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Abstract—Maulti-rate systems arise naturally in distributed
settings where computing units execute periodically according
to their local clocks and communicate among themselves via
message passing. We present a systematic way of designing
and verifying such systems with the assumption of bounded
drift for local clocks and bounded communication latency.
First, we capture the system model through an architecture
definition language (called RADL) that has a precise model of
computation and communication. The RADL paradigm is simple,
compositional, and resilient against denial-of-service attacks. Our
radler build tool takes the architecture definition and individual
local functions as inputs and generate executables for the overall
system as output. In addition, we present a modular encoding
of multi-rate systems using calendar automata and describe
how to verify real-time properties of these systems using SMT-
based infinite-state bounded model checking. Lastly, we discuss
our experiences in applying this methodology to building high-
assurance cyber-physical systems.

I. INTRODUCTION

A cyber-physical system consists of sensors, controllers, ac-
tuators controlling the behavior of physical systems operating
in real time and space. Examples of such systems can range
from surgical robots to planes and power grids. Cyber-physical
systems are typically physically distributed. A modern car,
for example, can feature 30 to 100 electronic control units
(ECUs) for handling functions such as brakes, fuel, engine
control, entertainment, skid control, airbags, and windows.
The ECUs are connected by means of one or more buses,
and the buses themselves are connected through gateways. For
the safe and secure operation of the bus, it is important to
have an architecture that keeps the nodes decoupled so that
the nodes only interact through protected channels with non-
blocking communication. We describe the Robot Architecture
Definition Language (RADL) and its model of computation.
This model of computation consists of nodes operating quasi-
periodically at their individual periods and communicating
through bounded latency channels. We present the semantics
of RADL’s multi-rate, quasi-periodic model of computation
and along with a number of useful properties of this model.

Cyber-physical systems typically operate at multiple rates.
For example, the sensors operate at different rates given by the
device so that a Global Positioning System (GPS) sensor might
operate at 10 Hz, whereas an Inertial Measurement Unit (IMU)
might operate at 100 Hz. Real-time controllers also operate
at different frequencies depending on the desired stability
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and convergence properties. Monitors for system safety would
typically operate at a relatively low frequency compared to
the control components. A multi-rate framework is therefore
a natural choice for RADL. A multi-rate model also makes
sense for security and resilience. Interaction in cyber-physical
systems should be decoupled by having components that
execute in isolation and communicate through non-blocking
channels. Otherwise, it will be possible for one component to
either block another one or to overload it with input leading to
potential timing failures. The multi-rate model is immune to
such failures: when a fast component generates high-frequency
input that is received and processed by a slow component at
a low frequency, message buffers might be overwritten in the
process, but it is not possible to cause the slow component to
react faster than its frequency.

Multi-rate designs must be sensitive to message loss since
the sender might be sending messages faster than the receiver
can process them. There is a bound on the number of con-
secutive messages that can be lost, and it is also possible
to reduce or eliminate message loss by buffering. Cyber-
physical systems are control-intensive and often only the latest
information is significant, so it is better to design a system
that is resilient with respect to bounded message loss. For this
purpose, messages should not record events such as button
pushes but must instead capture state information such as the
toggling of a value. Additionally, state information must not
be transmitted in the form of increments, but should instead be
represented in absolute form so that the loss of a few messages
has little impact on the physical behavior.

The RADL framework takes its inspiration from the Robot
Operating System (ROS). In the RADL framework, the sen-
sors, controllers, and actuators are constructed from functional
units called nodes. Each node executes independently with a
period determined by a local clock and scheduling constraints.
RADL supports a publish/subscribe architecture where nodes
communicate by publishing on certain topics and subscribing
to other topics.

In short, multi-rate architecture is predominant in cyber-
physical systems. In this paper, we present a comprehensive
solution that addresses various aspects of the design and verifi-
cation of multi-rate distributed systems. Figure 1 illustrates the
overall flow of our proposed approach. The centerpiece of this
flow is RADL, which captures both the logical architecture and
the physical architecture of the target distributed system. The



logical architecture specifies a model of computation (details
in Section II), and drives both model generation for verification
and code generation for implementation. On the verification
side, a formal model adhering to the RADL specification is
generated from user code or Simulink subsystems that describe
individual node functions. In the case of Simulink models, the
translation is automatic, handled by our tool developed in this
work called Sim2SAL. The formal model is further supported
by backend tools that enable the verification of real-time
properties. On the implementation side, our automatic build
system radler synthesizes glue code for the communication
layer based on the logical description and binds it to the source
code for node functions to generate a code executable. In
addition, radler utilizes the physical architecture part of
RADL to realize the final system. During the build process, it
can instrument the system so that platform assumptions such as
node periods and channel latencies can be checked at runtime.
This helps to validate the formal model used in verification.

In an earlier publication [16], we proved several theorems
about quasi-periodic multi-rate systems. In this paper, we make
the following additional contributions.

o Introduce a formal model of computation based on mes-
sage streams for quasi-periodic multi-rate systems;

o Describe an architecture definition language and its asso-
ciated build system that supports the design and integra-
tion of such systems;

e Present a framework of verifying real-time multi-rate
systems based on a modular encoding of such systems
using calendar automata;

« Demonstrate the application of the RADL framework in
designing a high-assurance ground robot.

