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Abstract
Background Alterations in sensory perception, a core phenotype of autism, are attributed to imbalanced integration 
of sensory information and prior knowledge during perceptual statistical (Bayesian) inference. This hypothesis has 
gained momentum in recent years, partly because it can be implemented both at the computational level, as in 
Bayesian perception, and at the level of canonical neural microcircuitry, as in predictive coding. However, empirical 
investigations have yielded conflicting results with evidence remaining limited. Critically, previous studies did not 
assess the independent contributions of priors and sensory uncertainty to the inference.

Method We addressed this gap by quantitatively assessing both the independent and interdependent contributions 
of priors and sensory uncertainty to perceptual decision-making in autistic and non-autistic individuals (N = 126) 
during an orientation categorization task.

Results Contrary to common views, autistic individuals integrated the two Bayesian components into their decision 
behavior, and did so indistinguishably from non-autistic individuals. Both groups adjusted their decision criteria in a 
suboptimal manner.

Limitations This study focuses on explicit priors in a perceptual categorization task and high-functioning adults. 
Thus, although the findings provide strong evidence against a general and basic alteration in prior integration in 
autism, they cannot rule out more specific cases of reduced prior effect – such as due to implicit prior learning, 
particular level of decision making (e.g., social), and level of functioning of the autistic person.

Conclusions These results reveal intact inference for autistic individuals during perceptual decision-making, 
challenging the notion that Bayesian computations are fundamentally altered in autism.
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Main text
In acknowledgment of the ongoing discourse regarding 
terminology about individuals diagnosed with autism, we 
used “autistic individuals” and “non-autistic individuals” 
in line with recent conventions.

Background
Autism Spectrum Disorder is a group of neurodevelop-
mental disorders with an unknown etiology. Although 
autism encompasses a wide range of symptoms, it is pri-
marily characterized by atypical social cognitive capaci-
ties, such as theory of mind and cognitive empathy [1]. 
Recently, there has been growing interest in sensory pro-
cessing in autism as a core phenotype [2, 3]. Despite evi-
dence demonstrating sensory symptoms and perceptual 
alterations in autistic people [4, 5], whether and how a 
single mechanism can explain the various symptoms of 
autism remains unknown.

In the effort to explain this variety of phenotypes, two 
related theoretical frameworks, Bayesian inference and 

predictive coding, suggested an underlying mechanis-
tic account involving canonical processes of perceptual 
inference [6]. In both frameworks, perception is the out-
come of inference processes that combine noisy external 
(sensory) information with internal models of the world. 
Bayesian inference is a computational framework in 
which sensory uncertainty (likelihood) and internal mod-
els (priors) are combined according to Bayes’ rule [7, 8] 
(Fig. 1a). Predictive coding provides a neural implemen-
tation of this integration process, which is not necessarily 
Bayesian [6, 9–11]. As an example of how these theoreti-
cal frameworks have explained perception, consider the 
following scenario: You see a large, shadowy figure during 
a night walk outside your home. If you live in some parts 
of North America, you know that bears live nearby. If 
you live in some parts of the Middle East, you know that 
boars live nearby. Because here the sensory information 
(likelihood) is uncertain, prior beliefs about the probabil-
ity of encountering a boar or a bear would make a Bayes-
ian observer more likely to categorize the shadowy figure 

Fig. 1 Theoretical framework and tasks. (a) Graphical depiction of how the Bayesian inference predicts the internal response and optimal decision cri-
terion during a categorization task. An observer is deciding between two possible categories (Category A or Category B). We obtain the expected cost 
of each decision (EA and EB) by multiplying the sensory uncertainty and prior corresponding to each stimulus and then summing the costs associated 
with the two possible categories (here, we assume equal cost). (b) Illustration of the sequence of events within a trial in all experiments. For each trial, 
participants were asked to categorize the Gabor (Category A or Category B) depending on its orientation. The two sets of Gabor provide examples of 
possible orientations for each category, and different levels of contrast —from top to bottom, 0.004, 0.18, and 0.72. (c) Stimulus orientation distributions 
for each category in Task 1 (Experiment 1) and Task 2 (Experiment 2). (d) Illustration of the internal representation of the category distributions. In Experi-
ment 1 (top graphic), d’ represents the sensitivity or ability to separate the two categories, and c represents the adjustment of the decision criterion when 
the prior favors Category A. In Experiment 2, (bottom graphic), the distributions with vivid colors represent the internal representations of the categories 
when the sensory noise is low, and the faded colors when the sensory noise is high. s represents the internal noise, and k represents the decision boundar-
ies, shifting outwards when the sensory noise is increasing. (e) Illustration of the number of trials for each category per block in Experiment 1. Each block 
contained 320 trials. Category B could appear with a probability of 75% (Block 1), 50% (Block 2), or 25% (Block 3). The block order was randomized across 
participants. In Experiment 2, each block contained the same number of trials (i.e., 320), and the two categories had an equal probability
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as the animal that lives nearby than the one that lives on a 
different continent.

According to these theoretical frameworks, altered 
perception in autism arises from reduced use of prior 
beliefs. The Bayesian account postulates that difficulties 
in extracting prior information from the perceptual envi-
ronment [12] or aberrant account of sensory evidence 
[13–15] could lead to an underuse of prior information in 
autism. The predictive coding view assumes an inflexibil-
ity to adjust prediction errors when sensory input devi-
ates from expectations [16–18].

Despite the popularity of these views, which we collec-
tively refer to as the altered integration hypothesis, evi-
dence remains inconclusive [3, 19] and often depends on 
post hoc interpretations of results rather than the experi-
mental manipulation of Bayesian components [3]. As a 
result, observed alterations in perceptual inference may 
reflect alterations in priors, sensory uncertainty, or the 
integration of the two.

