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Abstract 

All theories of perceptual decision-making postulate that external sensory information is 

transformed into the internal evidence that is used to guide behavior. However, the nature of 

this external-to-internal transformation is generally unknown. In two experiments, we examined 

how a particular stimulus feature – orientation – is transformed into internal evidence. Subjects 

judged whether Gabor patches were tilted clockwise or counterclockwise. The results of 

Experiment 1 demonstrated that increasing orientation offset in fine-scale increments resulted 

in a linear increase in sensitivity (d´), suggesting a linear external-to-internal transformation. 

However, the results of Experiment 2 demonstrated that increasing orientation offset in coarse-

scale increments had little effect on sensitivity, suggesting a highly non-linear transformation. 

These behavioral results imply that a given sensory feature may not have a one-to-one mapping 

with the internal representation of evidence across different tasks. Further, we evaluated 

whether an artificial neural network (ANN) trained on orientation categorization can reproduce 

the observed external-to-internal transformations. The ANN mirrored the empirical results – 

fine-scale increments in orientation offset were linearly transformed into internal evidence, but 

coarse-scale increments in orientation offset had little influence on internal evidence. These 

results begin to reveal how external sensory information is transformed into internal decisional 

evidence and suggest that ANNs could serve as a hypothesis-generation platform for this critical 

transformation. 

 

Word count: 209  
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Introduction 

We often use visual information to guide our behavioral decisions. The color ‘red’, for example, 

is used to decide whether to stop or go when driving an automobile, or similarly to select a ripe 

versus unripe tomato. These kinds of perceptual decisions require that we make a judgment 

about the identity of a stimulus based on the external sensory information that is available to 

us. All theories of perceptual decision-making postulate that this external sensory information is 

transformed into the internal evidence that is used to guide behavior. The hallmark of many 

theories – including signal detection theory (D. M. Green & Swets, 1966), the drift-diffusion 

model (Ratcliff, 1978), and ideal-observer models (e.g., Ma et al., 2006) – is the general notion 

that increasing the magnitude of the external feature leads to an increase in the strength of the 

internal evidence signal. However, the exact nature of this external-to-internal transformation 

remains unclear (Figure 1). 

  

Figure 1. Hypothetical external-to-internal transformations. Theories of perceptual decision-
making postulate that external sensory information is transformed into the internal evidence 
that is used to guide behavior, yet the nature of this external-to-internal transformation remains 
unknown. The linear model (red line) predicts a one-to-one relationship between the internal 
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evidence signal and the external feature. The exponential model (green line) predicts that the 
strength of the internal evidence signal changes at an increasing rate as the external feature is 
changed. The quadratic (orange line) model predicts that the internal signal strength increases 
before peaking and then decreasing (or increasing). The logarithmic (purple line) model predicts 
that the internal signal strength increases by incrementally smaller amounts (and potentially 
decreases) as the external signal is increased. 
 

Most psychophysics studies do not assume a priori the function that describes how external 

sensory features are transformed into internal evidence. Instead, the relationship between the 

manipulation of any given sensory feature and performance is characterized post hoc. Although 

no single function is likely to universally describe the external-to-internal transformation for all 

perceptual domains, there have been many attempts to identify one. For example, Fechner 

(1860) proposed that subjective perceptual experiences were logarithmic functions of the 

external stimulation (Figure 1, purple line). Almost exactly one century later Stevens (1961) 

proposed that power functions (Figure 1, green and orange lines), rather than a logarithmic 

function, better describe the external-to-internal transformations of sensory systems (see also 

Naka & Rushton, 1966). Power functions can capture both linear relationships as well as 

saturation effects allowing this class of functions to flexibly fit a range of relationships between 

manipulations of sensory features and performance (Adler & Ma, 2018). Similarly, negative 

power functions do well at capturing how psychological similarity decreases exponentially as 

the external feature distance is increased (Shepard, 1987; Sims, 2018). Measuring the similarity 

function for a given feature has been useful for improving models of many cognitive processes 

