number, the DNS datasets suggest that κ_θ/κ seems to decrease with increasing z_i/δ_v [Fig. 4(b)]. However, when z_i/δ_v increases from $\sim 10^3$ (DNS datasets) to $\sim 10^7$ (field observations), κ_θ/κ does not seem to show a monotonic trend [Fig. 4(b)], and one may argue that κ_θ/κ becomes nearly independent of z_i/δ_v in field observations.

Therefore, it can be summarized that κ_θ/κ is mainly determined by $-z_i/L$, but also influenced by z_i/δ_v when the Reynolds number is not sufficiently large. In Fig. 4(a), κ_θ/κ obtained from field observations seems to be smaller than those from DNS experiments at similar $-z_i/L$, which might be due to the Reynolds number effects as discussed above and/or uncertainties in field observations of turbulent fluxes [73] and the ABL height [74,75]. More accurate measurements of mean temperature gradients in the ABL, turbulent fluxes, and the ABL height are critical to better constrain κ_θ in atmospheric conditions with large Reynolds numbers. We leave this for further study.

3. Asymptotic analysis

As κ_θ seems to become independent of the Reynolds number when the Reynolds number is sufficiently high in field observations [Fig. 4(b)] similarly to the von Kármán constant κ [3], we conduct asymptotic analysis for the slope κ_θ in the “neutral limit” and “free convection limit” at sufficiently high Reynolds numbers (i.e., neglecting the Reynolds number effects). In the neutral limit ($\theta_e \to 0$ and $z_i/L \to 0$), we obtain the following asymptotic state:

$$\Phi\left(\frac{z_i}{\delta_v}, \frac{z_i}{L}\right) = \Phi\left(\frac{z_i}{L}\right) = \Phi(0) = c_1, \quad \text{for } \frac{z_i}{L} \to 0,$$

(3)

where c_1 is a constant. Given that $\kappa_\theta = 1/\Phi$, we thus expect

$$\kappa_\theta = \frac{1}{c_1}, \quad \text{for } \frac{z_i}{L} \to 0.$$

(4)

Note that $c_1 = 1/\kappa$ if we further assume that the turbulent Prandtl number in the neutral limit is equal to 1 [71,72].
If the proposed temperature log law [Eq. (1) or (2)] holds in the free convection limit \((\theta_* \rightarrow -\infty)\) and \(z_i/L \rightarrow -\infty\), the following asymptotic relation is required to cancel out \(\theta_*\):

\[
\Phi \left(\frac{z_i}{\delta_v}, \frac{z_i}{L} \right) = \Phi \left(\frac{z_i}{L} \right) = \Phi \left(\frac{\kappa g z_i}{\Theta_r} \frac{\theta_*}{u_*^2} \right) = c_2 \left(- \frac{\kappa g z_i}{\Theta_r} \frac{\theta_*}{u_*^2} \right)^{-1}, \quad \text{for} \quad \frac{z_i}{L} \rightarrow -\infty, \tag{5}
\]

where \(c_2\) is a constant. Under such conditions, the temperature gradient \(\partial \Theta/\partial z\) can then be rewritten as

\[
\frac{\partial \Theta}{\partial z} = -c_2 \frac{\Theta_r}{z} \frac{u_*^2}{\kappa g z_i}, \quad \text{for} \quad \frac{z_i}{L} \rightarrow -\infty. \tag{6}
\]

The above equation can accommodate the situation of \(u_* \rightarrow 0\) as it corresponds to a well-mixed state (i.e., \(\partial \Theta/\partial z = 0\)). Furthermore, because \(\kappa_\theta = 1/\Phi\), we can obtain

\[
\kappa_\theta = \frac{1}{c_2} \left(- \frac{z_i}{L} \right), \quad \text{for} \quad \frac{z_i}{L} \rightarrow -\infty. \tag{7}
\]

This asymptotic behavior of \(\kappa_\theta\) is in qualitative but not quantitative agreement with the relation between \(\kappa_\theta\) and \(-z_i/L\) obtained from the DNS experiments and field observations, where the slope between \(\kappa_\theta\) and \(-z_i/L\) in the log-log plot is smaller than unity [Fig. 4(a)]. The limited Reynolds number as well as the limited buoyancy may influence the relationship between \(\kappa_\theta\) and \(-z_i/L\). On the one hand, the DNS experiments have low Reynolds numbers. On the other hand, the free convection limit \((z_i/L \rightarrow -\infty)\) may not be reached in field observations \((z_i/L > -1000)\), which also suffer from measurement uncertainties.