The inconsistent findings could also stem from experi-
mental shortcomings—such as inadequate prior learn-
ing attributable to compromised attentional or working 
memory capacities in autism [3, 19] (i.e., impaired learn-
ing of priors)—rather than a genuine reduced effect of 
priors [20, 21] (i.e., altered integration process). More-
over, studies often do not distinguish between different 
types of priors, such as natural (e.g., light from above 
[22]) vs. learned priors [18] or implicit (e.g., regression to 
the mean [23]) vs. explicit priors (e.g., base rate knowl-
edge of wildlife in your area).

Overall, most Bayesian investigations have primarily 
focused on the effect of priors, thus failing to assess dif-
ferences that may arise from the integration of sensory 
uncertainty. Thus, it remains unclear whether autistic 
individuals are truly impaired in prior integration or in 
the integration of other Bayesian components. Address-
ing these questions is critical to determine whether 
impairments in Bayesian inference constitute a core com-
putational deficit in autism.

Here, we directly tested the altered integration hypoth-
esis by systematically manipulating and testing the 
impact of each Bayesian component on perceptual deci-
sion-making. We used signal detection theory (SDT)—a 
standard model of decision-making and a special case 
of Bayesian inference—to estimate perceptual sensitivity 
and decision boundaries used to make categorical per-
ceptual decisions. We manipulated priors (Experiment 1), 
and sensory uncertainty (Experiment 2) to directly assess 
the contribution of each Bayesian component to the deci-
sion boundary in autistic vs. non-autistic groups. This 
approach disentangled the effect of priors from sensory 
uncertainty using a unified experimental design. Impor-
tantly, explicit priors were given, allowing us to indepen-
dently test and rule out differences between groups in 

prior knowledge. Stimulus contrast was manipulated to 
control for performance level, and the effectiveness of the 
prior manipulation was assessed to ensure task compre-
hension and motivation. Under these tightly controlled 
conditions, we found that autistic individuals (N = 49 in 
total) incorporate each Bayesian component into their 
perceptual decisions in a comparable manner to non-
autistic controls (N = 77 in total), providing evidence 
against the altered integration hypothesis in autism.

Experiment 1: the effect of prior knowledge on 
decision boundaries
In Experiment 1, we examined whether and how par-
ticipants integrate prior knowledge during perceptual 
decision-making. Autistic and non-autistic individuals 
completed an orientation categorization task in which 
the stimulus on each trial was drawn from one of two 
categories, each characterized by a Gaussian distribution 
over orientation [24–26]. The orientation distributions 
were partially overlapping (see Task 1, Fig. 1c). To manip-
ulate prior knowledge, we varied the base rates of the 
categories across different blocks (Fig. 1e). If participants 
were integrating priors, we hypothesized that the deci-
sion boundary would shift, favoring the category with the 
higher base rate (Task 1, Fig. 1d).

Method
Participants
Thirty-four adults diagnosed with autism (28 males and 
6 females) and 49 non-autistic individuals (11 males and 
38 females) participated in this experiment and received 
either monetary compensation (40 shekels/hour) or uni-
versity credit compensation (3 credits/hour). Autistic 
participants were recruited from a reliable pool of partic-
ipants routinely completing experiments for the Depart-
ment of Special Education. The two groups recruited 
for the experiments matched in age (t(101.66) = 0.548, 
p = .585), the mean age was m = 26.58 years old, se = 0.90, 
for the autistic group, and m = 27.21, se = 0.71, for the 
non-autistic group. The IQ was evaluated using the Test 
of Non-Verbal Intelligence (TONI-4) measuring cogni-
tive functioning without the interference of language def-
icits [27]. The two groups matched in IQ (t(60.61) = 0.82, 
p = .417), with a mean of m = 99.83, se = 11.47 for the 
autistic group, and m = 101.69, se = 9.91 for the non-autis-
tic group. We used the Autistic Quotient (AQ) question-
naire to evaluate the participants’ autistic traits, and a 
t-test (t(64.47) = 6.30, p < .001) revealed that the autistic 
group had a significantly higher AQ, m = 26.89, se = 8.27, 
compared to the non-autistic group, m = 17.01 se = 6.80. 
We maintained a minimum 24  h-interval between con-
secutive experiments for each individual.

The autism diagnosis was confirmed through rigorous 
criteria, including the DSM-V, the Autism Diagnostic 
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Interview (i.e., ADI-R52), and the Autism Diagnostic 
Observation Schedule (i.e., ASDOS-2). Moreover, all par-
ticipants completed the Community Assessment of Psy-
chic Experiences (i.e., CAPE) and AQ questionnaires, 
in their preferred language (Hebrew or English), either 
following the experimental phase or before the experi-
ment, during the clinical assessment phase. We excluded 
non-autistic individuals with a history of epilepsy, neuro-
logical, psychiatric, or learning disorders, as well as those 
currently using psychiatric medications. We excluded 
individuals diagnosed with autism who have known 
genetic disorders (e.g., Down syndrome).

Apparatus and stimuli
Apparatus
Stimuli were programmed in Matlab (The MathWorks, 
Inc., Natick, MA) with the Psychophysics Toolbox exten-
sions, and were presented on a gamma-corrected 21-in 
CRT monitor (1280 × 960 resolution, 85-Hz refresh rate). 
Participants used the keyboard to respond.