(Nosofsky, 1992), including recent advances in visual working memory performance (Schurgin et 

al., 2020). However, although it seems reasonable that any given function for one feature will 

not describe the external-to-internal transformation for another (Augustin, 2008), it seems 
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equally reasonable to assume that a given transformation function would hold within that 

feature class. Still some effects, like the oblique effect in orientation (Appelle, 1972) and motion 

perception (Gros et al., 1998), are examples in which the effect of some sensory features vary 

nonlinearly and nonmonotonically across the sensory space (Li et al., 2003). This kind of 

variability in how a given sensory feature affects performance leaves it unclear whether a 

particular external-to-internal mapping will be universal across different task contexts even for 

highly similar decisions within the same feature class.  

 

Models of perceptual decision making assume different external-to-internal transformations. A 

straightforward model assumption is that the decision variable is a function of measurement 

alone, for example the strongest sensory neuron response (i.e., winner-take-all, Lee et al., 

1999). This class of models assumes that sensory features have a fixed mapping with the 

internal decision variable, but they are agnostic to sensory uncertainty (Adler & Ma, 2018). 

Population coding models capture this sensory uncertainty by considering noise in sensory 

measurements across a population of neurons, yet the nature of the external-to-internal 

transformation depends on how the decision variable is computed from the sensory 

measurements. For example, a conventional population coding approach is to sum the 

logarithms of these sensory measurements to generate the log-likelihood function and then 

apply some algorithm to compute the decision variable. Taking the argmax of the likelihood 

function, a common approach which is akin to winner-take-all but in the likelihood space (Webb 

et al., 2007, 2010), has been demonstrated to be equivalent to a linear transformation of 

sensory evidence into the decision variable (Jazayeri & Movshon, 2006). Other algorithms can 
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be applied to the likelihood function to compute the decision variable, and any linear function 

applied to the decision variable would simply scale or shift it in the decision space, but any 

nonlinear function could also be applied, for example a quadratic function. Both the linear and 

quadratic external-to-internal transformations can approximate a Bayesian transformation 

despite not being based on the Bayesian decision variable (Adler & Ma, 2018). This overall class 

of models has dominated recent theory development for characterizing how particular sensory 

features are transformed into decisions (Wohrer et al., 2013). Despite the success of many of 

these modeling approaches, the external-to-internal transformation is rarely established 

empirically beyond the scope of the model development. A general method for discovering such 

transformations is therefore needed.  

 

Artificial neural networks (ANNs) are a powerful way to model human behavior (Doerig et al., 

2023; Kriegeskorte, 2015; Ma & Peters, 2020). Modern deep-learning models share similarities 

with the connectionist networks of the 1980’s and 1990’s (Feldman & Ballard, 1982). However, 

deep-learning models differ in that they often have many layers in between the input and 

output layers, each of which applies a sequence of linear or nonlinear operations on the output 

from prior layers. An example of deep-learning ANN that is commonly used to analyze visual 

stimuli is convolutional neural networks which utilize convolutional layers as feature detectors 

to integrate information across spatially localized regions of an image (Kheradpisheh et al., 

2016). Although the ANN architectures vary (e.g., VGG, ResNet, CORnet), they are the leading 

class of models of the mechanisms underlying primate vision (Kubilius et al., 2019). In practice, 

ANNs are trained to classify large sets of visual stimuli until they can accurately predict a novel 
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visual stimulus. This learning process makes them particularly useful for discovering how 

sensory features map onto internal evidence because the external-to-internal mapping is 

emergent. 

 

Here we empirically test how a particular stimulus feature – orientation – is transformed into 

internal decision evidence, and further test whether this transformation holds for similar 

decisions with highly different task demands. Experiment 1 demonstrated that in a high-

contrast fine-discrimination task (Figure 2A), orientation is linearly transformed into internal 

evidence such that stimulus sensitivity is proportionate to the orientation offset of the stimuli. 