The rest of the paper is organized as follows. Section II
presents a formalization of the quasi-periodic multi-rate model
of computation. Section III describes our architecture defini-
tion language, RADL, in detail, and the accompanied build
system radler. The verification framework including the en-
coding of multi-rate systems using calendar automata is given
in Section IV. Section V describes an application of the RADL
framework to the design and verification of a high-assurance
ground robot. We survey related work in Section VI and give
concluding remarks and future directions in Section VII.

II. A MODEL OF COMPUTATION FOR QUASI-PERIODIC
MULTI-RATE SYSTEMS

A RADL architecture consists of nodes Ny, ..., Njpodes|
and topics Aj, ..., Ajiopics|- A node N is specified in terms
of its minimum and maximum periods min(N) and maz(N),
its list of topic subscriptions subscribes(N ), together with the
maximum latency L(A, N) for each topic A in subscribes(N),
and the list of published topics publishes(IN). Each topic
A has a type type(A) and a default value init(A) of type
type(A). Each topic has exactly one node as its publisher.

The formal semantics of RADL can be summarized as
follows. A clock T is a monotonically increasing sequence
of time points 7(4), for 0 < ¢ that is progressive, that is, for
any t > 0, there is a j such that 7(j) > t. A quasi-periodic

clock with period in [min, max] with 0 < min < max and
start-up time o > 0 is a clock 7 where 7(0) = 0, 7(1) < o,
and the period min < 7(i +2) — 7(i+ 1) < max, for i > 0.
An event e consists of a time time(e) and a value value(e). A
timed stream o is a sequence of events such that the sequence
(time(o(i))|i > 0) is a clock. A timed stream is quasi-periodic
if its clock is quasi-periodic.

For each topic A of type type(A) with default
value v, there is a timed stream stream(A) such that
value(stream(A)(0)) = wv. The interpretation is that
the value wvalue(stream(A)(i + 1)) is generated at time
time(stream(A)(i + 1)), for i > 0.

The communication of messages on a topic stream A to
a subscriber node N for the topic is through a mailbox
with a bounded latency L(A,N). The maximum latency
depends on the subscriber node since some nodes might have
more responsive mailboxes than others. Let rstream(A, N)
represent the timed stream of messages received by node N
on topic A. Then there must be a bijection I on the indices
so that I(0) = 0, time(rstream(A, N)(0)) = 0, for each
i > 0, value(rstream(A, N)(i)) = value(stream(A)(I(3))),
and for each j > 1, time(stream(A)(I(5))) <
time(rstream(A, N)(j)) < time(stream(A)(I(5))) +
L(A, N). This means that every message on topic A sent at
time ¢ is received by node N no later than ¢ + L(A, N). Since
rstream (A, N) is a timed stream, it must have a monotonically
(strictly) increasing clock, and hence no two messages are
received at the same time. The messages received by N on
topic A are therefore totally ordered so that at any time
t, there is exactly one message that is the last message
received at or before ¢. For a timed stream o, let o|; represent
the finite stream of events ¢(0),...,0(n), where ¢t > 0,
time(o)(n) < t, and time(o)(n + 1) > ¢.

Each node N has a step function step(N, A) that maps the
input streams from the subscribed topics subscribes(N) to the
values for each published topic A in publishes(N). Let 7n
be the quasi-periodic clock of node N operating at a period
in [min(N), maz(N)]'. then the clock of stream stream(A)
is equal to 7n. The value wvalue(stream(A)(i)) is equal
to  step(N, A)(rstream(By, N)|¢, ..., rstream(Bp, N)|¢),
where t = 7yn(¢) and subscribes(N) = {Bi,...,B,}. In
other words, the topics published by node N all share the
same clock.’

In the typical case, each node will only have a
bounded buffer of length k; for the input messages
on each stream. Define ¢ as the finite sequence
consisting of the last k£ elements of o if the length
of o is at least k, and as o, otherwise. Then
step(N, A)(rstream(By, N)|¢, . . ., rstream (B, N)|¢)
can be rewritten using a buffered step bstep(N,A) as
bstep(N, A)(rstream(By, N)|F, ..., rstream (B, N)|),
where ¢t = 7n(i). A buffer size of one means each node

Each step function is assumed to have finished its computation before the
node activates in the next period.

2This condition can be relaxed so that the messages of topics with lower
time-criticality can be published less frequently than others.
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Fig. 1. Overview of the RADL design and verification flow

processes the last message received on each topic.
We highlight below several properties about this model of
computation that were proven in an earlier publication [16].

1) Bounded processing latency for message: A message
sent by publisher node P at time ¢ to subscriber node S
on topic A with maximal latency L(A,S) is processed
by node S within time ¢ + L(A,S) + maz(S) unless
it is superseded by a subsequent message from P. The
maximal delay occurs when a message sent by P at time
t is received by S at a time just after 75(7) and processed
by S at 7¢(i + 1) where 75(i + 1) — 75(i) = maxz(S).

2) No overtaking, with timing assumptions: If L(A,S) <
min(P), then messages are received by S in the order
sent by P since the 7’th message from P will be received
by S before the i 4+ 1’st message is sent.

3) Bounded consecutive message loss: Assuming a buffer
size of one, if M is the smallest integer such that
M x min(P) > L(A,S) + maz(S), then at least one
of M consecutive messages is read by the subscriber
(assuming no overtaking). The fastest rate at which
message can be sent is 1/min(P), and the maximum
number of messages that can arrive in the interval from
7s(i) to 7s(i + 1) are those sent in the interval from
Ts(i) — L(A, S) to 75(i + 1).