Stimuli
Figure  1b illustrates the stimuli, experimental proce-
dures, and tasks, based on Qamar et al. (2013), Adler and 
Ma (2018) and Denison et al. (2018). All stimuli were pre-
sented against a gray background (50 cd/m2). Each trial 
began with fixation (a black circle 0.2° of visual angle in 
diameter) for 500 ms, followed by the stimulus display for 
a duration of 50 ms. The stimulus was a sinusoidal grating 
with a two-dimensional Gaussian spatial envelope (i.e., 
Gabor patch), with sd = 0.325°, 85% contrast, and spatial 
frequency of 3 cycles per degree, presented at the center 
of the screen. In each trial, the orientation of the grat-
ing was randomly drawn from one of two Gaussian dis-
tributions, corresponding to the two stimulus categories 
(Fig. 1c). Following stimulus offset, participants reported 
both their category choice (Category A or B) and their 
level of confidence using a 4-point scale. This confidence 
rating scale ranged from high-confidence Category A to 
high-confidence Category B. The confidence data will be 
the focus of a separate paper. To manipulate the sensory 
uncertainty, we varied the stimulus contrast, randomly 
across trials, across seven fixed values (0.004, 0.016, 
0.033, 0.093, 0.18, 0.36, 0.72).

Categories
Our experimental design incorporated continuous ori-
entation distributions for each choice category, a critical 
feature enabling the separation of the participant’s sen-
sory noise from their decision rule [26, 28]. Stimulus ori-
entations were drawn from Gaussian distributions with 
means of mA = 86°and mB = 94° (tilts around vertical), 
both with standard deviations of sA = sB = 5° (see Fig. 1c, 
Task 1). The categories were partially overlapping, such 

that the maximum accuracy level was 80%. Participants 
were instructed to report which category they thought 
the stimulus belonged to on every trial, and they did not 
have any time limit to provide their answers.

Procedure and design
Manipulation of prior knowledge
To manipulate priors, we varied the base rate of Category 
B (and conversely, Category A) across three blocks of tri-
als. Two blocks had imbalanced base rates: one with a 
higher probability for Category A (B = 25% and A = 75%) 
and the other with a higher probability for Category B 
(B = 75% and A = 25%). The third block had balanced 
probabilities (B = 50% and A = 50%). See Supplementary 
Fig. 1a-c, for a depiction of the frequency of each orien-
tation per category for each base rate block. The neutral 
block was always performed second. The order of the 
low and high blocks was counterbalanced between par-
ticipants. Here, we expected a shift of decision boundary 
that favored the category with the high base rate (Fig. 1d, 
Task 1). Participants completed 960 experimental trials 
over approximately 50 min.

Manipulation verification
To ensure the comprehension of the main manipula-
tions (i.e., base rate), a “check question” was randomly 
introduced during the experiment. Participants were 
asked to hypothetically gamble an amount of money on 
a category, ranging from 0 to 99 cents, on the chances 
of the next trial belonging to that category, and that the 
amount left would be automatically gambled on the other 
category. They were informed that their predictive per-
formance would determine a monetary/credit bonus in 
addition to the original compensation.

Training
To ensure that all participants understood the task and 
manipulations, at the beginning of each experiment we 
conducted an extensive training phase on the catego-
ries and the confidence keys, then on the prior informa-
tion at the beginning of each block (see Supplementary 
Methods).

Data analyses
All analyses were performed on R version 4.2.2. Because 
confidence data was not the focus of the present study, 
we considered only the categorical response, collapsing 
across confidence keys.

To validate the manipulation of prior knowledge, 
we calculated the mean points gambled on category 
B in each base rate block for each participant. We then 
conducted a 2 × 3 mixed-design Analysis of Variance 
(ANOVA) with group (non-autistic, autistic) as the 
between-subject factor, category B base rate [75% (high 
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for B), 50% (balanced), 25% (low for B)] as the within-
subject factor, and points gambled on category B as the 
dependent variable.

For the main orientation categorization task, we first 
analyzed the raw data by calculating the probability of 
reporting category B across 16 binned orientation levels 
(-14, -12, -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, 12, 14) within 
each base rate condition. We then conducted a 3 × 16 × 2 
mixed-design ANOVA with category B base rate and 
binned orientations as within-subject factors, and group 
as the between-subject factor on the probability of 
reporting B as the dependent variable.

To independently estimate perceptual sensitivity and 
decision boundary, we utilized the framework of standard 
signal detection theory (SDT). Sensitivity (d’) reflects the 
ability to discriminate between the two categories, while 
the decision criterion (c) indicates the decision bias par-
ticipants employed to favor one category over the other. 
We then conducted a 7 × 3 × 2 mixed-design Analysis 
ANOVA with contrast (0.004, 0.016, 0.033, 0.093, 0.18, 
0.36, 0.72) and category B base rate as within-subject fac-
tors, and group as the between-subject factor, on both d’ 
and c.

To assess overall adjustment of decision boundary to a 
change in category base rate, we computed the shift in c 
between biased base rate (75% and 25%) blocks Dcriterion = 
c75% - c25%. We conducted a 7 × 2 mixed-design ANOVA 
with contrast as within-subject factor and group as 
between-subject factor, on the Dcriterion.

To account for sensory uncertainty (the inverse of 
sensitivity) differences across and within subjects when 
assessing the effect of base rate on the decision boundary, 
we used an ideal observer analysis approach. We calcu-
lated the optimal criterion shift (copt) based on the opti-
mal bias (β), which was calculated for a range of d’ values 
(Eq.  1). β was derived from the base rate (α) condition 
(Eq.  2). The parameter α could take a value of α = 0.25 
(low base rate) or α = 0.75 (high base rate).

 
copt = log (βopt )

d′
 (1)

 
βopt = (1 − α )

α
 (2)

Participants’ suboptimality cerror was estimated as the 
difference between a participant’s actual c and the 

corresponding copt based on their d’ value, for each stimu-
lus contrast. We conducted a 7 × 2 mixed-design ANOVA 
with contrast and group on the cerror.

