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Attention reshapes the representational geometry of a

perceptual feature space
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Our perception of the world is transformed by attention, both in terms of the efficiency of
information processing and the appearance of attended stimuli. A standard theory is that at-
tention regulates how competing stimuli vie for resources. However, an alternative perspective
is that attention alters the representational geometry of stimulus spaces, such that changes in
processing are not isolated to the particular competing stimuli, but are reflected across the en-
tire perceptual space. To test this representational hypothesis, we conducted an experiment in
which participants reported the perceived similarity of orientations spanning the full stimulus
space when attention was directed or not directed to specific orientations. We used these simi-
larity judgments to measure the representational geometry of orientation, finding that attention
reliably expanded the representational space in a narrow range around the attended orienta-
tions. We also found evidence for compression of the representational space in a broad range
around unattended orientations. Our findings support the idea that attention acts to reshape the
representation of entire perceptual spaces in a way that supports processing of relevant stimulus
features. By simultaneously manipulating attention while measuring perceptual similarity, our
methodological framework opens the door for future work investigating the interaction between
cognitive and perceptual processes from the perspective of representational geometry.
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Attention shapes the way we perceive the world around
us. We can direct our attention to spatial locations, enhancing
our ability to detect or discriminate objects at those locations
(Carrasco, 2011). Similarly, attending to relevant features of
objects, such as their color or direction of motion, increases
our sensitivity to those features. Findings from a broad range
of studies have lead to the idea that attention enhances the
processing of task-relevant objects ("targets") while simulta-
neously suppressing task-irrelevant background information
("distractors").

In line with the idea of attention as target enhancement, at-
tention affects not only performance but also the appearance
of targets and distractors. Carrasco et al. (2004) showed that
spatial attention systematically increased the perceived con-
trast of an attended Gabor stimulus, consistent with findings
that attention increases the gain of neural responses (Maun-
sell, 2015). Attention also affects the appearance of several
other low-level visual properties (reviewed in Carrasco &
Barbot, 2019) such as gap size (Gobell & Carrasco, 2005),
color saturation (Fuller & Carrasco, 2006), and motion co-
herence (Liu et al., 2006), mid-level properties such as shape
and texture (Tian et al., 2025), and high-level properties like
facial attractiveness (Störmer & Alvarez, 2016). Beyond
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simple enhancement, attention can also distort the percep-
tion of visual features, such as by biasing the perceived color
or spatial position of a target stimulus away from distractors
(Chapman et al., 2023; Suzuki & Cavanagh, 1997). Together,
these findings suggest that attention biases competition to-
wards a target by exaggerating visual features that differenti-
ate it from irrelevant stimuli, even at the expense of accurate
perception.

However, the effects of attention might not be restricted
to targets and distractors, but could extend throughout the
whole feature space (Chapman & Störmer, 2024). This idea
follows from the framework of representational geometry
(Kriegeskorte & Wei, 2021; Langdon et al., 2023), wherein
attention-driven changes in neural information processing
are best understood through their impact on the entire rep-
resentation structure of the stimulus features. From this per-
spective, attentional selection is the process by which the rep-
resentational distances among a set of stimuli are shaped to
separate out the most relevant information, supporting more
efficient downstream processing. These changes could take
several forms. For example, when attending to a particu-
lar stimulus, such as a Gabor oriented 45◦ counterclockwise
from vertical, changes in the gain of neurons tuned to the
target orientation could distort the representational geome-
try (Kriegeskorte & Wei, 2021), expanding the representa-
tion around the target (orange shaded region in Figure 1).
In addition, there may be compression of the representation
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Hypothetical changes in orientation representations. When
attending to a 45◦ stimulus, the representational geometry
might expand around this part of the orientation space rel-
ative to the original representation (orange shaded region).
There may also be compression around the representation of
the distractor orientation (purple shaded region).

around the distractor (purple shaded region in Figure 1). It
is currently unknown whether attention modulates regions of
perceptual spaces beyond target and distractor features and
whether any representational expansions are offset by com-
pression elsewhere to maintain the overall size of a repre-
sentational space. Although previous work has demonstrated
that attention can increase the discriminability between tar-
gets and distractors, whether and how attention alters the full
representational geometry of a perceptual feature space has
not been investigated.

Here, we tested how attention affects the representation of
orientation, a basic visual feature. Participants performed a
task in which their attention was directed to particular orien-
tations (either ±45◦ relative to vertical) while we simultane-
ously measured the perceived similarity of orientations from
around the entire feature space (Figure 2a). We modeled
participants’ similarity judgments to estimate the represen-
tational geometry of orientation under these different atten-
tional conditions, finding that attention expanded the repre-
sentation in a local neighborhood around attended orienta-
tions. This expansion was accompanied by representational
compression in a much broader range around the unattended
orientation. The results demonstrate that the effects of atten-

tion are not isolated to changes in the processing of targets
or distractors, but that attention affects the overall represen-
tational geometry of perceptual feature spaces.

Methods

Participants

Ten participants were recruited from the Boston Univer-
sity community, including two of the authors (AFC and MA).
All participants provided informed consent prior to partici-
pation in the study and were compensated at a rate of $15/hr
(except authors). The sample consisted of 9 women and one
man between 21–31 years of age (M = 25.2, SD = 3.6) with
normal or corrected-to-normal vision.

Stimuli& Apparatus

The experiment was displayed on a VIEWPixx monitor
(VPixx Technologies Inc., QC, Canada) with a refresh rate of
120 Hz. All stimuli were generated and presented using Psy-
chToolBox 3.0 (Brainard, 1997; Kleiner et al., 2007) running
on MATLAB 2022a (The MathWorks, Natick, MA). Partici-
pants were seated 57 cm from the display, with head position
maintained using a chinrest. The background display color
was 50% grey (mean luminance = 45.56 cd/m2) throughout
the experiment. A fixation cross was presented in the center
of the display during the task.

Attention task. On each attention task trial, we gener-
ated an array of 100 oriented lines (50 black, 50 white, 0.75◦

× 0.11◦) that were positioned in an annulus between 1.5◦ and
5◦ from fixation. Bars in the same color were oriented at the
same angle, either 45◦ clockwise or counterclockwise from
vertical. The starting position of the center of each bar on
each trial was selected from a grid of 136 locations with
0.71◦ horizontal and vertical spacing. Stochastic jitter was
added to the position of each bar on every frame by adding
±∼0.03◦ to the x- and y-coordinates, resulting in a random
displacement of the bars across the course of the trial. The
color of the fixation cross cued which set of oriented lines
were to be attended, which varied across blocks.