4) Bounded queue length to eliminate message loss: Under
the same assumptions as the previous bullet, with a
queue length of @), at most M — () consecutive messages
are lost.

5) Bounded age MA(m) of a message input m used
by subscriber S in a step function: MA(m) <
L(A,S) + maz(P) (without overtaking). The quan-
tity L(A,S) + max(P) is the biggest gap between
time(rstream(P)(i)) and time(rstream(P)(i + 1)).

Bounds can also be computed for the scenario where overtak-
ing is possible [16].

These theorems are important for verifying properties of
multi-rate systems. Consider the following example of a
simple semi-autonomous robot shown in Figure 2. It consists
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Fig. 2. A simple tele-operated ground robot with obstacle detection sensor.

of nodes sensor, operator, controller, and actuator, and
topics go published by operator, speed and danger published
by sensor, and power and in_danger published by the
controller. We can calculate that when the operator sets go
to false at time t, the controller sets power to 0 within
t + A, where A = maz(operator) + L(go, controller) +
maz(controller). The explanation for this is that if the op-
erator’s action of setting go to false occurs at time ¢, then the
operator node might take up to maz(operator) to detect this.
The go message might be received by the controller after a
delay of at most L(go, controller). The controller processes
this message within a delay of at most maz(controller).
Similarly, if sensor senses an obstacle and sets danger to true,
it may take up to max(sensor) + L(danger, controller) +
maz(controller) time later for the controller to process this
message. These bounds are thus crucial in designing a semi-
autonomous robot that can respond timely both to operator and
sensor signals. In addition, we need to ensure that the robot
can always come to a safe stop even in the setting where go
and danger might be produced and arrived out-of-order. We
discuss how to formally verify such properties in a multi-rate
system later in Section IV.



III. RADL AND ITS BUILD SYSTEM

Language Overview. A RADL specification is a set of typed
value definitions following this simple grammar:

definition := aggregate | basic
basic := name? (7 type)? primitive_value

aggregate := name? (7 type)? {7 (fieldname value™)*}”
value := value_definition | name

As the grammar indicates, naming of a value is not manda-
tory. This is seen in Figure 3 with PERIOD 5Smsec where
PERIOD is the fieldname and Smsec is a primitive_value
whose implicit type is a duration. A unit system is imple-
mented on some primitive types like durations which can have
sec, msec, usec, nsec as units.

When a value is to be used multiple times like a topic
value, one has to reference it with its name. For example
sys_input is the name of a value of type topic used
in the subscription and publication of nodes sensor and
controller. Names are scoped and RADL allows the
specification to be separated in multiple modules. A system of
qualified names is used to reference a name out of the current
scope. Some short hands like aliasing and value duplication
are also part of the language.

Types and their fieldnames are all predefined by the RADL
language, as is the syntax of primitive values. This allows
specifications to be typechecked and types for non-annotated
values to be inferred. Type ambiguity raises an error and
requires the user to annotate the value with the intended type.

The type of RADL values can be separated in two groups,

the logical and the physical. The logical specification describes
a model of the system in terms of nodes and topics. The
physical specification describes the mapping of the logical
model on to actual machines.
Logical Architecture. The logical specification corresponds to
the intended model decided by the user. It has two main value
types, node and topic. Figure 3 gives a somewhat minimal
specification of the simple robot example in Section I.

A topic value consists of the fields of its messages. For
example, the sys_input has two fields named danger and
speed whose values define the default value of the topic.

A node value has three principal logical fields:

e PERIOD which gives the node execution period.

e PUBLISHES which lists the different publications of the
node defined through topics.

e SUBSCRIBES which lists the different subscriptions of
the node, where a subscription is defined by a topic
and a maximum latency. By default, each subscription is
associated with a mailbox (buffer) of size 1, which keeps
the last received message. A bigger queue size may be
specified here.

User Code. At the logical level, nodes are abstract Mealy
machines, but an actual implementation is required to enable
the system generation. Currently, RADL nodes can be im-

: topic { FIELDS
bool true

speed : float64 0.0 }
sys_command : topic { FIELDS go : bool false }
sys_output : topic { FIELDS power : int32 0 }
sys_display : topic { FIELDS in_danger : bool true }

sys_input
danger :

sensor : node {
PERIOD 10msec
PUBLISHES ol { TOPIC sys_input }
CXX { HEADER "sensor.h" CLASS "Sensor" }}
controller : node {
PERIOD 50msec
SUBSCRIBES
input { TOPIC sys_input MAXLATENCY bmsec }
command { TOPIC sys_command MAXLATENCY lOmsec }
PUBLISHES
output { TOPIC sys_output }

display { TOPIC sys_display }
CXX { HEADER "controller.h" CLASS "Controller" }}
operator : node {

PERIOD 100msec

PUBLISHES command { TOPIC sys_command }

SUBSCRIBES

display { TOPIC sys_display MAXLATENCY 1lOmsec }

CXX { HEADER "operator.h" CLASS "Operator" }}
actuator : node {

PERIOD 10msec

SUBSCRIBES output { TOPIC sys_output }

CXX { HEADER "actuator.h" CLASS "Actuator" }}

Fig. 3. The logical RADL description of a simplified semi-autonomous
vehicle example

plemented in C, C++ or Simulink®. The implementation is
expected to define a state structure, an initialization function,
a step function and a finish function. In Figure 3, every node
uses the simplest option of a C++ header file defined with
the CxX field. This header needs to contain the declaration
of a class named after the CLASS field, with at least three
public methods: a default constructor, default destructor and
a method step, corresponding to the initialization, finish and
step function respectively. Accessory source files and libraries
required to compile the user code have to be specified in
the user code field to allow the system generation to build
correctly. An example of user source code for the operator
node of our previous example is shown in Figure 4.