In all ANOVAs, significant effects were further inves-
tigated using paired and unpaired t-tests as Bonferroni 
corrections were applied to control for multiple com-
parisons. The effect sizes were calculated using partial eta 
square.

In addition, we used a t-test Bayes analysis to assess 
the evidence for differences between the autistic and 
non-autistic groups in sensitivity (d’), decision criterion 
(Dcriterion), and suboptimality (cerror). Bayes factors (BF) 
were used to quantify the likelihood of the data occur-
ring under assumptions of the alternative hypothesis 
(H1 = difference between the two groups) over the null 
hypothesis (H0 = no difference between the two groups). 
BF < 1 indicates that the data provide evidence in favor of 
H0. 1 < BF < 3 indicates weak evidence for H1. 3 < BF < 10 
indicates moderate evidence for H1. BF > 10 indicates 
strong evidence for H1 [29].

We also performed linear-mixed effect models to con-
firm the main effects and interactions of category base 
rate and contrast on the sensitivity, decision criterion, 
and deviation from optimality.

Descriptions of analysis on linear mixed effect models, 
reaction time (RT) data and correlations between AQ 
and deviation from optimality can be found in Supple-
mentary Methods, and the results are described in Sup-
plementary Results and Supplementary Fig. 2a and 3a-b.

Outlier removal
Participants with an accuracy below 0.6 at the three 
highest contrast levels and across blocks were excluded 
from all analyses. Participants demonstrating extreme 
deviation from an optimal observer (cerror > 50) were 
excluded from the optimality statistical analyses. Partici-
pants exhibiting an average reaction time that was three 
standard deviations away from their group’s mean were 
excluded from the reaction time analyses (Table 1).

Results
Prior manipulation verification
Both autistic and non-autistic groups adjusted their 
gambling behavior in response to the base rate manipu-
lation. An ANOVA on the average amount gambled on 
categories A and B showed a significant effect of base 
rate (Fig. 2a) (F(2, 144) = 122.38, p < .001, hp² = 0.63) with 

Table 1 Description of the sample sizes in experiment 1, for the overall sample and in every statistical analysis, depending on the 
exclusion criteria based on participants’ performances: comprehension question, sensitivity, criteria, deviation from an optimal 
observer, reaction time, and correlation between the AQ and the criterion shift

Overall n Comprehension question Sensitivity Criteria Optimality rt Correlation
Prior experiment nautistic = 34 nautistic = 30 nautistic = 31 nautistic = 31 nautistic = 30 nautistic = 30 nautistic = 23

nnon−autistic = 49 nnon−autistic = 46 nnon−autistic = 46 nnon−autistic = 46 nnon−autistic = 45 nnon−autistic = 45 nnon−autistic = 40
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higher gambling points on the category with the higher 
base rate. We did not find a main effect of group (autis-
tic vs. non-autistic, F(1, 72) = 0.92, p = .342, hp² = 0.01), 
nor an interaction between group and base rate (F(2, 
144) = 0.52, p = .598, hp² < 0.01. These findings suggest 
that both groups of participants acquired prior knowl-
edge to a similar extent.

Categorization task
Category reports
Figure  2b-c illustrate, for each group, the probability of 
reporting Category B as a function of orientation. We 
observed a characteristic sigmoid shape with a higher 
probability of reporting Category B as the stimulus was 
oriented more clockwise (toward positive values). Cate-
gory B reports increased, with an upward shift of the psy-
chometric function, when there was a high base rate for 
Category B, and decreased (downward shift) when there 
was a low base rate for Category B. This shift of prob-
ability was supported by an ANOVA, showing a main 
effect of block on the probability of reporting Category 
B. F(1.45, 109.08) = 62.15, p < .001, hp² = 0.45. Overall, the 
pattern of results is comparable across groups, with no 
significant main effect of group, F(1, 75) = 0.85, p = .359, 
hp² = 0.01, or interaction between group and block, 
F(1.45, 109.08) = 0.98, p = .355, hp² = 0.01.

Perceptual sensitivity
Perceptual sensitivity for orientation categorization 
increased with contrast for both groups, confirming 
that the manipulation of sensory uncertainty was effec-
tive. An ANOVA on sensitivity (d’) showed a significant 
main effect of contrast level, F(6, 450) = 151.82, p < .001, 
hp² = 0.67 (Fig.  3a). There was no main effect of group, 
F(1, 75) = 2.20, p = .142, hp² = 0.03. However, there was 
a significant interaction between group and contrast 

level, F(6, 450) = 2.29, p = .034, hp² = 0.03. Post-hoc t-tests 
revealed that this interaction stemmed from greater sen-
sitivity in the non-autistic group compared to the autistic 
group at two contrast levels: 0.016 (t(198) = 2.92, p = .004) 
and 0.033 (t(162) = 3.34, p = .001). The effects of base rate 
blocks and the interaction between base rate and con-
trast levels are detailed in the Supplementary Results. 
The t-test Bayes factor estimating the likelihood of the 
alternative hypothesis assuming a difference in sensitivity 
between groups (H1) over the null hypothesis assuming 
no difference between groups (H0) provided weak evi-
dence for the alternative hypothesis (BF10 = 1.59 ± 0.01%). 
Whereas some have proposed that greater sensory preci-
sion in autism reduces the use of prior information, here 
we found, if anything, reduced perceptual sensitivity for 
the autistic group.