Throughout the trial, tilt events were added to a random
80% subset of the bars in each color by adding an additional
tilt offset that was titrated for each individual to achieve 70%
accuracy (described below). On each trial, there were either
0, 1, 2, or 3 tilt events in each color, and each tilt event was
randomly selected as clockwise or counterclockwise relative
to the base orientation. Each tilt lasted 500 ms and events
could not occur within 200 ms of the beginning or end of
each trial, or within 200 ms of a previous event in the same
color (though tilts in different colors could overlap in time).

Triad similarity task. Triad task stimuli were oriented
Gabors, 2◦ in diameter within a Gaussian envelope (0.2◦ SD)
at a spatial frequency of 4 cycles/◦ and a contrast of 64%.
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Figure 2

A) Example trial of the task. Participants were cued to attend to one set of oriented lines, indicated by the color of the fixation
cross (black or white), and count the number of tilts in the target stimuli throughout the 3000 ms presentation period, indicated
by the arrows which were not shown. At the end of each trial, participants reported which of two oriented Gabors (left or right)
was most similar to the reference (center). In "no attention" trials, the attention task was not shown and participants only
responded to the triad task. Stimuli are not shown to scale. B) Summary of behavioral responses in the attention task. Each
cell in the grid shows the proportion of times participants reported 0, 1, 2, or 3 tilts based on the number of tilts that occurred
in the target stimuli (upper) or distractor stimuli (lower). Responses tracked target tilts relatively accurately, indicated by the
darker shading along the diagonal.

Three Gabors were shown, each with a 1◦ vertical offset be-
low fixation. The middle Gabor was centered horizontally,
while the other two were offset by 2◦ to the left or right. Each
Gabor was oriented at a different angle, sampled without re-
placement from the full range between 0-175◦ at 5◦ spacing,
generating 36 unique orientations.

Procedure

Participants completed the experiment across several ses-
sions. In the first session, they were trained on the attention
and triad tasks separately, before completing a shorter run of
the full task. In the next 4-5 sessions, they completed longer
runs of the full task. Participants also completed separate
“triad only” sessions, in which they performed the triad task
alone, which we used to assess the representational struc-
ture of orientation independent of attention. Seven partic-
ipants completed the triad only sessions as their final ses-
sions, while three participants completed them as their first
sessions.

The attention task was designed to engage feature-based
attention towards a particular orientation. Participants were
cued to attend to bars in a particular color (black or white)
that were oriented 45◦ clockwise (“attend 45◦”) or counter-
clockwise (“attend −45◦”) from vertical. The fixation cross
was presented in the target color for 800 ms before each trial.
During each trial (3000 ms in duration), bars in each color

tilted clockwise or counterclockwise 0–3 times by an addi-
tional offset. Participants were instructed to count the num-
ber of tilts in the attended color, to report at the end of the
trial (using the numbers 1–3, or the ‘∼’ key for 0, with their
left hand).

The triad similarity task was designed to measure the per-
ceptual similarity between orientations. At the offset of the
attention task, the triad similarity task stimuli, an array of
three Gabors, were presented in a row below fixation for
200 ms. Participants were instructed to report which of two
Gabors (‘9’ for left, ‘0’ for right, with their right hand) was
most similar in orientation to the center Gabor. To prioritize
triad judgments based on perceptual similarity, participants
reported them before their tilt response from the attention
task. The full timeline of each trial was: 1) attention task
stimulus, 2) triad stimulus, 3) triad response, 4) attention task
response. The responses to each task were unspeeded, and
response accuracy was emphasized.

At the beginning of each session, participants completed a
thresholding task to determine the magnitude of the tilt event
offset. The thresholding task consisted of 64 trials similar
to the main attention task, except trials were 2000 ms in du-
ration and only a single target and distractor tilt event was
presented on each trial. Participants were instructed to report
the direction of the tilt, relative to the orientation of the target
bars (‘1’ = counterclockwise, ‘2’ = clockwise). The initial
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tilt offset was set to 20◦ and was adjusted using a 3-down, 1-
up staircase procedure (i.e., after three correct responses, the
tilt offset was reduced). The possible tilt offsets were 20◦,
16◦, 12◦, 8◦, 6◦, 4◦, 3◦, 2◦, and 1◦. We defined the thresh-
olded tilt value as the mean tilt across the last 5 reversals dur-
ing the staircasing procedure. Convergence of the procedure
was determined by plotting the tilt offsets across trials and
comparing this to the threshold estimate. Thresholds ranged
from 1.6◦-6.4◦ across sessions, with a mean of 3.05◦ (SD =
0.98).

The attention task was divided into blocks of trials in
which the target orientation and color was constant. Partici-
pants completed 384 or 480 trials per session, separated into
eight blocks (48 or 60 trials per block) such that each com-
bination of target orientation and color was repeated twice.
The number of target and distractor tilt events was drawn
randomly on each trial, such that 0, 1, 2, or 3 tilts was
equally likely, and each event was randomly determined to
be a clockwise or counterclockwise tilt. The orientation of
each triad task stimulus was sampled without replacement
from the set of 36 orientations.

For triad only sessions, no thresholding procedure was re-
quired. In each session, participants completed 640 trials
of the triad task, sorted randomly into 8 blocks of 80 (ex-
cept one participant, who in one session completed 480 trials
in 8 blocks of 60). This resulted in a roughly equal num-
ber of triad responses across sessions for each condition (at-
tend 45◦, attend −45◦, triad only): we obtained 1152-1776
(M = 1339.2, SD = 188.6) trials for each condition in the
attention task, and 1120-2560 (M = 1584, SD = 556.6) trials
in the triad only task.

Analysis

Attention task analysis. For each participant and for
each target orientation, we first summarized behavioral per-
formance by calculating the number of times each response
was made (0, 1, 2, or 3 tilts) as a function of the presented
number of target tilts. Accuracy in the attention task was cal-
culated as the proportion of times participants reported the
exact number of target tilts. However, because we thresh-
olded participants based on tilt discrimination, such that each
target tilt was detected with approximately 70-80% accuracy,
reported tilts were expected to be lower on average than the
number of presented target tilts. To better quantify behavior
in the attention task, we therefore also computed Spearman’s
correlations between the reported and presented tilts for each
participant. As a comparison, and to confirm that partici-
pants attended selectively to the cued target orientation, we
also calculated correlations between the reported target tilts
and the number or presented distractor tilts.