The first thing to note is the inclusion of RADL_HEADER,
a macro defined specifically for each node to allow the
inclusion of the required generated header. It is in this
header that the step method input (radl_in_t for messages
and radl_in_flags_t for associated flags) and output
(radl_out_t and radl_out_flags_t) types are defined
according to the RADL specification. In our example, the
input structure contains one field named display corre-
sponding to the display subscription of the node, itself
linked to the topic sys_display which has one field named
in_danger that will be printed out at every step with the
expression in->display.in_danger where in is the
input structure. The output structure of the step function is

3Embedded Coder is required for Simulink code generation and full
integration is still a work in progress.



#include RADL_HEADER
#include <iostream>
class Operator {
public:
void step(const radl_in_tx in,

const radl_in_flags_tx in_f,

radl_out_tx o, radl_out_flags_t* o_f) {

std::cout << "In Danger" << in->display.in_danger << std::endl;

if (radl_is_failing(in_f->display))

std::cout << "The controller is failing to send correct

o->command.go = true; // This basic
o_f->command = radl_NO_FLAGS; // The

rator 1S a

commanad

messages!" << std::endl;
_rying to go.
is fully in our

Navs

control, clear its flags. }}

Fig. 4. A rudimentary “operator.h” source file for the operator node of Figure 3

used to collect the values to be published as seen by the
assignation done to o—>command. go.

By forcing the user to use the generated types for in-
put and output structures, we ensure that the types of the
fields are correct according to the specification while al-
lowing padding, extra fields, etc. that may be required by
the communication layer. The generated header also enables
introspection in that it contains every values defined in the
RADL specification. This allows the user code to use the
specification as parameters. For example, one can access
the default speed value of topic sys_input with the C
expression RADL_MODULE->sys_input.speed.
Runtime Monitoring. The generated glue code and communi-
cation layer are in charge of checking the system health. Those
checks are designed to be lightweight, conservative and locally
computed at the level of each node. Two main checks are done,
respective for the node period and the subscribed topic health.
According to the Theorem 5 in Section II, any subscription
should receive a message at least every L(A, S)+ maz(P). If
we define that an input is stale at a step when no new message
has been received since the previous step, we can derive from
the theorem that an input should not be stale for more than
[%’W] times consecutively. At that point we will
say that the input has a timeout flag.

This local information is provided to the nodes in the form
of flags associated to each input. There are two categories
of flags: the so-called operational and the failure ones. The
operational flags are expected to be raised even in normal
operation of the system and are meant to be informative for
the user. The main one is the stale flags radl_STALE_MBOX,
which indicate to the user whether the input is stale. On the
other hand, the failure flags point to an abnormal behavior
of the system. The main failure flag is the timeout flag
radl_TIMEOUT_MBOX, which indicates whether the input
in the mailbox has timed out.

Even if these locally computed flags are not checked by
a node’s user code, two automatic mechanisms make use of
them. The first one is a global health monitoring system,
collecting every node flags at a low frequency and reporting it.
The second is the automatic flag propagation. We will cover
only the second one here.

By default, a message published by a node will be flagged
with the conjunction of the input flags of the node. So that if
one of the inputs of the node has timed out, all its outputs will

be flagged as timeout. At the subscriber level, such a flagged
value will have the radl_TIMEOUT_VALUE flag on. In turn,
this timeout at the input will cause all outputs to be flagged
as timeout, continuing the propagation. The radl_TIMEOUT
flag is the conjunction of the radl_TIMEOUT_MBOX and
radl_TIMEOUT_VALUE. It can be used by critical nodes
to go into a safe mode without relying on the user code of
the other nodes to behave well. In our example (Figure 3),
by watching the radl_TIMEOUT flag, the actuator node
would be able to go into a safe mode (stopping the vehicle)
after the sensor node dies, even if the controller node
does not check its input flags.

To bypass the default propagation, the step function is given

the chance to change the output flags. A node such as the
operator node doesn’t rely on its subscriptions to provide
an accurate output. Being a source, it can choose how its
outputs are flagged. In Figure 4, the user code does always
send the same output and make sure that no flag is on. A non-
reliable sensor like a GPS would be able to flag its output
as stale or even as timeout when no satellites are found, to
indicate to its subscriber that the sent value might not be
trustworthy.
Physical Architecture. The physical specification describes
the machines used in the realization of the overall system. A
physical description is provided by a value of type plant.
The most important field is the MACHINES field listing the
machines of the system. A machine is typically defined by the
operating system that it runs (OS fields). Other properties like
processor kind and device physical port are not described here.
Their use is mostly geared towards system code generation
and configuration, done by the radler tool. Three operating
systems are currently supported, the Linux Ubuntu 14.04
LTS with recent enough kernel to use the earliest deadline
first scheduler [19], and two hypervisors CertiKOS [11] and
LynxSecure by the company Lynx Software Technologies.
Each operating system has a list of nodes to run under the field
NODES. Note that we also support running nodes directly as
secure processes of the hypervisor, but this drastically limits
the user code since usual system libraries are not available in
this setting.