Decision boundaries
Decision boundaries determine whether a stimulus ori-
entation will be categorized as coming from category A 
or B. To quantify how the decision boundary shifts with 
prior information about category base rate, we computed 
the decision criterion for each base rate block and con-
trast level (Fig.  3b-c) and calculated the criterion shift 
(Dcriterion) as the shift between the two biased base-rate 
conditions (25% and 75%). An ANOVA showed a signifi-
cant effect of contrast level on Dcriterion, F(6, 450) = 60.49, 
p < .001, hp² =0.45, indicating that the criterion shift 
increased as contrast decreased (Fig. 3d), consistent with 
the Bayesian prediction of greater reliance on the prior 
when sensory information is more uncertain. There was 
no effect of group, F(1, 75) = 0.99, p = .321, hp² < 0.01. 
The interaction between group and contrast level was 
significant, F(6, 450) = 2.12, p = .05, hp² = 0.03, and post-
hoc t-tests revealed that at contrast 0.033, autistic par-
ticipants showed a significantly greater criterion shift 

Fig. 2 Task understanding and category report data for Experiment 1, prior manipulation. (a) Points gambled on category B as a function of base rate 
block. (b, c) Proportion of “Category B” responses as a function of orientation (x-axis) and Category B base rate block (line color) for the autistic and non-
autistic groups. Data points show means across participants and error bars represent ± SE, per group of 30 autistic and 46 non-autistic participants in (a) 
and 31 autistic and 46 non-autistic participants in (b, c). ns indicates no significant difference between groups evaluated using an unpaired t-test
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Fig. 3 Sensitivity, decision boundary, and optimal observer analyses for Experiment 1, prior manipulation. (a) Sensitivity (d’) for each group as a func-
tion of contrast and across base rates. Note that in all experiments, the relatively low sensitivity in both groups, even when contrast is high, is due to the 
limit of a maximum of 80% correct in these tasks. (b, c) Decision criterion (c) as a function of contrast for the three base rate blocks for the autistic and 
non-autistic groups. The base rate legend gives the probability for category B to appear. (d) Difference between criterion shifts in biased (25% and 75%) 
base rate blocks (Dcriterion) for each group as a function of contrast on a log scale. (e) Deviation of criterion shift from optimality (cerror) as a function of 
contrast. Participants showed an increase in deviation from an optimal criteria adjustment as contrast decreased, with no difference between autistic and 
non-autistic groups in the degree to which the criterion was suboptimal. Data points show means across participants and error bars represent ± SE. The 
asterisks represent the group difference evaluated using unpaired t-tests, *p ≤ .05, **p ≤ .01. The sample size constituted 31 autistic and 46 non-autistic 
participants in (a), (b), (c) and (d), and 30 autistic and 45 non-autistic participants in (e)
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than non-autistics, t(46.8) = 2.37, p = .022. The Bayes fac-
tor (BF10 = 0.38 ± 0.05%) supported the evidence for the 
null hypothesis assuming no difference in criteria shift 
between groups. Overall, autistic and non-autistic par-
ticipants adjusted their decision criterion in response to 
the prior manipulation.

Suboptimality
To assess criterion shift while controlling for variations 
in sensitivity, we compared the observed c shift to the 
shifts expected for an optimal observer. For each indi-
vidual, at each contrast level and biased base rate condi-
tion, we calculated the deviation from optimality (cerror) 
values by subtracting the observed criterion from the 
optimal criterion (see Methods, Data analyses). The fur-
ther from zero, the more participants’ criterion devi-
ated from an optimal observer. An ANOVA on the cerror 
showed a significant main effect of contrast level on cerror, 
F(6, 438) = 29.61, p < .001, hp² = 0.29 (Fig. 3e). Participants 
demonstrated larger cerror as contrasts decreased, indi-
cating a more suboptimal shift when sensory evidence 
was weaker. Critically, there was no effect of group, F(1, 
73) = 0.04, p = .851, hp² < 0.01, and no interaction between 
group and contrast level, F(6, 438) = 0.41, p = .873, hp² < 
0.01. The results of the ANOVA were supported by the 
Bayes factor (BF10 = 0.07, ± 0.27%), providing strong evi-
dence for H0 (i.e., no difference in suboptimality between 
groups).

The linear-mixed effect models performed on the sen-
sitivity, the decision boundaries, and the deviation from 
optimality were consistent with the AVNOA findings. 
The results are detailed in Supplementary Results, Sup-
plementary Tables 1, and Supplementary Table 2.

These results indicate that, when perceptual sensitiv-
ity is taken into account, autistic individuals adjust their 
criteria in the same suboptimal manner as non-autistic 
individuals: both groups deviate more from an optimal 
observer as sensory evidence decreases. This finding con-
tradicts the altered integration hypothesis in autism.

Experiment 2: the effect of sensory uncertainty on decision 
boundaries
The results of Experiment 1 demonstrate that autistic 
participants adjusted their decision criterion in response 
to changes in prior information in a typical though sub-
optimal manner. Suboptimality in this task could arise 
from inadequate use of priors, or inadequate assess-
ments of the observer’s own sensory uncertainty, and 
the contributions of these two factors could differ across 
autistic and non-autistic participants. To distinguish 
between these possibilities, in Experiment 2 we asked 
whether autistic individuals could adjust their decision 
boundary to take into account variations in their own 
sensory uncertainty, separate from prior manipulation. 

This experiment thus isolates the likelihood function, to 
determine whether and how autistic participants account 
for changes in their own sensory uncertainty during per-
ceptual decision-making.

Because in Experiment 1 (Task 1), participants had no 
incentive to adjust their categorical decision boundar-
ies in response to changes in sensory uncertainty alone 
[30], in Experiment 2, to specifically tap the contribu-
tion of sensory uncertainty to decision-making, we used 
a task in which changes in sensory uncertainty alone 
required an adjustment in decision rules to maximize 
task performance. Participants performed an embed-
ded category task [24–26] (see Fig. 1c, Task 2) in which 
they were asked to distinguish between a broad category 
of orientation and a narrow one. Sensory uncertainty 
was manipulated by varying the stimulus contrast trial 
by trial. Integration of sensory uncertainty information 
in the decision-making process would be evident if deci-
sion boundaries shifted outward as sensory uncertainty 
increased (Fig. 1d, Task 2).