Representational dissimilarity matrices. To assess the
perceptual similarity of orientations in the triad similarity
judgment task, we first estimated the representational dis-

similarity matrices (RDMs) based on behavioral responses.
On each trial, participants report which of two stimulus ori-
entations they perceive as most similar to the central refer-
ence orientation. For each participant and each attention con-
dition, we constructed 36 × 36 RDMs such that the value in
each cell corresponded to the proportion of trials in which
a particular combination of orientations was chosen as most
similar when they were presented together, regardless of the
orientation of the third stimulus. The grand average RDM is
presented in Figure 3a.

Representational geometry of similarity judgments.
To estimate the representational geometry of orientation
from participants’ similarity judgments, we implemented a
variant of multidimensional scaling developed by Waraich
and Victor (2024). The method seeks to place the stimuli
in an m-dimensional coordinate space, such that the distance
between stimuli in this space is predictive of the perceived
(dis)similarity between them. We modeled decisions in the
triad similarity judgment task as comparisons of the distance
between the reference, sre f , and the two choice stimuli, sle f t

and sright. Assuming that uncertainty in decisions is affected
by additive Gaussian noise, the probability of choosing the
left stimulus as being most similar to the reference is mod-
eled by the function:

p = Φ
(√

2
(
d(sre f , sright) − d(sre f , sle f t)

))
(1)

where Φ is the standard normal cumulative distribution func-
tion and d(·, ·) is the Euclidean distance between two stimuli
(though, in general, other metrics could be used).

The log-likelihood of the observed similarity judgments
across trials is:

ℓ =
∑

i

(
ci log2 pi + (1 − ci) log2 (1 − pi)

)
(2)

where ci is an indexing variable for each trial i, such that
ci = 1 when the left stimulus was chosen, and ci = 0 when
the right stimulus was chosen, and pi is the expected prob-
ability of choosing the left stimulus as being most similar
to the reference given the stimuli on trial i, as calculated in
Equation 1.

Model fitting. The model parameters are the m-
dimensional stimulus coordinates, which determine the pair-
wise distances between stimuli, and therefore the choice
probabilities, p. The coordinates are adjusted across itera-
tions to minimize the negative log-likelihood of the triad sim-
ilarity judgments. We fitted this model to data from all partic-
ipants with f minunc in MATLAB (2024a), using the quasi-
Newton method and L-BFGS approximation of the Hessian
(memory = 20). To aid in optimization, we computed the
analytical gradients of the negative log-likelihood function
(see Appendix A).

We fit a series of models aimed to assess the dimensional-
ity of the representational geometry of orientations, reflected
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in the behavioral similarity judgments, as well as the ef-
fects of attention. The coordinates were represented in a 4-
dimensional tensor Xi jkl, with each cell representing the co-
ordinate of stimulus i along dimension j in attention condi-
tion k for participant l. For all models, we added two separate
penalties to the negative log-likelihood to constrain fits.

−L = −ℓ + LossS + LossF (3)

The group ridge penalty, LossS , was added based on the de-
viations of coordinates between participants:

LossS = λS

∑
i, j,k

Pi jkl −
1
n

∑
l

Pi jk·

2

(4)

Pi jkl =
Xi jkl

1
36

∑
i∥Xi·kl∥2

(5)

where λS is the ridge parameter that scales the amount of
penalization in the model. This penalization has two pri-
mary effects on model fits: 1) individual participant coor-
dinate spaces are shrunk towards the group mean; 2) coordi-
nate spaces from different participants are aligned, allowing
for direct comparison. P is a rescaled coordinate space for
each participant based on the mean distance of the stimuli
from the origin, so that participants with coordinate spaces
that are larger or smaller than the mean are not excessively
penalized.

We also applied a ridge fusion penalty, LossF , which pe-
nalized large deviations between stimuli that represent simi-
lar orientations (Goeman, 2008):

LossF = λF

∑
x,y

d(sx, sy)2 (6)

given that sx and sy are neighboring stimuli (i.e., 5◦ apart).
This penalty imposes smoothness of the resulting coordi-
nates.

The best fitting model for a given dimensionality was se-
lected using 10-fold cross-validation. We first divided the
data from the triad task into 10 sets, balanced so that each
set contained nearly equal numbers from a given participant
and attention condition (though within each set, trial num-
bers did differ between participants). To determine the ini-
tial point for the optimizer, we first constructed the group
average RDM of the training data (described in Represen-
tational dissimilarity matrices) and performed non-metric
multidimensional scaling using mdscale. This solution was
then used to fit two models collapsed across attention condi-
tions, one with shared coordinates across all participants and
one that varied for individual participants. We then averaged
the coordinates of these fits, to get an initial point that was
halfway between the group coordinate space and individual
spaces.

To fit the main models, for each combination of λS and
λF values, we used 9 folds as model training data to ex-
tract the best fitting coordinates and then tested the model on
the last held-out fold to obtain the cross-validated negative
log-likelihood. We iterated this process such that each set
was used as test data once per pair of ridge parameters, and
summed the negative log-likelihoods across all folds. Given
that some participants completed more trials than others, we
weighted the negative log-likelihood of each fit such that
each participant’s data contributed equally to model fits.

ℓ =
∑

l

ℓl
Nl
·

N
n

(7)

where ℓl is the log-likelihood of the model for participant l,
Nl is the number of trials completed by that participant, and
N is the total number of trials in the dataset.

Across different model fits, λS was set to zero or one of
20 values log-spaced between 10−1.5 to 103, while λF was
set to zero or one of 20 values log-spaced between 10−1.5 to
102.5. For each level of dimensionality, we selected the best
fitting model with the values of λS and λF that minimized the
cross-validated negative log-likelihood.

We fit all models twice, first assuming no differences
as a function of attention condition (i.e., k = 1, requiring
36×m× 10 parameters, for stimuli, dimensions, and partici-
pants, respectively) resulting in coordinate spaces that reflect
the average for each participant across the full dataset from
the triad task. Second, to assess how attention modulated
the coordinate spaces, we fit the model with different coor-
dinates for each attention condition (i.e., k = 3, requiring
36 × m × 3 × 10 parameters) using an otherwise identical
modeling procedure.

Alternative models. We tested our main geometric
model against two alternatives. Both models were fit using
10-fold cross-validation and were optimized to minimize the
same negative log-likelihood as the main model. The only
change was in how we defined the distance between pairs of
orientations.