Communication channels between nodes are automatically
computed from the plant. The algorithm is straightforward and
priortizes on fast local and secure communication channels. If
the two nodes needing to communicate are in the same Linux



two_machines_system :
MACHINES

vehicle_box { 0S {
NODES sensor controller actuator
IP 192.168.0.11 }}

ocu { 0S {
NODES operator
IP 192.168.0.10 }}}

plant {

Fig. 5. A basic physical mapping of the example of Figure 3. Two machines
running the default operating system are connected by an Ethernet network.
One is dedicated to the operator and the other one is the computer of the
vehicle.

one_machine_system : { MACHINES
main_computer { OS
hypervisor : certikos {
VMS
operator_vm { OS {
NODES operator }}
controller_vm { OS {
NODES sensor controller actuator }}}}}

plant

Fig. 6. A basic physical mapping of the example of Figure 3. Here the
operator directly interacts with the computer of the vehicle, but to ensure a
higher security, the computer is handled by the CertiKOS hypervisor, isolating
the controller part in a separate virtual machine. Communication is implicitly
handled by CertiKOS shared memory.

system, a shared memory ring buffer will be provisioned. If
they are in two different virtual machines (VMs) of an hyper-
visor, a ring buffer will be setup in a memory region shared
between those two virtual machines. Finally if the nodes are
on totally separate machines, IP-based communication will be
used. In this case, the user needs to specify which IP address
he wants using the IP field of the operating system.

In Figure 5 and 6 we give two examples of plant
values for our running example. In the first, two machines
vehicle_box and ocu are defined, each of them running
the default operating system (Linux). The operator is run on
a computer separated from the vehicle, which allow a better
isolation of the critical nodes controlling the vehicle, while
keeping them together to maintain a low latency. In the second,
only one physical machine is used but the isolation of the
critical nodes is provided by using two virtual machines in
the CertiKOS hypervisor.

The mathematical model of sections II and IV requires
minimum and maximum periods for each node to be specified.
The base value is the logical value given by the user in
the logical specification. From the base, the minimum and
maximum depend on many properties of the machines, from
the physical clock drift of the machine, to the task scheduler
used in the operating system. Without further specifications
in the plant, such properties are assumed to be the default
conservative values, for example, a clock drift of 1.8 sec/hr.
System Generation using radler. We have developed
radler®, atool used to type-check RADL specifications and
generate a system ready to be run from it. The main idea

4The radler tool is in the process of being distributed and open sourced.

is to ensure that the running system is faithful to the model,
hence preserving any proven property. The radler system
generation remove most of the manual handling by generating
the glue code, the overall compilation script with CMake and
some key system and hypervisor configuration files. Then, the
tool will drive a few external tools to generate a system image.
For example, it will compile the CertiKOS kernel with the
required configuration. The end result is a packaged system
image for each machine, ready to be deployed.

For each machine, a main executable is generated. It is
in charge of setting up the system and the communication
channels. It then forks into a process per node, handling
the node state and scheduling the communications. All the
actual communications are handled by a high-assurance library
synthesized for RADL by the Kestrel Institute.

The security of the generated system rely on the hypervisors
ensuring perfect isolation of virtual machines and protection
of shared memory regions. For IP-based communications,
the generated Linux VMs are setup to use IPSec, which
provides authentication and protects against replay attacks.
Other potential vulnerabilities of the system are protected by
conservative firewall configurations of the generated Linux OS.

To ease the development process, radler also supports
ROS [23] as a backend. When using it, each node can be run
independently, communication channels are dynamically setup
by ROS. This allows easy logging, debugging, replaying with
all the ROS tools. Obviously, all real-time guarantees are lost
and precise timing properties might not be preserved.

The radler tool is also able to generate an instrumented
version of the system. The instrumentation allows us to test
timing properties such as maximum latency of channels, node
periods, execution times, etc. The tool also generates local
system log that radler can be analyzed and validated against
the architecture specification. Such runtime checks are often
the only way of validating the timing parameters assumed by
the model.

IV. VERIFICATION OF RADL SYSTEMS

In this section, we describe our approach for verifying
distributed systems with RADL architectures. The two key
elements of our approach are (1) modeling the real-time aspect
using an event calendar [10] and (2) modeling the interaction
among the quasi-periodic multi-rate components through a
careful combination of synchronous and asynchronous com-
positions. The modeling and verification are done in the
Symbolic Analysis Laboratory (SAL) [6], which is a general
framework for modeling transition systems and is supported
by a suite of tools for verifying both finite-state and infinite-
state systems. In the following, we first give an overview of
SAL and calendar automata, and then describe how we can use
them to model quasi-periodic multi-rate systems. In addition,
we show that distributed systems designed in Simulink can be
systematically mapped to formal SAL models. This enables
the integration of Simulink in a high-assurance tool flow.
Background on SAL and Calendar Automata. SAL is a
framework for modeling and specifying transition systems.



It has support for infinite data types such as reals and thus
allows real-value clocks to be modeled. A transition system
is a tuple T = (S,S50,0), where S is the (possibly infi-
nite) state space, Sy C S is the set of initial states, and
# C S x S is the transition relation. SAL allows a modular
way of specifying such systems through a construct called
module. Each module is itself a transition system. Modules
can be composed synchronously or asynchronously with other
modules. We use two commutative and associative operators ||
and [ ] to denote synchronous and asynchronous compositions
respectively. In SAL, state transitions can be expressed as
guarded commands guard — assign, where guard is
a Boolean predicate over the current state, and assign is
an assignment to the state variables that produces the next
state when guard is true. When multiple guards are true
simultaneously, the execution model in SAL picks an arbitrary
activated command to execute. We note that if none of the
guards is satisfied for a module, it will deadlock. In addition,
a synchronously composed system is deadlocked if any of its
component module is. Later in this section, we will show
how this mechanism allows us to schedule the computation
of nodes in a quasi-periodic multi-rate setting.

