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Every time we look out for cars as we cross the street, search 
for a friend in a crowded restaurant, or listen for the 
announcement of our upcoming stop in a noisy subway car, 
we are using the cognitive process of attention. Attention 
allows us to prioritize relevant information while ignoring 
irrelevant information in the service of our current goals. An 
important feature of attention is its selectivity: Although we 
might wish we could fully process all the sensory information, 
we take in at every moment, attention selectively enhances 
some parts of the world at the expense of others (1 , 2 ). Most 
research on attention has presumed the existence of dedi-
cated neural mechanisms for attentional prioritization and 
selection. In a new study in PNAS, Srivastava et al. (3) instead 
investigate how attention-like behavior can emerge from an 
artificial neural network trained on a visual task. 

The selective nature of covert visual spatial attention—the 
prioritization of relevant locations in the visual field without 
moving the eyes—was first noted by Helmholtz (translated 
in ref. 4), one of the founders of modern perception science. 
In a dark room, he fixed his gaze at the center of a page of 
text, attended to “the dark field off to the side,” and briefly 
illuminated the page from behind. He reports that he then 
“perceived several groups of letters in that [attended] region 
of the field … The letters in most of the remaining part of the 
field, however, had not reached perception, not even those 
that were close to the point of fixation.” Since then, psycholo-
gists and neuroscientists have puzzled over the dual problem 
of how attention enhances sensory information and why it 
apparently cannot enhance all of it. 

We now have a substantial body of empirical work show-
ing how attention influences perception and modulates brain 
activity, with much of this work focused on visual spatial 
attention. Spatial attention improves even basic visual abili-
ties, which compose the building blocks of vision (1). Attention 
boosts detection of faint stimuli, increases spatial resolution 
and acuity, and sharpens our ability to discriminate between 
similar stimuli. These perceptual improvements are sup-
ported by various neural mechanisms (5 , 6 ). Spatial attention
increases activity in neural populations specialized for 
attended locations; reduces the size of spatial receptive 
fields, enhancing spatial fidelity; reduces correlated noise in 
neural populations, improving the quality of the visual rep-
resentation; and shifts population response profiles to better 
align with the attended visual information. Computational 
theories of attention have been developed to explain several 
of these findings. A particularly successful computational 
framework is the normalization model of attention (7). In this 
model, attention modulates the gain of neural activity before 
local contextual modulation, and together these two com-
putational steps determine sensory responses. The normal-
ization model of attention is one example in a history of 

process models that implement step-by-step operations in 
which attention changes some aspect of visual processing. 

Srivastava et al. (3) took a different approach to model 
visual spatial attention. Instead of explicitly implementing 
mechanisms for visual processing and attentional modula-
tion based on known physiology, they trained a convolutional 
neural network (CNN) to perform a target detection task with 
a spatial cue and examined the emergent behavior and 
underlying CNN responses. 

The authors started by defining a simple task, the detec-
tion of a tilted line that could appear on the left or right of 
the image. A box, which could also appear on the left or right 
of the image, served as the spatial cue, with 80% probability 
that when the target appeared, it was inside the box. This 
task was similar to those used in human studies in which an 
informative spatial cue improved the speed and accuracy of 
target detection (8 , 9 ) and was linked to enhanced visual 
processing (10   –12)—typical effects of spatial attention. Here, 
the CNN was trained to perform the target detection task by 
adjusting the network weights in its three convolutional lay-
ers and two fully connected layers. In previous work (13), the 
same authors showed that the trained CNN exhibited better 
detection accuracy at the cued location compared to the 
uncued location, similar to human behavior, even though no 
mechanism for attention had been built into the network. 

In the current paper, they asked what neural properties in 
the trained CNN generated this attention-like behavior. 
Notably, unlike in neurophysiology studies where only a tiny 
fraction of the brain’s neurons can be studied, Srivastava et al. 
(3) characterized all 1.8 million model neurons across ten sep-
arately trained networks. To do so, they used a clever, 
neuroscience-inspired methodology to contrast neuronal 
responses to different probe images, which uncovered neu-
rons tuned to the target, the box cue, or jointly tuned to the 
target and cue. Such neurons were found most often in the 
first fully connected “dense” layer and rarely in earlier layers. 
In the dense layer, some neurons were tuned to the target 
appearing at one stimulus location (stronger responses to 
targets than nontargets) and showed a classic cueing effect, 
with enhanced responses when the box cue surrounded the 
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target. However, other neurons exhibited response properties 
not previously observed in neurophysiological studies. For 
example, some “location summation” neurons responded to 
cues and targets appearing at either location, with no spatial 
specificity. Meanwhile, “location opponent” neurons were 
excited by cue–target combinations at one location but inhib-
ited when the cue and target appeared at the other location. 