The first alternative model was the "angular distance
model", in which the distances between pairs of orientations
was defined as the arc length along the circumference of a
circle spanning the orientation space. This model reflects a
lower bound on geometric complexity.

d(sx, sy) = rkl · θd ·
π

90
(8)

where θd is the difference in orientations between sx and sy

(in degrees), and rkl is the radius of the circle for participant l
and attention condition k. We fit this model with the radii as
free parameters, requiring 30 parameters (3 per participant)
when fitting each attention condition, or 10 parameters when
collapsed across conditions. We initialized the model param-
eters as a vector of ones.
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The second alternative model was the "RDM model".
Here, we eschewed the geometric structure of the main
model, allowing each cell of the model RDM to vary as
a free parameter. This model provides an upper bound on
complexity and is more data-driven. We assumed a sym-
metric RDM with zeros along the main diagonal, meaning
there were 36× 35/2 = 630 parameters per individual RDM,
for a total of 18,900 parameters for fitting separate attention
conditions, or 6,300 when collapsed across condition. With
this large number of free parameters, we attempted to reduce
the effects of overfitting by applying a ridge penalty to the
sum of the squared model parameters. We set the model λ to
zero or one of 20 values log-spaced between 10−3 and 103,
selecting the model that minimized the cross-validated neg-
ative log-likelihood. The initial model parameters were set
by constructing the RDM based on the training data, as in
the original main model, then taking the values in the lower
triangle.

Assessing the effects of attention on representational
geometry. After extracting the representational geometry
underlying perceptual similarity judgments in the triad task,
we computed the length of the representational space in a
local neighborhood around each orientation, which we re-
fer to as the local length. We selected stimuli in a window
spanning ±20◦ around each orientation, then computed the
sum of the Euclidean distance between neighboring stimuli
within this window. This approach provides an estimate of
the distance along the curve in the m-dimensional representa-
tional space near each orientation, following previous model-
ing work (Ringach, 2010, 2019). We used a window of ±20◦

since this resulted in four non-overlapping bins centered at
the cardinal (0◦ and 90◦) and oblique (±45◦) orientations,
with each stimulus orientation falling into one of these bins.

We normalized the length in each bin by dividing it by the
total length spanned by all orientations, separately for each
participant and attention condition, such that local lengths
reflect a proportional measure of the representational space
near a given orientation. This allows us to better compare
changes in the perceptual geometry around the attended and
unattended orientations, and during the triad only sessions
where attention was not directed to a specific part of the fea-
ture space, independent of variations in the overall size of the
representational geometries between participants and condi-
tions. For key results, we also performed the same analyses
using the original (non-normalized) lengths.

For statistical comparisons, we selected the local lengths
at ±45◦ when each orientation was the target, distrac-
tor, or when no attention was directed towards it. These
lengths were then submitted to a two-way repeated measures
ANOVA. In later analyses, we selected the local lengths at
the cardinal and oblique orientations, and conducted a two-
way repeated measures ANOVA to assess the interaction be-
tween these orientations and the attention conditions. In all

cases, significant effects were followed up by paired-samples
t-tests comparing lengths at a given orientation between the
attention conditions directly.

We also analyzed how local lengths changed in each at-
tention condition as a function of the window size used to
calculate lengths. Increasing this window naturally increases
the overall length, so we divided all lengths by the size of the
window, resulting in a measure of the mean distance between
neighboring stimuli across the window. We then directly as-
sessed the difference in lengths between target and distrac-
tor orientations, for different combinations of each window
size. We limited the window size combinations to avoid
cases in which any stimulus fell into both windows (i.e., tar-
get window + distractor window ≤ 180◦). To assess signif-
icant differences between lengths across different combina-
tions of window sizes, we conducted permutation tests to de-
termine a significance threshold. We refit the 4-D geometric
model while randomly shuffling the attention condition la-
bels across trials for each participant 10,000 times. We used
the best fitting ridge parameters determined for the original
model, and extracted new model coordinates with each shuf-
fle of the permuted data. For each permutation, we calcu-
lated local lengths for different window sizes as above, and
determined the maximum absolute difference between (shuf-
fled) target and distractor lengths. We identified significant
window combinations in the original data if the difference
between lengths was greater than 95

Results

Attention to target orientations improved tilt detection

To engage feature-based attention, participants were cued
to attend to a set of target lines oriented 45◦ clockwise or
counterclockwise from the cardinal axes. During each trial,
both target and distractor lines could tilt slightly away from
their main angle 0–3 times, and participants were instructed
to count the number of tilts that occurred in the target lines,
while ignoring tilts in the distractor lines.

We first confirmed that participants were able to detect and
report target tilts, finding that average accuracy was 52.5%
(SD = 13.4), significantly exceeding 4-AFC chance perfor-
mance of 25%, t(9) = 6.50, p < .001. Participants tended
to underestimate the number of target tilts, with a mean re-
sponse of 1.23, when the empirical average was 1.50. This
underestimation was reflected in the distribution of partici-
pants’ responses, which were skewed towards reporting zero,
one, or two tilts (26.1%, 34.6%, and 29.2% of trials, respec-
tively), rather than three tilts (10.2% of trials). Such underes-
timation was expected, as the size of the tilt was thresholded
for each participant to achieve 79

We next assessed the effectiveness of feature-based atten-
tion in this task by examining how responses varied as a
function of the number of target and distractor tilts. Partic-
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ipants’ reports generally tracked the number of target tilts,
as shown by positive correlations between the presented and
reported number of target tilts, rmean = .646 (Figure 2b, up-
per). In contrast, correlations between responses and the
number of distractor tilts were near zero across participants,
rmean = .009 (Figure 2b, lower). This pattern of behavior
confirms that participants attended to the target orientation,
as instructed, as responses were systematically related to tilts
in the target-oriented lines only.

Extracting the representational structure of orientation

To measure the full representational geometry of orienta-
tion and how this structure changes with attention, it is nec-
essary to measure the appearance of all orientations, and not
just the target and distractor orientations presented during the
attention task. To achieve this complete measurement of per-
ceptual orientation space, participants performed a triad sim-
ilarity judgment task interleaved with the attention task. On
each trial, an array of three oriented Gabors was presented
for 200 ms, and participants were instructed to select which
of two stimuli (the leftmost or rightmost) was more similar
in orientation to the third, reference stimulus (in the center;
Figure 2a). The orientation of each stimulus was randomly
and independently sampled from 0◦ to 180◦ with 5◦ spacing.
We collected data from this task under three attention con-
ditions: either the triad task performed in isolation ("no at-
tention"), or when attention was directed to 45◦ or −45◦. We
hypothesized that any changes to perceptual geometry during
the attention task on each trial would affect the appearance
of the triad probe stimuli presented immediately afterward,
allowing us to measure the representational changes induced
by attention.