Method
Participants
Participants’ recruitment process was the same as in 
Experiment 1. Thirty-four adults diagnosed with autism 
(27 males and 7 females) and 44 non-autistic individuals 
(11 males and 33 females) participated in this experiment. 
Among these participants, 19 autistic and 16 non-autistic 
participants previously participated in Experiment 1.

Apparatus, stimulus, procedure and design
Apparatus, Stimulus, Procedure and Design were the 
same as in Experiment 1, except for the following 
changes. Instead of Task 1, an embedded categoriza-
tion task (Task 2) was used in Experiment 2. In this task, 
stimulus orientations were drawn from Gaussian distri-
butions with identical means, mA = mB = 0 ̊ (horizontal), 
but differing standard deviations, sA = 3 ̊ and sB = 12 ̊ (see 
Fig.  1c, Task 2, and Supplementary Fig.  1d, for a depic-
tion of the frequency of each orientation per category).

In Experiment 2, there was no explicit manipulation 
between blocks and, therefore, no need to verify under-
standing of the experimental manipulation, yet, to main-
tain consistency and motivation we used the “check 
question” from Experiment 1.

Preliminary data indicated that Task 2 was more sus-
ceptible to noise. Therefore, participants performed two 
separate sessions of 960 trials each, with a minimum 
24-hour gap between them.

Data analysis
To investigate how the manipulation influence partici-
pants’ behavior, we conducted a mixed-design ANOVA 
with 3 factors: (1) group (non-autistic, autistic), (2) 
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contrast (0.004, 0.016, 0.033, 0.093, 0.18, 0.36, 0.72), and 
(3) orientation (-14, -12, -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, 
12, 14), on the probability to report category B.

We used a modified SDT model to estimate sensitivity 
and decision boundaries for the embedded category task. 
In this task, the two category distributions have the same 
mean orientation of 0°, but different standard deviations, 
sA = 3° and sB = 12°. The observer’s estimated orientation 
is subject to additional internal noise, which depends on 
their perceptual sensitivity, σ, at each contrast. The stan-
dard deviation for the internal measurement distribution 
of each category across trials, combining external and 
internal noise, is then as displayed in Eq. (3).

 σcat =
√

scat2 + σsens2 (3)

In the embedded category task, the observer sets deci-
sion boundaries k to distinguish between the narrow 
category A and the broad category B. For the purpose of 
model fitting, we assume these boundaries to be symmet-
rical around zero degrees and stable across trials (Fig. 1d, 
Task 2). Then the probability of reporting category A 
for a given stimulus category Ccat with orientation noise 
σcat is given by the area of the internal measurement 
distribution across trials that falls between the decision 
boundaries.

The probability of reporting Category B for a given 
stimulus category is 1 minus that number.

We estimated σsens and k from the data at each contrast 
level using the proportions of the participant’s category 
reports across trials, according to Eq. (4).

 
p (rA|Ccat, σ cat) =

∫ k

−k

N (0, σ cat) (4)

To do so, we took advantage of the fact that participants 
have the same internal noise and set of decision boundar-
ies across both categories, and the means and standard 
deviations of the stimulus distributions are known. We 
first used an optimization procedure (fmincon in MAT-
LAB), with a lower boundary of 0 and no upper bound-
ary, to estimate what value of σsens was most consistent 
with a single k across both categories, given the reports. 
We then calculated k using the fitted value of σsens. We 
confirmed that this procedure correctly recovered σsens 
and k values from simulated data.

We conducted mixed-design ANOVAs on σsens and 
k with the following factors: (1) contrast (0.004, 0.016, 
0.033, 0.093, 0.18, 0.36, 0.72) and (2) group (non-autistic, 
autistic).

To control for any variation in perceptual sensitivity 
across participants, we calculated the optimal decision 
boundary kopt using the participant’s estimated σsens com-
bined with the stimulus standard deviations to give σA 
and σB (Eq. 5),

 
kopt = ± σ2

Aσ2
B

σ2
B − σ2

A

√
2log

σB

σA
 (5)

The optimal boundary kopt lies at the crossing points of 
the internal measurement distributions for the two cate-
gories and maximizes performance across trials. We used 
the positive k values for all analyses.

We then estimated each participant’s degree of subop-
timality (kerror) by comparing k to the corresponding kopt 
for each contrast level. We performed a mixed-design 
ANOVA with two factors: (1) contrast (0.004, 0.016, 
0.033, 0.093, 0.18, 0.36, 0.72) and (2) group (non-autistic, 
autistic) on the kerror.

Significant effects from the ANOVAs, Bayes factor, 
effect sizes, correlations between the AQ and the devia-
tion from an optimal observer, linear-mixed effect mod-
els, and RT analyses were conducted the same way as for 
Experiments 1. (see Supplementary Methods, Results, 
Fig. 2b, and Fig. 3c for the linear-mixed effect model, cor-
relation and RT results).

Outlier removal
Participants with an accuracy below 0.6 at the three 
highest contrast levels and across blocks were excluded 
from all analyses. Additionally, participants showing 
extreme criterion shift (k > 100) or a estimated uncer-
tainty (s > 100) were removed from all analyses. Partici-
pants demonstrating extreme deviation from an optimal 
observer (kerror > 35) were excluded from the optimality 
statistical analyses. The outlier detection for the RT was 
the same as in Experiment 1. The sample size of each 
analysis is displayed in Table 2.

Results
Category reports
Figure  4a-b illustrates, for each group, the probabil-
ity of reporting Category B as a function of orientation. 