However, Experiment 2 showed that a low-contrast coarse-discrimination task (Figure 2B) 

produces a very different relationship with orientation having little influence on the internal 

evidence. Critically, we investigated whether an ANN could reproduce our external-to-internal 

mapping results. We found that an ANN trained on orientation discrimination mirrored the 

observed pattern of results – fine-scale increments in orientation offset were linearly 

transformed into internal evidence, but coarse-scale increments in orientation offset had little 

influence on internal evidence. These results show that a given sensory feature may not have a 

one-to-one mapping with the internal representation of evidence across different tasks. 

Critically, our findings suggest that ANNs could serve as a hypothesis-generation platform for 

this critical external-to-internal transformation, such that one can examine their behavior in 

detail, generate novel hypotheses, and then test them in human subjects.  
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Figure 2. Tasks for Experiments 1 and 2. (A) Experiment 1. Subjects judged whether high-
contrast Gabor patches were tilted clockwise or counterclockwise from a 45-degree cue. The 
Gabor patches varied in fine-scale increments from .4 to 2.4 degrees. (B) Experiment 2. Subjects 
judged whether noisy, low-contrast Gabor patches were tilted clockwise or counterclockwise 
from vertical. The Gabor patches varied in coarse-scale increments from 7 to 42 degrees. 
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Methods 

Participants 

A set of 13 subjects were recruited for Experiment 1 and a separate set of 13 subjects were 

recruited for Experiment 2 (26 subjects total). All subjects had normal or corrected to normal 

vision. One subject in Experiment 1 and one subject in Experiment 2 were excluded from 

analyses due to chance performance (50% accuracy across all conditions). All subjects provided 

informed consent and were compensated for their participation. All experimental methods and 

protocols were approved by the Georgia Institute of Technology Institutional Review Board. 

 

Task and stimuli 

In Experiment 1, subjects performed a fine-scale orientation categorization task in which a 

Gabor stimulus was tilted counterclockwise or clockwise of 45⁰ (Figure 2A). On each trial, 

subjects fixated on a small white dot presented at the display center. A visual cue consisting 

of a circle (radius = 4.5⁰) and a line (length = 4.5⁰) oriented at 45⁰ was presented for 1000 

ms. Following fixation and cueing, a Gabor patch (radius=4⁰) was presented for 100 ms at 

full contrast. Immediately after the stimulus presentation subjects provided their response 

by pressing “1” to respond “counterclockwise” or “2” to respond “clockwise”. After a 

response was made the subject was given accuracy feedback for 500 ms. 

 

In Experiment 2, subjects performed a coarse-scale orientation categorization task in which a 

Gabor stimulus was tilted left (counterclockwise) or right (clockwise) of vertical (Figure 2B). On 

each trial, subjects fixated on a small white dot presented at the display center for 500 ms. 
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Following fixation, a Gabor patch (radius=4⁰) was presented for 100 ms at 9% contrast 

embedded in random pixel noise at 90% contrast. Noise was included to prevent ceiling 

performance and the level of noise was selected to keep performance in a range that is 

between chance level (50%) and perfect performance (100%). Immediately after the stimulus 

presentation, subjects provided their response by pressing “1” to respond “left” or “2” to 

respond “right”. After a response was made the subject was given accuracy feedback for 500 

ms.  

 

Procedure 

In Experiment 1, Gabor stimuli were tilted away from 45⁰ and tilts were manipulated across five 

levels (.4⁰, .8⁰, 1.2⁰, 1.6⁰, 2⁰, and 2.4⁰) that were randomly chosen on each trial and 

counterbalanced across counterclockwise and clockwise directions. Prior to beginning the 

experimental runs, subjects received task instructions and then completed practice trials 

consisting of 20 easy trials with a 10⁰ tilt, 40 moderately difficult trials (10 each at 5⁰, 3⁰, 2⁰, 

and .5⁰), and finally 20 trials with a 1.4⁰ tilt. Subjects completed four experimental runs each 

consisting of six 45-trial blocks for a total of 1,080 trials. 