We first sought to characterize the perceptual geometry of
orientation regardless of attention by combining data across
the three attention conditions. To quantify the representa-
tional structure of orientation, we computed representational
dissimilarity matrices (Figure 3a), which summarized the
proportion of times participants selected a particular pair of
orientations in each triad as being most dissimilar. The group
average RDM demonstrates the expected low dissimilarity
near the primary diagonal where the angular difference in
orientations is smaller (e.g., only 5◦ or 10◦ apart), and high
dissimilarity off the main diagonal peaking at orthogonal an-
gles. We also observed variability in the RDMs at the level
of individual participants (see Figure S1), suggestive of indi-
vidual differences in similarity judgments.

To estimate the representational structure of orientation,
we fit a geometric model to similarity judgments in the triad
task. The model seeks to find a set of coordinates that pre-
dicts behavior, such that the distance between stimuli in the
m-dimensional representational space reflects the perceived
similarity between them. We measured the model’s per-
formance using the cross-validated negative log-likelihood

of model fits as we varied the dimensionality of the repre-
sentational space. We first assessed the dimensionality of
the perceptual representations using a single set of coordi-
nates across attention conditions, finding that while each ad-
ditional dimension continued to decrease the negative log-
likelihood up to the maximum dimensionality we examined
(m = 10), there was little improvement beyond 4 dimensions
(Figure 3b). For higher-dimensional fits, the additional di-
mensions had very low variance and in some cases were cor-
related, suggesting they contained little explanatory power
compared to the first four dimensions.

We compared these geometric models to two additional
models. In the angular distance model, behavioral predic-
tions were based on the differences in orientation between
the two triad stimuli and the reference (equivalently, the arc
length along a circle between two orientations). This model
was only an improvement over the 1-D geometric model
(orange dashed line in Figure 3b), indicating that similarity
judgments were based on more than just the angular devi-
ations between Gabors. In the RDM model, we fitted the
dissimilarity values for all pairs of orientations directly, al-
lowing for a characterization of behavior that was not con-
strained to a particular geometry. However, this model also
failed to provide a better fit to the data (green dashed line in
Figure 3b), performing even worse than the angular distance
model. While the fitted RDMs showed some correspondence
to those measured directly from behavior, they appeared to
overfit to the training data, resulting in worse out-of-sample
predictions. Thus, the constraints on distances imposed by
the structure of the geometric models resulted in better gener-
alization, suggesting these models captured meaningful rep-
resentations of the perceived similarity between orientations.

The individual dimensions of the 4-D solution are shown
in Figure S2a. The first two primary dimensions captured the
circular structure of the stimulus space, approximated by sin
and cos functions. The third and fourth dimensions were ap-
proximated by the second harmonics of the first two dimen-
sions, together forming a "double loop" structure where ori-
entations differing by 90◦ are represented similarly in these
dimensions (Figure S2b). Another way of interpreting the
higher dimensions is that they deform the circular space of
orientations into a saddle-like structure. One consequence of
this structure is that the perceived similarity between orien-
tations falls off exponentially as a function of distance in the
physical feature space, consistent with proposed laws of psy-
chological similarity (Shepard, 1987; Sims, 2018). Finally,
we found that the stimulus coordinates fell near a hyper-
sphere: the distance of each point from the origin was close
to uniform across the feature space. Orientations near hori-
zontal and vertical were slightly farther from the origin than
obliques, consistent with a small cardinal bias (Figure S3).
Thus the perceptual space we recovered for orientation was a
nonlinear but systematic transformation of the physical fea-
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Figure 3

A) Grand average representational dissimilarity matrix across all trials in the similarity judgment task. Each cell in the matrix
indicates the dissimilarity between a given pair of oriented Gabors, which we calculated as the complement of the proportion
of times that pair was chosen as most similar when presented together. B) Cross-validated negative log-likelihood of the best
fitting behavioral model at each dimensionality. Model fits improved up to around 4 dimensions, at which point the negative
log-likelihood remained nearly constant. Horizontal lines indicate the fit of two additional models: the "angular distance
model" in which the model predicted behavior only on the basis of the difference in orientations between triad stimuli, and;
the "RDM model" in which we fit the dissimilarities directly, ignoring geometric structure. C) Group-average 3-dimensional
solution for each attention condition. The representational structure of the similarity judgments approximately followed a
saddle shape in the 3-D space. Coordinates corresponding to the two target orientations (±45◦) showed deviations as a
function of the attention conditions.

ture space into a higher-dimensional representation that ac-
counts for several aspects of orientation perception.

Attention expands representational space around target
orientations

To assess how attention to different orientations modu-
lated representational geometry, we refit the models, allow-
ing the coordinates to vary separately for each of the three
attention conditions (attend +45◦, attend −45◦, no attention).
We assessed the dimensionality of the representations using
cross-validated log-likelihood, finding again that 3-4 dimen-
sions provided good fits to the behavioral data (Figure S4).
Compared to the models fit to the aggregated data, there was
a smaller improvement for 4- relative to 3-dimensional fits,
possibly due to the smaller number of trials when fitting
each condition separately. Our analyses focused on the 4-
dimensional solution, though for visualization we plotted the
3-dimensional solutions for each attention condition over-
laid, observing that while the overall saddle-shaped structure
was similar in all conditions, the representational geometry
for different attention conditions diverged near the target ori-
entations, particularly around ±45◦ (Figure 3c).

To quantify the changes in representational distance in-
duced by attention, we computed a "local length" metric
around key stimulus orientations. We divided the space into
four quadrants, with 40◦ (±20◦) windows around the target
orientations of ±45◦ and the task-irrelevant control orienta-
tions of 0◦ and 90◦. We then calculated the length along
the representational space within the window (e.g., 25◦ to
65◦, centered on 45◦) by summing the distances spanned by
neighboring points. To account for differences in the over-
all size of the representational space between participants
or conditions, we normalized the local lengths, expressing
them as a proportion of the total length around the orientation
space (see Methods).