One way to model timed systems is through timed au-
tomata [1], whose semantics is typically defined with respect
to continuously varying clocks. In a multi-rate setting, how-
ever, the computation of nodes is activated periodically. This
means time can progress in jumps, matching the activation
of the nodes. Therefore, we use a more efficient encoding
known as calendar automata (CA) [10] to ensure maximal
time progress. As opposed to measuring the elapse of time
since a clock is last reset (in timed automata), a calendar stores
information about when future events are scheduled to occur
(similar to discrete event simulation). A calendar is a finite
set (or multiset) of events of the form C = {ey,...,e,},
where time(e;) is the time when event e; is scheduled to
occur. We use min(C) to denote the smallest number among
all time(e;)s. The subset of events F} to be scheduled at time
t is given by F; = {e; | time(e;) =t A e; € C}. Transitions
in a calendar-based system can be classified into a disjoint set
of discrete transitions (which take zero logical time) and time-
progress transitions (which take positive but bounded logical
time). A calendar-based system uses the current time ct and
the calendar C' to control when discrete and time-progress
transitions occur. We use 7" to denote the finite set of timeouts
in C, that is, T = {time(e1),..., time(e,)}. We use J to
denote the state of the system that maps V & T W {ct} to
appropriate domains, where V is the set of variables used
in specifying the function of each subsystem. The respective
transition rules are given as follows [10].

« For all initial states, d(ct) < d(t), forall ¢t € T.

o If 6(ct) < 6(t) for all ¢ € T, then only a time-progress
transition is enabled. Specifically, this transition increases
ct to min{o(t) | t € T} and leaves all other state
variables unchanged.

o If §(ct) = 6(t) for some ¢t € T, then only a discrete

transition 06 — ¢’ is enabled. Specifically, 0'(ct) = d(ct);

forall t € T, &'(t) = d(t) or §'(t) > 6(ct); and there

exists a t € T such that §(t) = &(ct) and 0'(t) > &'(ct).
The last condition ensures that discrete transition occurs only
when there is an event e on the calendar C with time(e) =
d(ct) but also constrains timeout updates to prevent infinite
consecutive zero-delay discrete transitions. When several dis-
crete transitions are possible at time ¢, i.e. |Ey > 1, one
is selected non-deterministically but all must be performed
before ¢ can advance. Note that the inequality 6(c) < §(¢) for
all t € T is an invariant of the system. In a nutshell, CA is
a way of describing dense timed systems without the need of
continuously varying clocks.
Modeling Quasi-Periodic Multi-Rate Systems. Calendar
automata admits a natural encoding of quasi-periodic multi-
rate systems, thanks to the inherent time gaps between events.
For simplicity, we consider the following special case of the
model of computation given in Section II.

« For each node N, the step function step (N, P) activated
at time ¢ uses only the last element of the input stream
o;. This is equivalent to having a buffer of size one for
all message channels.

o No message overtaking is possible, that is, we assume
L(A,S) < min(P). This also means no two messages
on the same channel can be received at the same time.

The first condition is motivated by the fact that applications
are often only interested in fresh input values. We can also
relax this condition to include a gatherer function that maps
the current buffered messages to a single input message for
the step function. Examples such as taking the median or
mean of the last &’ input sensor values, which are common in
control algorithms, fall under this generalization. The second
condition is typically ensured by a communication protocol,
such as TCP/IP or those that make use of shared memory.
It can also achieved by simply attaching a monotonically in-
creasing sequence number to published messages and checking
possible reversal of sequence numbers at runtime. Without loss
of generality, we assume that the delay of any message is
strictly greater than 0 but not bounded below otherwise.

The key elements in modeling a quasi-periodic multi-rate

system are listed below.

o Each node is modeled as a discrete transition system, or
more specifically a Mealy machine.

e Each node has a local clock that behaves quasi-
periodically (see Section II). The output of this clock is
the timeout for this node which is tracked by a global
calendar. This value is initialized according to a value
it € [0, o] (to is the start-up time for this node).

o The discrete transition system at each node is syn-
chronously composed with its local clock.

o Each bounded channel (for some topic A) is modeled as
a separate module synchronously composed with its own
local clock. A discrete transition of this module is simply

5 The number k can be computed at design time to avoid message loss, as
described in Section II.



the recording of the last published value. Additionally, its
clock observes the clock time t of the publisher N and
advances its time by a value non-deterministically chosen
in the interval (¢,t+ L(A, N)]. Initially, this clock is set
to a value in the interval (% ¢ 4 L(A, N)].

o Each clocked module forms a separate component. All
the components are asynchronously composed.

o The calendar is also asynchronously composed with the
rest of the system.

Figure 7 illustrates a system of two communicating nodes.
In this system, node M7 produces a value y; at each activation
and sends it to M» through a bounded delay channel. M, keeps
a mailbox of size one and upon activation, uses the value in
this mailbox as its input xo. Both nodes are synchronously
composed (as shown by the operator ||) with their respective
local clocks. The connection from M;’s clock to the buffer’s
clock indicates that the buffer’s clock advances time based
on the last activation time of M;. Finally, the three clocked
modules are asynchronously composed together (as shown by
the operator [ ]).