 

In Experiment 2, Gabor stimuli were tilted away from vertical, and tilts were manipulated across 

five levels (7⁰, 14⁰, 21⁰, 28⁰, 35⁰, and 42⁰) which were randomly chosen on each trial and 

counterbalanced across left and right directions. Prior to beginning experimental runs, subjects 

received task instructions and then performed practice trials consisting of 20 easy trials with a 

42⁰ tilt at 30% contrast, 40 moderately difficult trials at decreasing tilts 35⁰, 28⁰, 14⁰, and 7⁰ (10 
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trials each) and at 35%, 28%, 10% and .9% contrast respectively, and finally 30 trials with a 21⁰ 

tilt at decreasing contrasts (12%, 10%, and 9%, 10 trials each). Subjects completed four 

experimental runs each consisting of six 45-trial blocks for a total of 1,080 trials.  

 

Apparatus 

Both Experiments 1 and 2 were designed in the MATLAB environment using Psychtoolbox 3 

(Brainard, 1997). Stimuli were presented on a 21.5-inch iMac monitor (1920 × 1080 pixel 

resolution, 60 Hz refresh rate) in a dark room. Subjects were seated 60 cm away from the 

display and provided their responses using a standard computer keyboard. 

 

Analysis 

To compare subjects’ sensitivity to orientation across conditions, we computed d’ using the 

standard formula (D. M. Green & Swets, 1966) by treating clockwise tilt trials as the target and 

calculating the hit rate (HR) and false alarm rate (FAR): 

 

𝑑′ = Φ−1(𝐻𝑅) − Φ−1(𝐹𝐴𝑅) 

 

where Φ−1 is the inverse of the cumulative standard normal distribution that transforms the HR 

and FAR into z-scores. Sensitivity (d’) was computed separately for each individual and each 

condition. This same approach was used to compute sensitivity (d´) from the HR and FAR 

produced by the ANN model.  
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We used mixed effects regression models to estimate how external sensory signal strength – the 

degree of orientation offset – is transformed into internal evidence as measured with sensitivity 

(d’) while accounting for random effects arising from individual subjects. A model which 

describes a linear relationship between orientation offset and sensitivity is given as: 

 

𝑑′ = 𝛼 + 𝛽𝑋 + 𝜀 

 

where 𝛼 is the intercept, 𝛽 is the slope, and 𝜀 is random error.  

 

Neither Experiment 1 nor 2 included a condition in which orientation offset was zero since such 

a condition would not have a correct decision. However, we assumed a hypothetical sensitivity 

(d’) of zero by constraining the intercept to the origin. By fixing the intercept to be zero, the 

intercept term can be dropped, and the linear model can be reduced to: 

 

𝑑′ = 𝛽𝑋 + 𝜀 

 

To account for potential nonlinear external-to-internal mappings, we fit several additional 

models. First, we fit a quadratic regression model whereby the effect of manipulating 

orientation offset on sensitivity (d’) is given as: 

 

𝑑′ = 𝛽1𝑋 +  𝛽2𝑋2 + 𝜀 
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We then fit a polynomial regression model by including an additional exponent term of the third 

degree whereby the effect of manipulating orientation offset on sensitivity is given as: 

 

𝑑′ = 𝛽1𝑋 +  𝛽2𝑋2 +  𝛽3𝑋3 + 𝜀 

 

Finally, we fit a logarithmic model whereby the effect of manipulating orientation offset on 

sensitivity is given as: 

 

𝑑′ = 𝛽1𝑋 +  𝛽2𝑙𝑜𝑔𝑋 + 𝜀 

 

To assess which model best describes the transformation of external sensory signals into 

internal evidence, we used Bayesian Information Criterion (BIC; Schwarz, 1978) to compare the 

relative fits of these regression models to each other. BIC penalizes model complexity by taking 

the product of the number of parameters and the natural log of the number of data points. 

Similar results are found if models are compared using Akaike’s information criterion (AIC; 

Akaike, 1973) which is more lenient on model complexity than BIC because the penalty term is a 

constant factor of two.  