We first focused on the target-centered windows, assess-
ing the local length when each orientation was the target,
when it was the distractor, and on triad-only trials, when at-
tention was not directed to a particular orientation. We found
that attention modulated the local lengths within these win-
dows, as shown by a main effect of attention, F(2, 18) =
7.03, p = .006, with the longest lengths around a stim-
ulus orientation when it was the attended target orienta-
tion, the shortest lengths when it was the unattended dis-
tractor orientation, and intermediate lengths under no atten-
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tion (dashed vertical lines in Figure 4a). There was no ef-
fect of stimulus orientation, F(2, 18) = 0.79, p = .396,
and no interaction between attention and stimulus orienta-
tion, F(2, 18) = 0.60, p = .562, suggesting that the effects
of attention were similar at +45◦ and −45◦. Pairwise com-
parisons between attention conditions revealed a significant
increase in the lengths around targets relative to distractors,
t(9) = 4.16, p = .002, with a marginal increase around tar-
gets compared to no attention, t(9) = 2.22, p = .053. There
was no difference in lengths for distractors relative to no at-
tention, t(9) = 1.10, p = .302. These results indicate that at-
tention expands the representational space in a local window
around target stimuli.

Next, to investigate how attention affected the representa-
tion of orientations throughout the stimulus space, we com-
pared local lengths in windows centered on each of the cardi-
nal (0◦ and 90◦) and oblique orientations (+45◦ and −45◦) as
a function of the attention condition. We found that attention
had different effects across the representational space, indi-
cated by a significant interaction between attention condition
and stimulus orientation, F(6, 54) = 2.64, p = .026. Assess-
ing each quadrant window separately, we found a significant
increase in the lengths around −45◦ when attention was di-
rected to that orientation, F(2, 18) = 3.78, p = .043, particu-
larly when compared to attending to +45◦, t(9) = 4.89, p <
.001. At +45◦, there was no main effect of attention,
F(2, 18) = 2.68, p = .096, but attending to +45◦ vs −45◦ re-
sulted in significantly greater lengths, t(9) = 2.54, p = .032.
When we compared lengths around 0◦ or 90◦, there were no
significant differences due to attention, p′s > .3, demonstrat-
ing that the effect of attention was specific to the target ori-
entations at ±45◦.

Lastly, we conducted a sliding window analysis, com-
puting the local length in windows (width = 40◦) centered
at each stimulus orientation (Figure 4a). Inspection of the
resulting local length plot showed that the effects of at-
tention were largest around −45◦, with a smaller, but still
visible effect observed at +45◦. A similar pattern was
observed using the original (non-normalized) local lengths
(Figure S5a). Thus, attention modulated the representational
structure of orientation, specifically by increasing the local
lengths around attended orientations, hence expanding the
relative representational space near that point.

Attention compresses representations broadly around
distractor orientations

If attention expands the representation around targets,
does this imply that attention can increase the overall size of
representational spaces? To address this question, we com-
puted the total (non-normalized) length spanned by the full
orientation space in each attention condition. These total
lengths did not significantly differ, F(2, 18) = 0.14, p = 0.87,
suggesting that attention did not expand the available space
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A) Local lengths of perceptual representations of orienta-
tions in each attention condition. Shaded regions indicate
within-subjects SE. Significant differences in lengths between
“Attend −45◦” and “Attend +45◦” are indicated by filled
squares (Bonferroni corrected across 36 orientations, p <
.05) or unfilled squares (uncorrected p < .05). B) Local
length around ±45◦ orientations scaled by the size of the
window around this orientation and whether it represents the
target or distractor orientation, or when no orientation was
attended. C) Window sizes maximizing relative expansion
around targets vs. compression around distractors. The out-
lined region shows combinations of target- and distractor-
centered windows with significant differences in lengths be-
tween conditions (permutation test p < .05), with the red dot
indicating the windows with the largest observed difference.
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for representing orientation information. In fact, the total
length was the greatest numerically under no attention. This
finding suggests there were subtle decreases in the lengths
around unattended orientations that occurred alongside the
increases at the attended orientation.

Examination of Figure 4a suggested that representational
compression around distractors may be present but both
smaller in magnitude and less focal than representational ex-
pansion around targets. To investigate this possibility, we
varied the size of the window around the target and distrac-
tor orientations and calculated local lengths for each win-
dow size in each attention condition (Figure 4b). There were
significant differences between target and distractor lengths
for a wide range of window sizes, though the effects peaked
around 30–40◦, which was mirrored at 140–150◦ due to sym-
metry across the space when collapsing across the two target
orientations. A similar pattern was observed for the origi-
nal lengths (Figure S5b). Numerically, we found both ex-
pansion (longer lengths around target orientations vs. no at-
tention) and compression (shorter lengths around distractor
orientations vs. no attention) across a wide range of win-
dow sizes, for both the normalized (Figure S6a) and original
lengths (Figure S6b). Whereas the expansion around the tar-
get peaked for narrow windows of 30–50◦, compression was
most reliable for wider windows of 110–130◦. This result
implies a broad compression of the representational space
that encompasses a range of stimulus orientations spanning
the distractor as well as other non-target orientations.

To better characterize the potentially different breadths of
expansion and compression in the perceptual space, we re-
calculated the difference in lengths around target and distrac-
tor orientations while allowing the size of both windows to
vary (without overlap). We observed significant differences
in lengths for a number of window combinations, with the
largest effect of attention occurring for a target window of
40◦ and a distractor window of 120◦ (Figure 4c, see also Fig-
ure S5c). Thus, our findings suggest that attention induces
representational expansion in a narrow range around the tar-
get and compression in a broad range around the distractor.

Discussion

In this study, we examined how attention affects repre-
sentational geometries, using perceived similarity to model
the perceptual space of orientation (Roads & Love, 2024;
Zaidi et al., 2013). Participants performed a task in which
they directed attention towards one of two sets of oriented
lines (±45◦ from vertical) to detect small tilt offsets in the
target stimuli, while at the end of each trial they performed a
perceptual similarity judgment among three oriented Gabors,
independently sampled from the 180° stimulus space. We
fit a model to the similarity judgments to extract the repre-
sentational geometry of orientation under different attention
conditions, finding that orientation was best described by a

4-dimensional model. From the fitted representational struc-
ture, we observed a reliable expansion in a region spanning
the attended orientation compared to when it was unattended.
We estimated the breadth of attentional expansion for orien-
tation to be approximately 40◦, as this window size maxi-
mized the attention-induced change in representational dis-
tances around the target. In contrast to this relatively narrow
expansion, we found a broad compression of the representa-
tional space around distractors that peaked with a window of
120◦. Thus, our findings show that the effects of attention are
not confined to the specific target and distractor features in a
particular task, but that attention reshapes the entire represen-
tational geometry of a given feature space (as hypothesized
by Chapman & Störmer, 2024).