We argue that this encoding of a multi-rate system as a
calendar automaton is sound. The synchronous composition of
each node with its local clock ensures that its step function is
activated according to the quasi-periodic clock. The separately
clocked buffer module also follows the mailbox semantics.
When a node N publishes a message at time ¢, the fact that the
buffer clock advances by a value in the interval (¢,t+L(A, N)]
ensures that the mailbox receives this message strictly after its
publication and not exceeding the latency L(A, N). Message
overwrites in the buffer is modeled by the re-assignment of
the buffer output to the last received input. Since no message
overtaking is possible and the mailbox is of size one, it is
sufficient to use a single value in the buffer module to record
the possible message of interest in flight. We note that in this
model it is possible for the reception of a message and the
activation of its subscriber to coincide in time. In this case, the
ordering of these two events is non-deterministically chosen,
which is consistent with the model of computation given in
Section II. Finally, the type information of the messages is not
central to this encoding and can be easily preserved.

Module |1 Buffer *2| Module
M, M,

X =Y
Il [ [1 Il

M;’s
clock

Buffer’s
clock

My’s
clock

L3

Fig. 7. A Quasi-periodic multi-rate system with two nodes.

Sim2SAL: Verification with Simulink Models Simulink is
the prevalent design environment for control engineers, among
others. The integration of Simulink into a high-assurance
design flow can bring significant benefits especially for safety-
critical applications. However, this has been difficult due to

the lack of formal semantics, constant evolution of versions,
and it being primarily a proprietary system. To facilitate the
transition and adoption of Simulink in high-assurance designs,
we have developed a tool called Sim2SAL that systematically
maps Simulink models to formal SAL models. To the best of
our knowledge, this is also the first tool that enables the formal
verification of multi-rate systems designed in Simulink.

In Simulink, basic design blocks can be connected and
grouped to form a subsystem. Subsystems in turn can be
further composed to form larger subsystems. We define a
top-level hierarchy for a Simulink design, where each top-
level subsystem is intended to be a node in a multi-rate
systems. Currently, Sim2SAL handles a subset of Simulink’s
discrete blocks. The tool takes as an additional input a logical
architecture specification given in RADL. This specification
describes the minimum and maximum periods for each node,
the latency bound on each input channel as well as its default
value. The Simulink model (.mdl file) is first translated into
an XML representation using an internal tool developed by
Honeywell. Our tool then generates an encoding of the model
in SAL using the calendar automata formalism. SAL includes
by a suite of verification tools at the backend. We primarily
use the infinite-state bounded model checker supported by the
Yices SMT solver [9]°. The tool also offers an option for
abstracting away transmission delays in multi-rate systems, in
cases where the delays are negligible. This can significantly
reduce the size of the generated SAL model, since each delay
channel adds an additional asynchronously composed compo-
nent. Thus, it offers a tradeoff for scalability with reduced
modeling precision. Integrating this verification flow with
Simulink’s simulation engine and Embedded Coder creates a
holistic design environment for applications that require high-
assurance’. Sim2SAL has been applied to the design of high-
assurance components in the DARPA HACMS project [18]
and in a joint project with Honeywell. We are currently
working on open-sourcing it to garner wider adoption.
Verification of Real-Time Properties Our verification frame-
work primarily revolves around SAL. After encoding the
multi-rate system as a calendar automaton in SAL, we use its
infinite-state bounded model checker to perform verification.
While SAL’s language is expressive enough to model timed
transition systems, its requirement specification language is
quite limited. In particular, it lacks support for properties
involving real-time constraints.

In this section, we show how to verify certain real-time
properties by reducing it to an equivalent verification problem
involving LTL. In particular, we focus on real-time properties
of the form G (p = F; q), where p and ¢ are state predicates,
G and F are the globally and eventually temporal operators
in Linear Temporal Logic (LTL) [22], < € {<,<}, and ¢ is
a real-value constant denoting the time bound. For example,

% Note that the clock constraints for quasi-periodicity and bounds on
channel latency are essentially linear inequality constraints over the reals,
which is a theory well supported by modern SMT solvers.

7 We note that the certification of the code generation process is required
in a high-assurance tool flow but is outside the scope of this paper.



the requirement of a response must always be received within
12.3 time units of the issuance of a request can be expressed
as G (request = F<i23 response). In general, extending
LTL to model real-time constraint can be done in several
ways [4], such as Metric Temporal Logic (MTL) [15] and
Timed Propositional Temporal Logic (TPTL) [3]. However,
decision procedures for properties expressed in these logics
often focus on selected fragments [2], due to either inherent
undecidability [3] or efficiency reasons [17]. Our choice of
the property pattern, while highly specialized, still captures
common properties of interest. We note that this property
pattern can be expressed both in MTL and TPTL.

In order to verify this property in SAL, we use two timers
timer; and timers to record the events request and response
respectively, and then convert the formula into an equivalent
LTL formula. Both timers are initialized at —1 (or any illegal
time value). trigger is a Boolean signal that is set non-
deterministically every time a request event occurs. When
trigger A request, timery registers the current time value
and the state machine transitions from state s = 0 to state
s = 1. As soon as s = 1 A response, timery registers
the current time value and stays at that value forever. We
can now verify the equivalent LTL property G (timer; >
0 = F (timery > 0 A timery — timery < 12.3)). The
non-deterministic ¢rigger is key to the correctness of this
transformation, since it essentially corresponds to a global
quantification of the event request on the time line.