 

Artificial neural network (ANN) model 

We built a simple feedforward ANN model (Figure 3) using the TensorFlow toolbox (Abadi et al., 

2016). The model takes as input a 100×100 image and outputs one of two category labels 

corresponding to clockwise or counterclockwise orientation offset. The model consists of one 
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convolutional layer, one pooling layer, and a fully connected layer. The convolutional layer 

consists of a set of four linear filters with equally sized receptive fields (3×3 pixels) with equally 

spaced intervals followed by sigmoid activation. This processing operation results in a 98×98 

activation map encoding the response of a given filter at each spatially localized regions of an 

image. The activation maps of all four filters within the convolutional layer are stacked to 

produce a 98×98×4 output volume. The output of the convolutional layer is pooled to reduce 

the size of the input volume by taking the maximum activation value of 2×2 spatially localized 

units resulting in a 49×49×4 output volume. This pooled result was then flattened and fully 

connected to two decision units. This choice of hyperparameters and stimulus size resulted in 

19,250 trainable weights.  

 
 

Figure 3. Schematic of the ANN model. The model takes as input a 100×100 image and outputs 
one of two category labels corresponding to counterclockwise (left) or clockwise (right) 
orientation. The model consists of one convolutional layer, one pooling layer, and a fully 
connected layer. The convolutional layer consists of a set of four linear filters with equally sized 
receptive fields (e.g., 3×3 pixels) with equally spaced intervals followed by sigmoid activation. 
The output of the convolutional layer is pooled to reduce the size of the input volume by taking 
the maximum activation value of 2×2 spatially localized units. This pooled result was then 
flattened and fully connected to two decision units. 
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The model was trained to categorize Gabor stimuli as tilted leftward or rightward of vertical. 

The total training set consisted of 10,000 stimuli. During training, the orientation offset, 

contrast, noise, and phase of each Gabor stimulus was randomly drawn from uniform 

distributions. The sampling distribution for orientation offset ranged from 0 to 45 degrees, for 

contrast from 1% to 90% (i.e., amplitude from .01 to .9) and for noise from 1% to 100%. Visual 

noise was created by embedding random pixel noise into the Gabor stimulus. The midpoint gray 

of the stimulus was defined as 0 with black being -1 and white being 1. Pixel values less than -1 

were set equal to -1, and pixels greater than 1 were set equal to 1, ensuring that the total 

stimulus contrast was within the range of 0 to 100%. Learning was evaluated by testing the 

model on 1,000 novel Gabor stimuli generated from the same sampling distributions for 

orientation offset, contrast, noise, and phase. The model accurately categorized the orientation 

of 99 percent of the validation stimulus set following 10 training epochs, showing that the 

model successfully learned the orientation categorization task.  

 

The trained ANN was then tested on fine and coarse-scale orientation categorization tasks. For 

the fine-scale orientation categorization task, orientation offset was varied across 20 equally 

spaced levels ranging from 0 to 2.8 degrees. For the coarse-scale orientation categorization task, 

orientation offset was varied across 20 equally spaced levels ranging from 0 to 42 degrees. For 

both the fine- and coarse-scale tests of the ANN, the Gabor stimuli varied in contrast across five 

levels ranging from 3% to 9%. Each test stimulus was presented at 100% visual noise, and the 

phase of each Gabor wavelet was randomly sampled uniformly from 0 and 1. The model was 

tested on 1,000 stimuli at each combination of orientation offset and contrast, resulting in a 
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total of 100,000 simulated trials. To reduce the chance of idiosyncratic model behavior due to 

the random starting weights, we trained 30 model initializations of the model and averaged 

their results. 

 

Data and code 

The data and analyses code are available at https://osf.io/v6q3d/.  

https://osf.io/v6q3d/
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Results 

Our goal was to examine how external sensory information is transformed into internal 

decisional evidence and examine whether ANNs can serve as a hypothesis-generation platform 

for this critical transformation. In two behavioral experiments, we empirically tested how a 

particular stimulus feature – orientation – is transformed into internal evidence. Subjects judged 

whether a Gabor stimulus was tilted clockwise or counterclockwise from a criterion. Across the 

two experiments we tested how orientation is transformed into internal evidence for similar 

decisions with highly different task demands.  