Our behavioral models showed that the perceptual rep-
resentation of orientation is best captured in 4 dimensions,
higher than the physical 2-D geometry of the circular feature
space. Indeed, a simple angular distance model performed
substantially worse than the 4-D geometric model. Interest-
ingly, this is consistent with findings that the perceived sim-
ilarity between the orientation of abstract shapes is also well
described by four dimensions (Shepard & Farrell, 1985). In
particular, while two dimensions observed by Shepard and
Farrell (1985) captured the basic circular structure of orienta-
tion, the other two dimensions had a "double-loop" structure
where orientations differing by half a cycle were represented
more similarly. Recent neuroimaging work suggests that
the sensory representation of orientation has a more circular
structure in early visual cortex (V1–3) that is transformed in
higher-order visual regions (LO) into a structure that may be
consistent with a double-loop (Chunharas et al., 2025). The
4-D similarity structure we observed thus suggests that the
perceptual representation of orientation, even for simple Ga-
bor stimuli with no complex shape or object structure, may
be an outcome of the successive stages of processing along
the visual hierarchy.

Notably, our data support predictions of previous theoret-
ical work on the representational geometry of basic, circu-
lar feature dimensions (Ringach, 2010). Ringach (2010) de-
termined several properties of the optimal representation of
such features that would hold under the conditions that 1)
the population undergoes normalization and 2) the neuronal
tuning functions are translation invariant (i.e., they symmet-
rically and uniformly tile the stimulus space). One theoreti-
cal result was that the representational manifold produced by
this model lay on a hypersphere, due to normalization. Our
findings showed not only that the orientation representation
as a whole lay near a hypersphere, but that attention did not
change the overall size of the representational space, with
expansion and compression cancelling out, consistent with
normalization. A second important theoretical result was
that, in such optimal neural representations, successive pairs
of dimensions produce loops with increasing harmonics. We

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2025. ; https://doi.org/10.1101/2025.08.28.672962doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.28.672962
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

ATTENTION RESHAPES REPRESENTATIONAL GEOMETRY 11

found the predicted single- and double-loops in our main 4-
D model, and further our higher dimensional models show
evidence for a triple-loop at dimensions 5 and 6, which to
our knowledge has not previously been reported (Figure S7).
Higher-order loops did not appear for even higher dimen-
sions, suggesting an upper limit on the complexity of the
representation of orientation (Ringach, 2010), although our
ability to determine these dimensions from our data may have
been limited. However, we find that these loops were not
symmetric in our data, with separation still observed near
cardinal orientations in the double-loop. This asymmetry
may be because orientation tuning is not fully translation
invariant (as the model of Ringach, 2010, requires), with
potential differences in tuning around cardinal compared to
oblique orientations (Girshick et al., 2011; Wolff & Rade-
maker, 2025). Further work will be needed to determine the
extent to which the higher dimensions of these representa-
tions contribute to orientation perception.

Critically, we found that attention affected the overall
structure of this representational space. Although data from
previous studies has not allowed measurement of whether
and how attention warps the full representational space, clas-
sic work has demonstrated how different dimensions of stim-
ulus representations can be flexibly weighted more or less
strongly in perceptual decisions. This idea hearkens back to
Attneave (1950), who showed that participants’ judgments
of the similarity between simple geometric shapes were con-
sistent with a city-block metric, such that decisions reflected
a weighted sum along individual stimulus dimensions. Sub-
sequently, Shepard (1964) argued that stimuli with analyz-
able (i.e., separable or independent) dimensions are com-
pared primarily along one dimension or another, resulting
in distances that do not conform to a Euclidean metric. In
contrast, unitary stimulus spaces are perceived more holisti-
cally and, Shepard proposes, reflected in distances consistent
with a Euclidean metric. The notion of the independence of
stimulus dimensions is embedded in multidimensional scal-
ing methods, such as INDSCAL (Carroll & Chang, 1970),
where individual differences are accounted for by applying
separate weights to each dimension in the model. Such mod-
els can only account for linear deviations between individu-
als or conditions, and thus are unable to capture the differ-
ences in the orientation representations we observed, which
were not isolated along specific dimensions but rather were
captured by a non-linear warping across multiple dimensions
simultaneously. Thus, our data support the idea that orienta-
tion is a unitary feature, requiring a methodological approach
different from multidimensional scaling to measure changes
in its representational structure. This conclusion is further
supported by recent work showing that Euclidean geometries
can adequately capture the perceptual and semantic similar-
ity of visual stimuli (Waraich & Victor, 2024), in contrast
with the hyperbolic geometry found in the olfactory system

(Zhou et al., 2018).

Our findings support the hypothesis that attention re-
shapes perceptual representations in a way that supports
the processing of task-relevant information (Chapman &
Störmer, 2024). In our task, participants were cued to attend
to sets of lines oriented 45◦ clockwise or counterclockwise
from vertical, and to detect small tilts in these lines through-
out the trial. Attention-induced changes in representational
geometry can enhance performance by increasing the per-
ceived distances between orientations nearby the target. That
is, tilts in the target stimuli (e.g., from −45◦ to −47◦) are
made more discriminable because attention increases the rep-
resentational distance between these orientations, effectively
exaggerating the tilts. This interpretation aligns with pre-
vious findings, whereby attention affected the perception of
stimulus properties, such as contrast (Carrasco et al., 2004)
or gap size (Gobell & Carrasco, 2005), which can allow for
enhanced discriminability of attended relative to unattended
stimuli. We observed clear differences in perceptual repre-
sentations when attention was directed to specific orienta-
tions (attend 45◦ vs. attend −45◦), allowing us to measure
expansion vs. compression relative to the size of the whole
space, but less reliable differences when comparing between
attention and no attention conditions, particularly when us-
ing non-normalized lengths, making claims of absolute ex-
pansion or compression of these representations less certain.
Comparisons of attention vs. no attention may have been less
reliable both because these differences are inherently smaller
than target vs. distractor differences and because the no at-
tention data was collected in separate experimental sessions.
Future studies should aim to better estimate changes in abso-
lute representational geometry relative to a neutral baseline
in addition to relative changes across the space.