Table 2 Description of the sample sizes in experiment 2, for the overall sample, and in every statistical analysis, depending on the 
exclusion criteria based on participants’ performances: sensitivity, criteria, deviation from an optimal observer, reaction time, and 
correlation between the AQ and the criterion shift

Overall n Sensitivity Criteria Optimality rt Correlation
Likelihood experiment nautistic = 34 nautistic = 27 nautistic = 27 nautistic = 27 nautistic = 24 nautistic = 23

nnon−autistic = 44 nnon−autistic = 40 nnon−autistic = 40 nnon−autistic = 38 nnon−autistic = 39 nnon−autistic = 37
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Using the embedded category task (Experiment 2), the 
probability of reporting Category B (with the wider dis-
tribution) increased as the stimulus was oriented away 
(clockwise or counterclockwise) from horizontal (0°; 
see Fig.  1d, Task 2). For both groups, category reports 
became more sensitive to stimulus orientation as contrast 
increased. These observations were supported by the 
ANOVA showing a main effect of contrast on the prob-
ability to report Category B, F(3, 189.11) = 31.47, p < .001, 
hp² = 0.33. The main effect of group (F(1, 63) = 0.07, 
p = .793, hp² < 0.01) and the interaction between group 
and contrast (F(3, 189,11) = 2.26, p = .083, hp² = 0.04) were 
not significant.

Perceptual sensitivity
Increasing contrast led to lower sensory uncertainty, as 
estimated by an SDT-style model adapted to the embed-
ded category task (see Methods), consistent with the 
expected effect of contrast in improving orientation 
information. The ANOVA conducted on the parameter 
σ of the model, which provided an estimate of sensory 
uncertainty, revealed a significant main effect of contrast 
level F(6, 390) = 46.03, p < .001, hp² = 0.42), confirming 
that the manipulation of contrast-induced a change in 
sensory uncertainty (Fig.  5a). There was no significant 
difference between group F(1, 65) = 0.07, p = .794, hp² < 
0.01), nor an interaction between group and contrast F(6, 
390) = 0.39, p = .887, hp² < 0.01. These results were sup-
ported by the Bayes factor (BF10 = 0.11 ± 0.15%) provid-
ing evidence for the null hypothesis (i.e., no difference in 
sensitivity between groups). These findings suggest that 
both groups exhibited similar changes in sensitivity in 
response to the contrast manipulation in the embedded 
category task.

Decision boundaries
Participants’ categorical decision boundaries depended 
on contrast (Fig. 4a-b). Both groups shifted their categor-
ical decision boundaries outward as sensory uncertainty 

increased, the qualitative pattern expected from a Bayes-
ian observer (Fig. 5b-d). The ANOVA conducted on the 
k parameter of the model, which provides an estimate 
of the category boundaries, revealed a significant main 
effect of contrast F(6, 390) = 38.56, p < .001, hp² = 0.37, 
indicating that the participant’s decision boundaries 
were sensitive to the sensory uncertainty manipulation. 
Notably, there was no significant effect of group (F(1, 
65) = 0.03, p = .858, hp² < 0.01), nor an interaction between 
group and contrast, F(6, 390) = 0.59, p = .741, hp² < 0.01). 
The Bayes factor BF10 = 0.11 ± 0.16%) provided strong evi-
dence for the null hypothesis (i.e., no difference in criteria 
shift between groups), supporting the ANOVA’s results. 
These results indicate that both groups adjusted their 
decision boundaries similarly in response to changes in 
sensory uncertainty.

Suboptimality
Next, we asked how much the decision boundary shifts in 
autistic and non-autistic participants deviated from those 
of an optimal Bayesian observer (Fig.  5c). The ANOVA 
conducted on kerror revealed a significant main effect 
of contrast F(6, 378) = 11.06, p < .001, hp² = 0.15, with a 
greater deviation from the optimal decision boundaries 
when contrast was lower. There was no significant differ-
ence between groups, F(1, 63) = 0.16, p = .688, hp² < 0.01) 
and no significant interaction between group and con-
trast, F(6, 378) = 2.10, p = .053, hp² = 0.03. These results 
were supported by the Bayes factor (BF10 = 0.13 ± 0.13%) 
providing strong evidence for the null hypothesis (i.e., 
no difference in suboptimality between groups). These 
results show that during perceptual decision-making, 
autistic individuals take sensory uncertainty into account 
similarly to the non-autistic group.

The linear-mixed effect model results on the sensitivity, 
decision boundaries, and deviation from optimality sup-
ported all these findings (see Supplementary Results).

Fig. 4 Category report data for Experiment 2, sensory uncertainty manipulation. (A, B) Illustration of the proportion of reporting Category B as a function 
of orientation (x-axis) and contrast levels (line color) for the autistic (n = 27) and non-autistic (n = 40) groups. Data points show means across participants 
and error bars represent ± SE
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Discussion
We conducted a series of experiments to investigate 
Bayesian inferences in visual perceptual decision-making 
in autistic individuals and non-autistic controls. In these 
experiments, participants performed an orientation cat-
egorization task, while we separately manipulated cat-
egory base rate and sensory uncertainty. In a Bayesian 
framework, these manipulations would induce changes 

in each Bayesian decision component: prior knowledge, 
and sensory uncertainty respectively. This study reveals 
that, despite some differences in sensitivity to orienta-
tion information, the autistic group adjusted their deci-
sion criterion to accommodate variations in priors and 
sensory uncertainty, in a manner comparable to the sub-
optimal adjustments of the non-autistic group. Autistic 
participants are intact in incorporating each Bayesian 