C. Comparison to MOST

The proposed temperature log law in unstable boundary layers can be written as

\[
\frac{\kappa z}{\theta_*} \frac{\partial \Theta}{\partial z} = \kappa \Phi \left(\frac{z_i}{L}, \frac{z_i}{\delta_v} \right) = \frac{\kappa}{\kappa_\theta}, \tag{8}
\]

where \(\Phi(\hat{z}, \hat{\omega})\) is independent of \(z\). This is fundamentally different from MOST where the normalized temperature gradient is assumed to depend on \(z/L [25]\),

\[
\frac{\kappa z}{\theta_*} \frac{\partial \Theta}{\partial z} = \phi_b \left(\frac{z}{L} \right). \tag{9}
\]

The fact that \(\phi_b\) is dependent on the distance to the wall \(z\) leads to a nonlogarithmic profile for the mean temperature. The widely used Businger-Dyer function for \(\phi_b [67]\) is shown in Fig. 2, which clearly denotes a slope rather than a plateau for \(\frac{z}{L} \frac{\partial \Theta}{\partial z} \frac{\theta_*}{u_*^2} \frac{\omega}{\delta_v} \). In our DNS datasets, \(\frac{z}{L} \frac{\partial \Theta}{\partial z} \frac{\theta_*}{u_*^2} \frac{\omega}{\delta_v} \) approaches a constant that is equal to \(\frac{z_i}{\delta_v}\) in the surface layer (Figs. 2 and S2), thus supporting a log law rather than MOST. Moreover, the proposed log layer depends on an outer layer scaling, the boundary height \(z_i\). This outer layer correction, \(\Phi(\hat{z}, \hat{\omega})\), is consistent with recent studies emphasizing the importance of \(z_i\) in the temperature spectra [42,43], heat-flux cospectra [43], and temperature profiles [41,49] in convective conditions. Yet, the role of \(z_i\) is not considered in MOST.

IV. CONCLUSION

We investigate the existence of a logarithmic potential temperature profile in the near-wall region of unstable boundary layer flows using DNS experiments and field observations. The new temperature log law can be expressed as \(\frac{\kappa z}{\theta_*} \frac{\partial \Theta}{\partial z} = 1\), where \(\kappa_\theta\) is a function of \(z_i/L\) and \(z_i/\delta_v\), which represent the buoyancy and Reynolds number effects, respectively. The proposed temperature log law is fundamentally different from the traditional MOST and thus would alter our representation of flux boundary conditions in hydrological and atmospheric models. We also conduct asymptotic analysis for the slope \(\kappa_\theta\) in the “neutral limit” and “free convection limit” at sufficiently high
Reynolds numbers. Further investigations using more data collected over a wide range of stability and Reynolds number conditions are recommended. With more validations, the proposed temperature log law may replace Monin-Obukhov similarity function in weather and climate models and wall models for LES, potentially leading to better predictions of weather, climate, and hydrology.

ACKNOWLEDGMENTS

P.G. would like to acknowledge funding from the National Science Foundation (NSF CAREER, EAR-1552304) and from the Department of Energy (DOE Early Career, DE-SC00142013). Q.L. acknowledges funding from the National Science Foundation (AGS-2028644, CBET-2028842). D.L. acknowledges funding support from the National Science Foundation (AGS-1853354). The simulations were performed on the computing clusters of the National Center of Atmospheric Research under projects UCLB0017 and UCOR00029. We would like to thank Dr. Chiel van Heerwaarden for the help with direct numerical simulation of free convection using MicroHH. We would like to thank Dr. Fred C. Bosveld and Henk Klein Baltink for the help in obtaining the field data at the Cabauw Experimental Site for Atmospheric Research (Cesar) [76].

D. Li, Turbulent Prandtl number in the atmospheric boundary layer—Where are we now? Atmos. Res. 216, 86 (2019).

http://www.cesar-database.nl.