In a new study in PNAS, Srivastava et al. (3 ) 
instead investigate how attention-like behavior 
can emerge from an artificial neural network 
trained on a visual task. 

Importantly, the authors went one step further by asking 
whether the novel response profiles of CNN model neurons 
could be found in real data. Comparison with neurophysio-
logical data previously collected from mice superior colliculus 
(14) revealed previously unreported evidence for both 
location-summation and location-opponent neurons, sup-
porting the predictions from the CNN. However, whereas the 
CNN also had neurons that had a mix of summative and 
opponent properties (e.g., location summation for targets 
but opponency for cues), such neurons were not observed 
in the superior colliculus data. 

The response profiles recovered for neurons in the trained 
CNN suggest that attention-like behavior came about through 
statistical learning of combinations of image features asso-
ciated with the presence and absence of cues and targets. 
For example, because targets mostly appeared with cues, 
neurons tuned to their joint image features emerged during 
training. Such neurons would be expected to give rise to 
behavioral cueing effects similar to those seen in the atten-
tion literature. In trials with a valid spatial cue, the target 
appeared inside the box as usual, so the cue-target neurons 
could be used by the network to solve the detection task, 
improving performance. But in trials with an invalid spatial 
cue, the target appeared without the box around it. Then, 
the cue-target neurons could no longer be used by the net-
work to solve the task in the way it had been trained, so 
performance was impaired. By “opening the black box” of 
the CNN, Srivistava et al. provided insight into the mecha-
nisms underlying the attention-like behavior of the model. 

Are these mechanisms the same as the ones mediating 
attention in humans and animals? Attention is a broad 
domain covering many mechanisms of prioritization (2). The 
statistical learning–based mechanisms emerging during 
CNN training might hold explanatory power for predicting 
neural responses in extensively trained animals—as the 
authors demonstrated with the superior colliculus data— 
and in other situations where performance improvement 
arises from extended learning. In the human literature, 
“contextual cueing” and “experience-based attention” refer 
to findings where performance improves after exposure to 
regularities in the environment (15 , 16 ). Such improvements

have usually been attributed to the training of an atten-
tional mechanism that would, for example, shift spatial 
attention to the location most likely to contain a target, but 
Srivastava et al.’s (3) results suggest that other explanations 
tied to changes in neural tuning properties could be further 
considered. 

The mechanisms used by the CNN are unlikely to explain 
the full range of attentional phenomena, how-
ever, for two main reasons. First, statistical learn-
ing–based mechanisms lack the flexibility of 
human attention. When waiting for a rideshare, 
for example, we can find out the color of the car 
that is coming to pick us up and immediately use 
feature-based attention to prioritize that color, 

without any training. We can even attend to locations in 
space without knowing what will appear there. And we can 
prioritize not just based on cues that occur simultaneously 
with targets, but cues or instructions that occurred earlier. 
Neurons tuned to cue–target combinations are not in general 
necessary to allocate attention, and much of our attentional 
behavior could not be carried out by such neurons alone. 

Second, although statistical learning–based mechanisms 
can lead to performance improvements and impairments in 
certain situations, they do not have the kinds of processing 
constraints that lead to true selectivity. For example, humans 
show performance benefits at attended locations and costs 
at unattended locations even when location uncertainty is 
subsequently eliminated by a 100% valid response cue (17   –19 ). 
However, as noted by the authors, a CNN trained on this task 
would not be expected to exhibit attention-like behavior. With 
a fully predictive response cue, there would be no incentive 
to encode the precue without additional processing bottle-
necks. In large part, the cue-driven performance improve-
ments exhibited by the CNN resulted from statistical 
associations that improved decisions about target presence 
rather than changes in whether and how sensory information 
was represented to begin with. 

Overall, Srivastava et al. (3) demonstrate that training 
CNNs on classic cognitive tasks can be a productive avenue 
to examine the neural mechanisms that support cognitive 
and decision processes. Excitingly, this study shows how 
applying neurophysiological analysis strategies to CNNs can 
enable detailed characterizations of model mechanisms 
that can then be compared with data from humans and 
animals performing similar cognitive tasks. Important ques-
tions that arise in all efforts to train neural networks on 
cognitive tasks are whether the model learns the task in the 
same way humans would and whether the trained model 
can generalize to a wider range of tasks linked to the cog-
nitive process of interest. Answering such questions in fol-
low-up work will also be necessary for the model Srivastava 
et al. (3) investigated, but already, the current study pro-
vides a thought-provoking new perspective on the kinds of 
neural mechanisms that can generate behavioral signatures 
of attention.   
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