 

Behavioral results 

In Experiment 1, subjects judged the orientation offset of a high-contrast Gabor that was tilted 

in fine-scale increments from .4 to 2.4 degrees away from a 45-degree cue (Figure 2A). We 

found that sensitivity (d’) appears to increase linearly as tilt was increased (Figure 4A). To 

examine the linearity of the function, we fit hierarchical regression models to characterize how 

sensitivity (d’) varied as a function of orientation offset with the subject factor as the random 

effect variable. We found that a slope-only linear model (where the intercept was constrained 

to zero) provided the best fit to the data (best fitting model: 𝑑’ = .72𝑥; Figure 4B). Indeed, the 

linear model outperformed the quadratic (∆𝐵𝐼𝐶 = 16.31, ∆𝐴𝐼𝐶 = 9.25), third-degree 

polynomial (∆𝐵𝐼𝐶 = 25.07, ∆𝐴𝐼𝐶 = 8.57), and logarithmic models (∆𝐵𝐼𝐶 = 15.98, ∆𝐴𝐼𝐶 =

8.91).  In addition, we fit a full linear model (∆𝐵𝐼𝐶 = 16.35, ∆𝐴𝐼𝐶 = 9.28; model: 𝑑’ = −.03 +

.74𝑥) that includes both a slope and an intercept and found that the intercept was not 

significantly different from zero (𝛼 = −0.03, 𝑆𝐸 = .07, 𝑡(64) = −0.47, 𝑝 = .64). Although each 
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of the models can reasonably capture the data, suggesting that these models are not well 

differentiated by the fine-scale task, the linear model with the intercept constrained to zero 

provides the most parsimonious fit to the data. Altogether, this pattern of results suggests that 

orientation is linearly transformed into internal decision evidence.  

 

Figure 4. Experiment 1 and 2 behavioral results. (A) The results of Experiment 1 show that 
increasing orientation offset in fine-scale increments results in a linear increase in sensitivity 
(d’). (B) A model comparison using BIC demonstrates that the linear model with the intercept 
constrained to the origin (red line) was the best performing model, suggesting a linear external-
to-internal transformation. (C) The results of Experiment 2 show that sufficiently large increases 
in orientation offset had little effect on sensitivity. (D) BIC suggested that the logarithmic model 

A B

C D

Experiment 1

Experiment 2
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(purple line) was the best performing model, suggesting a highly non-linear transformation. 
Error bars in panels A and C show SEM. 
 

Critically, we found a strikingly different pattern of results for Experiment 2 where subjects 

judged the orientation offset of a noisy, low-contrast Gabor in coarse-scale increments from 7 to 

42 degrees away from vertical (Figure 2B). Instead of sensitivity (d’) linearly increasing with the 

magnitude of orientation offset, we found that above 14 degrees tilt sensitivity no longer 

increased with orientation offset (Figure 4C). This effect was not due to either floor or ceiling 

effects as the accuracy in the different conditions was in a range (69 − 79%) that is far from 

both chance level (50%) or perfect performance (100%). After 14 degrees there was a numerical 

decrease in orientation sensitivity that is, however, not significant (ps>=.41). 

 

This pattern of results was best fit by a logarithmic model that features a steep initial increase 

followed by a mostly flat (and, in fact, slightly decreasing) portion. The logarithmic model  

outperformed a slope-only linear model (∆𝐵𝐼𝐶 = 71.60, ∆𝐴𝐼𝐶 = 78.17), a full linear model 

(∆𝐵𝐼𝐶 = 15.83, ∆𝐴𝐼𝐶 = 15.84), a quadratic model (∆𝐵𝐼𝐶 = 25.54, ∆𝐴𝐼𝐶 = 25.54), and a 

polynomial model (∆𝐵𝐼𝐶 = 124.46, ∆𝐴𝐼𝐶 = 115.70). Taken together, these results reveal that, 

under the task demands of Experiment 2, orientation is strongly nonlinearly transformed into 

internal decision evidence. 