Fig. 5 Sensitivity, decision boundary, and optimal observer analyses for Experiment 2, sensory uncertainty manipulation. (a) Sensory uncertainty was 
evaluated by fitting the data with an SDT-style model adapted to the embedded category task. The fitted standard deviation, s, provided an estimate of 
sensory uncertainty. A higher value indicates more sensory uncertainty compared to a lower value. (b) Category boundaries k were estimated from the 
same model and assumed to be symmetrical about zero degrees; the positive value is shown. (c, d) Probability of the category distributions for each level 
of contrast. The solid lines represent the precision of the distribution, with the sensory uncertainty (s) as standard deviation of the category representa-
tions. The dashed lines represent the averaged decision boundaries (k) for each level of contrast (e) Deviation from optimality cerror as a function of con-
trast. Participants showed a larger deviation from the optimal decision boundaries as contrast decreased. Data points show means across participants and 
error bars represent ± SE. The sample size was 27 autistic and 40 non-autistic participants in (a-d), and 27 autistic and 38 non-autistic participants in (e)
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component into their perceptual decisions. These results 
prompt a reevaluation of the altered integration 
hypothesis.

Perceptual priors
The altered integration hypothesis, despite a lack of 
direct evidence, remains prevalent in autism research 
[12, 20, 21, 30, 31]. The most straightforward method 
to quantitatively assess prior integration is to test the 
effect of base rate probability on decision criterion. To 
date, only one study, Skewes and Gebauer (2016), using 
a categorical localization task of auditory stimuli, has 
directly addressed this in autism. They showed that autis-
tic individuals adjusted their criterion to a lesser extent 
compared to non-autistics to favor the location category 
with the higher base rate probability. Notably, their study 
lacked explicit instruction regarding base rate manipu-
lation or an independent test of it, leaving it unclear 
whether group differences were due to altered integra-
tion or simply reduced prior learning. In our study, by 
using explicit base rate instruction and an independent 
measure of prior knowledge—the gambling questions—
we ensured that prior knowledge was consistent across 
groups. Additionally, by varying stimulus contrast lev-
els, we tested for prior integration across various levels 
of sensory uncertainty within the same individual. Our 
results reveal that, after controlling for possible group 
differences in perceptual sensitivity and task knowledge, 
autistic individuals integrate priors to the same extent as 
non-autistic individuals.

In the prior experiment, we observed reduced sen-
sitivity in the autistic group at certain contrast levels. 
Although enhanced sensory processing, particularly 
enhanced estimation of sensory reliability, has been pro-
posed as an explanation for atypical perception in autism, 
evidence for enhanced contrast sensitivity remains lim-
ited. While some studies report no differences in contrast 
sensitivity in autism [2, 32, 33], others report reduced 
sensitivity [34, 35]. Our study aligns with those findings 
by showing some reduction in contrast sensitivity in 
Experiment 1, but similar sensitivity in Experiment 2.

Sensory uncertainty
The altered integration view suggests that enhanced sen-
sory evidence, or lower sensory uncertainty, could be an 
alternative to the reduced priors account. For a Bayesian 
observer, reduced priors and lower sensory uncertainty 
are mathematically indistinguishable from decision out-
comes alone [13]. Lower sensory uncertainty does not 
necessarily entail higher performance but rather a sub-
jective representation of reduced sensory uncertainty. 
To address the hypothesis that autistic individuals use 
information about their own sensory uncertainty in an 
atypical fashion, we employed an embedded category 

task to assess whether participants adjust their decision 
criterion based on sensory uncertainty per se. If autistic 
individuals have an atypical representation of sensory 
uncertainty, this would be reflected in their decision cri-
terion. However, our results show a similar pattern of cri-
terion adjustment in both groups, revealing that autistic 
individuals have a sensory uncertainty representation 
similar to non-autistic individuals.

Limitations
Here we used perceptual categorization of orientations, 
which enabled us to directly quantify and compare the 
prediction of the altered Bayesian integration hypoth-
esis. However, altered Bayesian inference in autism may 
occur at different levels of processing, including very 
early sensory processing, such as basic detection, as well 
as higher-level decision-making and social behavior (e.g., 
faces).

We used explicit manipulation of prior knowledge, 
which enabled us to focus on the integration process per 
se, however, the difference in the use of prior might be 
specific to learned priors and related to the rate and flex-
ibility of learning and updating [23, 36]. Therefore, future 
research could focus on differences in perceptual prior 
learning and updating, or on implicit perceptual infer-
ences that do not involve an explicit perceptual decision. 
Additionally, examining the role of attentional and work-
ing memory capacities may provide insights into how 
autistic individuals process sensory information.

Our clinical population was high-functioning adults, 
thus, it is possible that behavioral strategies and other 
processes during development may help to compensate 
for differences that may emerge in Bayesian perception 
during early childhood. Future studies should address 
these issues by testing Bayesian inference using vari-
ous stimulus type (e.g., social stimuli), prior acquisition 
methods (e.g., implicit vs. explicit), and populations. 
Finally, a potential limitation of our study is the differ-
ence in sex ratio between the autistic and the non-autistic 
groups. However, as there are no reports of sex differ-
ences in orientation discrimination tasks, the difference 
in sex ratio cannot account for our findings.

Conclusions
Through two experiments, this study provides a system-
atic investigation of all Bayesian components of percep-
tual decision inference. The findings reveal that autistic 
individuals take into account prior knowledge and sen-
sory uncertainty in a manner similar to non-autistic indi-
viduals, though both groups exhibit suboptimal behavior. 
These results challenge the current views of altered inte-
gration in perception and sensory processing in autism.

The demonstration that autistic individuals are capa-
ble of typical integration of Bayesian components has 
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important implications for developing more targeted 
interventions and support strategies aimed at enhancing 
perceptual and cognitive functioning in autistic individu-
als. Specifically, the findings show that given accurate and 
explicit knowledge, high-functioning autistic individu-
als can use contextual information in a typical manner. 
These findings have direct occupational implications.
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