V. CASE STUDY

We have applied the RADL framework to the design
of a high-assurance ground robot in the DARPA HACMS
project [18]. The robot is intended to be tele-operated but also
features certain autonomous features such as constant speed
cruise control (CCC) and obstacle avoidance. These control
modes are arbitrated by a central FSM that determines which
controller should be in charge. The robot is equipped with
a number of sensors including GPS and SONAR for sensing
the distance to an obstacle. The RADL node setup of this
robot is shown in Figure 8. Safety and security are the two

Pose: Position, Orientation
Linear/Angular Velocity

Wind/Terrain

Left + Right Torque

Sensors

Operator

Fig. 8. Robot with RADL nodes

primary concerns in designing this robot. Specifically, it needs

to be resilient to a variety of attacks. such as falsification
of values by compromised sensors, jamming and spoofing
of teleop communication, and VM-level interference (e.g.,
a compromised VM not connected in RADL should not
be able to interfere with the execution of the other VMs
or with the communication between two other VMs). The
security protection against these attacks is provided at different
layers by various technologies, such a resilient-state estimator,
CertiKOS and a high-assurance communication stack. RADL
is the umbrella framework that ties these various controllers
and mechanisms together. It is also used to generate the overall
executable for the robot.

One main safety requirement is that when the robot is under
cruise control it should always be able to stop before hitting an
obstacle. This is a real-time property depending on how far the
robot is away from the obstacle and how fast it is cruising. We
use RADL to ensure that the end-to-end latency for the control
program is satisfied by the middleware layer. By designing a
communication protocol between the FSM and the various
controllers (e.g., the CCC controller) we can ensure that
important control signals, if sent over consecutive periods, are
never missed entirely (per the theorem on bounded message
loss). The FSM and its interaction with neighboring nodes, as
shown in Figure 8, are formalized using the calendar automata
encoding. The model contains 7 main periodic RADL nodes
and additional clocked modules as described in Section IV
for modeling the mailboxes. Several important properties
have been proven, including timely engaging and disengaging
of controllers, non-interference of different controller speed
outputs, and controller priorities being properly respected (e.g.,
the teleoperator can override CCC).

We summarize our overall experiences below.

o Formalizing and proving the FSM helped define a uni-
form protocol for talking with the different controllers.

o The runtime flags provide a safety check almost for free:
the robot safely stops whenever a crucial component is
removed or killed thanks to the flags being automatically
propagated all the way to the actuators.

e The full system generation using RADL (e.g., handling
the hypervisor) has significantly improved integration and
deployment, which are also important factors in high-
assurance designs.

VI. RELATED WORK

Quasi-periodic models of computation have been tradition-
ally employed in cyber-physical system architectures. The first
formal study of this model was carried out by Caspi [8]
in the context of single-rate systems. He noted that under
certain timing assumptions, such systems can be abstracted
by an untimed system where one node can have at most
two executions between two executions of another node. The
RADL model of computation is closely related to the Loosely
Time-Triggered Architecture (LTTA) [7] which uses a multi-
rate, quasi-periodic nodes, but employs a shared memory bus
instead of a publish/subscribe communication architecture.



LTTA has been shown to capture various other models of com-
putation [24]. Stream processing operations can be modeled
by ensuring that all of the topic channels are lossless. Kahn
Process Networks (KPNs) [13] involve nodes communicating
through unbounded FIFO channels with non-blocking writes
and blocking reads. KPNs with bounded FIFOs, termed Finite
FIFO Platforms (FFPs) can be modeled with a single-rate
model with queues of length at most 2 [24].

Timed asynchronous models can be contrasted with the
time-triggered approach [14], [20] where clocks are syn-
chronized and the underlying communication bus provides a
rigorous bound on message latencies. Time-triggered archi-
tectures guarantee determinism since the computation can be
organized into an orderly sequence of rounds. Synchronized
clocks can be used to mediate access to shared resources,
while determinism supports fault-tolerance since non-faulty
replicated channels must execute identically.

Synchronous programming languages allow multi-rate op-
eration either at some division of the base clock rate or with
independent clocks [12]. Physically Asynchronous Logically
Synchronous (PALS) architectures build a synchronous ab-
straction with clocks that operate at roughly the same rate
and are synchronized to a global clock to within a small
deviation. PALS has also been extended to handle hierarchical
multi-rate systems [5]. PRELUDE [21] is another architec-
ture description language for real-time embedded software. It
builds upon synchronous data-flow languages and is designed
for mono-processor platforms. RADL is similar to PRELUDE
in that both are integration languages that assemble local
mono-periodic programs into a globally multi-periodic system.
However, RADL serves a different model of computation that
we believe are suitable for high-assurance distributed systems.
In addition, RADL comes with its dedicated build system (also
for multi-core and multi-machine platforms), runtime checks
and verification backend.

VII. CONCLUSION AND FUTURE WORK

We have presented the RADL framework for designing
and verifying multi-rate distributed systems. This framework
includes an architecture definition language supported by a
well-defined model of computation, a verification flow that en-
codes such systems into formally verifiable calendar-automata
models, and a build system that generates executables with
instrumentation for runtime checks. We argue that RADL is
suitable for high-assurance design, where safety and security
are the primary objectives. In the future, we aim to extend
the static architecture in RADL to accommodate dynamic
addition, removal and reconfiguration of nodes.
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