 

ANN results 

The results from Experiments 1 and 2 show that intuitively similar external stimulus features can 

have extremely different mappings to internal evidence. While these results are likely to be 
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explainable within different modeling frameworks, it is not clear whether any model 

frameworks would have predicted them a priori without additional assumptions about 

perceptual similarity functions. For example, it appears that an off-the-shelf probabilistic 

population coding model does not predict these results (see Supplementary), though it is of 

course likely that a better fit can be obtained if additional assumptions are included in the 

model.  

 

Here we evaluated whether an ANN model trained on orientation categorization would 

naturally reproduce the observed external-to-internal transformations found in Experiments 1 

and 2 without any additional assumptions or training. We trained a 2-layer ANN model on 

discriminating between Gabor patches tilted clockwise or counterclockwise from vertical. To 

provide an unbiased training set, we trained the ANN on a wide range of tilts (0 to 45 degrees) 

and contrasts (1 to 90%). We then tested the trained ANN on stimuli that mimic Experiment 1 

(fine-grained tilts up to 2.8 degrees) and Experiment 2 (coarse-grained tilts up to 42 degrees). 

We found that the ANN model reproduced both the linear relationship between sensitivity and 

orientation for fine-grained tilts that we observed in Experiment 1 (Figure 5A), and an increase-

then-plateau relationship between sensitivity and orientation for coarse-grained tilts that we 

observed in Experiment 2 (Figure 5B). To check for the robustness of these effects, we examined 

them for different contrast levels from 3 to 9% contrast and found that both patterns remained 

the same regardless of contrast (Figure 5A,B). Nevertheless, unlike the human data in 

Experiment 2 where d’ peaks around 14 degrees, the ANN model has maximum d’ at around 8 

degrees (see Discussion). These results suggest that the ANN model shows very similar 



 21 

emergent behavior to what we see in humans for the transformation from external sensory 

features to internal decision evidence. 

 

Figure 5. Artificial Neural Network (ANN) results. The ANN reproduced the empirical results 
– fine-scale increments in orientation offset were linearly transformed into internal evidence 
(A), but coarse-scale increments in orientation offset were nonlinearly transformed into 
internal evidence (B). 
  

A. Fine discrimina on B. Coarse discrimina on
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Discussion 

We examined how external sensory information is transformed into internal decisional evidence 

across different contexts. In Experiment 1, increasing the orientation offset of a high-contrast 

Gabor in fine-scale increments away from 45 degrees resulted in a linear increase in sensitivity 

(d’), suggesting a linear transformation from orientation to internal evidence strength. In 

contrast, in Experiment 2, increasing the orientation offset of a noisy, low-contrast Gabor in 

coarse-scale increments away from vertical resulted in a fast initial gain in sensitivity followed 

by a plateau, suggesting a highly non-linear relationship between orientation and internal 

evidence strength. Critically, an artificial neural network (ANN) model trained on the orientation 

discrimination task reproduced the observed pattern of results. These results demonstrate that 

the task context can dramatically change how sensory information is transformed into internal 

decisional evidence within the same visual domain and suggest that ANNs can serve as a 

hypothesis-generation platform for this critical transformation. 

 

Dissociation between tasks using fine- and coarse-scale stimuli 

The general intuition of most theories of perceptual decision-making is that increasing the 

strength of a given external signal leads to a graded increase in the strength of the internal 

signal (e.g., Green & Swets, 1966; Ma et al., 2006; Ratcliff, 1978). In contrast with this intuition, 

we show that in the task with coarse-scale stimuli (Experiment 2) a large increase of the 

external signal does not translate into an increase in the internal signal. Crucially, this pattern 

does not appear to reflect a ceiling or a floor effect because performance saturates in a range 
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between 69 and 79% accuracy. What explains this pattern of results? There appear to be at least 

three different explanations. 