Other work suggests that attention may not just exagger-
ate task-relevant features, but can also distort perception. At-
tention can bias the perception of spatial position (Suzuki
& Cavanagh, 1997) and color hue (Chapman et al., 2023),
where the magnitude of the hue bias depends on the simi-
larity between target and distractor colors. This finding sug-
gests that attention can alter perceptual representations in dif-
ferent ways depending on context: when target and distrac-
tors are dissimilar (such as the orthogonal orientations in our
attention task), attention acts to increase the representational
distances around the target feature; in contrast, when targets
and distractors are more similar, attention may act to distort
the representation of target features away from distractors,
resulting in biased perception of the target itself. Both mech-
anisms are consistent with the broader idea that attention re-
shapes representations to allow for more efficient transfer of
perceptual information that is relevant for behavior (Ruff &
Cohen, 2019; Rust & Cohen, 2022). Thus, while the expan-
sion and compression we observed are ways in which atten-
tion can reshape representational spaces, other mechanisms
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are plausible, and task context likely has a large effect on
what information is magnified by attention (Kay et al., 2023).

Representational geometry has often been studied using
neural measures, allowing for researchers to examine how
representations change across brain regions involved in per-
ception and memory (Chunharas et al., 2025; Xu, 2023), or
how representations are affected by visual masking (Ringach,
2019), for example. In comparison, behavioral measures
of similarity reflect the outcome of both perceptual and
decision-making processes. Given that the dimensions un-
derlying object representations vary along the visual hier-
archy (Contier et al., 2024), we expect that attention might
affect the representational geometry in different ways at dif-
ferent stages of processing. Likewise, attention may impact
the temporal evolution of feature representations during vi-
sual processing. In our task, we assessed perceptual simi-
larity only at the end of each trial, after attention had been
directed to the target orientation for several seconds. Neu-
ral measures with high temporal resolution can instead be
used to track representations during early visual processing,
as demonstrated by recent work showing that spatial posi-
tion (Foster et al., 2021), color (Rosenthal et al., 2021), and
even semantic object properties (Teichmann et al., 2025) can
be recovered from multivariate EEG/MEG activity. Combin-
ing perceptual similarity judgments with neural measures can
therefore provide key insights into the way attention shapes
stimulus representations during visual processing, as well as
providing a powerful way to determine which neural signals
map to different aspects of perception and cognition. More
broadly, this approach can reveal how different constraints
and contexts are integrated with perceptual representations
to support effective information processing.
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Computing model gradients
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dicted choice probabilities in Equation 1. To compute the
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sxa. Using the chain rule:

∂ℓ

∂sxa
=
∂ℓ

∂p
·
∂p
∂sxa

=
∑

i

∂ℓ

∂pi
·
∂pi

∂sxa
(A1)

where
∂ℓ

∂pi
=

1
ln 2

(
ci

pi
−

1 − ci

1 − pi

)
(A2)

To compute the second part of the gradient, we
note that the derivative of the Euclidean distance function,
d(sx, sy) along stimulus dimension a is:

∂

∂sxa
d(sx, sy) =

sxa − sya

d(sx, sy)
(A3)

and the derivative of the standard normal PDF, Φ, is the stan-
dard normal CDF, ϕ. Because pi varies as a function of each
of the stimuli presented in the triad, the derivative depends on
whether sx was the left, right, or reference stimulus. There-
fore, for each trial, we have three possibilities:

1. sx is the left stimulus, such that

∂pi

∂sxa
= ϕ

(√
2
(
d(sre f , sright) − d(sre f , sx)

))
·
√

2 ·
sre f ,a − sxa

d(sre f , sx)
(A4)

2. sx is the right stimulus, such that

∂pi

∂sxa
= −ϕ

(√
2
(
d(sre f , sx) − d(sre f , sle f t)

))
·
√

2 ·
sre f ,a − sxa

d(sre f , sx)
(A5)

3. sx is the reference stimulus, such that

∂pi

∂sxa
= ϕ

(√
2
(
d(sx, sright) − d(sx, sle f t)

))
·
√

2 ·
(

sxa − sright,a

d(sx, sright)
−

sxa − sle f t,a

d(sx, sle f t)

)
(A6)

On trials in which sx was not shown, the gradient is zero.
We can then enter the derivatives from each trial into Equa-
tion A1 to obtain the overall gradient given the input coordi-
nates.
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Figure S1

Individual representational dissimilarity matrices across all trials in the similarity judgment task. Differences across partici-
pants’ similarity judgments could be driven by variation in perception or decision processes
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Figure S2

A) Solution of the geometric behavioral model in 4-dimensions. Each dimension is plotted separately as a function of stimulus
orientation. Light grey lines represent individual participant’s coordinates, while black lines show the group average. B)
When plotted against one another, the first two dimensions show a circular structure, while the second two dimensions show a
"double loop".
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Figure S3

Euclidean distance of each stimulus from the origin using the 4-D model solution. Overall, cardinal orientations (0◦/90◦)
were further from the origin than oblique orientations (±45◦). Light grey lines represent individual participants, while the
black line shows the group average. Shaded regions correspond to within-subjects SE.
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Figure S4

Cross-validated negative log-likelihood of the best fitting behavioral model at each dimensionality, with coordinates that were
allowed to vary across attention conditions. Model fits improved up to around 3-4 dimensions, at which point the negative
log-likelihood remained nearly constant. Horizontal dashed lines indicate the fit of two the angular distance model and the
RDM model.
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Figure S5

Expansion and compression of orientation representations using the original (non-normalized) lengths. A) Local lengths of
perceptual representations of orientations in each attention condition. B) Local length around ±45◦ orientations by window
size when it was the target or distractor orientation, or when no orientation was attended. C) Window sizes maximizing
relative expansion around targets vs. compression around distractors. All conventions follow Figure 4.
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Figure S6

Comparisons of mean local length between different attention conditions, for the A) normalized, and B) original lengths. For
a given window size, we calculated the mean local length for each condition and then calculated the difference between each
pair of conditions. Shaded regions correspond to SE of the difference.
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Figure S7

Loops in the 10-dimensional geometric model solution, plotted for pairs of successive dimensions. The first three pairs show
a single-, double-, and triple-loop respectively, while the last two pairs do not show a clear increase in the looping structure.
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