 

First, it could be that the results are explained by the fact that the optimal readout mechanisms 

differ between the fine- and coarse-scale discrimination tasks. Fine-scale tasks require a subject 

to discriminate between signals that are nearby in the stimulus space, whereas coarse-scale 

tasks require a subject to discriminate between far apart signals. Performance differences 

across fine- and coarse-scale tasks have been found to be a function of the activity of feature-

selective neurons (Britten et al., 1992; Celebrini & Newsome, 1995; Salzman et al., 1990, 1992). 

Optimal performance depends on the readout mechanisms from these neurons – for fine-scale 

tasks, similar stimulus features activate roughly the same population of feature selective 

neurons and so the most informative neurons are those tuned slightly away from the feature to 

be discriminated (Jazayeri & Movshon, 2007; Scolari & Serences, 2010; Verghese et al., 2012). 

For coarse-scale tasks, the most informative neurons are those tuned to the to-be-discriminated 

feature. It could be that similar mechanisms are involved in fine and coarse orientation 

categorization tasks whereby sufficient increases in orientation offset changes the informative 

value of responding neurons and optimal performance requires transitioning from a fine-scale 

scheme to a coarse-scale scheme. However, whereas these different decision mechanisms are 

likely responsible for some aspects of the differing patterns of performance across the fine- and 

coarse-scale tasks, they do not directly explain why performance plateaus in the coarse-scale 

task. 
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Second, it could be that the coarse-scale task involves threshold mechanisms not present in the 

fine-scale tasks. Specifically, it may be that in the coarse-scale task, which involves noisy Gabor 

patches, there is some intensity of the external feature needed to perceive the stimulus (Rouder 

& Morey, 2009). Crucially, in the coarse-scale task, signal-to-noise ratio (SNR) is still increased 

across conditions because the Gabor stimuli in each orientation condition contains the same 

amount of visual noise, and increasing the SNR is expected to result in some amount of increase 

in orientation sensitivity. Instead, we found that a sufficiently large increase in SNR had no 

additional effect on sensitivity. In other words, this flat performance suggests that the high 

amount of visual noise (90%) used in the coarse discrimination task may have functioned as a 

threshold on identifying the orientation of the Gabor whereby the observer either perceives the 

orientation signal and can easily categorize whether it is tilted left or right, or the observer fails 

to perceive the orientation signal and cannot identify the orientation at all regardless of the 

magnitude of the orientation offset. This explanation is in line with recent work demonstrating 

that different mechanisms can result in either graded or all-or-none perception even for highly 

similar visual stimuli (M. L. Green & Pratte, 2022).  

 

Third, rather than stemming from different decisional or threshold mechanisms, it may simply 

be that any external feature is transformed into internal evidence in complex ways that depend 

on a host of factors and are difficult to intuit. For example, although we see very different 

patterns of results across Experiments 1 and 2, it could be that the pattern across these two 

experiments is explained by an underlying relationship between perceptual similarity and 

feature distance which follows the Weber-Fechner law. A small increase in the difference 
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between the feature and the decision boundary (e.g., vertical) may initially result in an increase 

in perceptual sensitivity for detecting that difference, but with little-to-no increase in sensitivity 

for detecting sufficiently large feature distances. However, given the other differences between 

the tasks in Experiment 1 and 2, including visual noise, contrast, and the decision boundary, it is 

not clear whether larger increases of orientation offset in Experiment 1, or conversely smaller 

orientation offsets in Experiment 2, would follow the Weber-Fechner law. Any of these factors 

could increase the complexity with which the external feature is transformed into internal 

evidence. According to this possibility, having a complete model of our visual system would 

allow us to discover many such complex relationships, but at least some of them likely will not 

have a succinct and intuitive explanation. The two conditions examined here differed in the task 

being coarse- vs. fine-scale, but also in the stimulus contrast and stimulus noise, with each of 

these factors possibly having a difficult-to-predict influence. This possibility does not allow us to 

predict behavioral patterns a priori without a model of the visual system, but it may allow this in 

the presence of such a model.  

 

Although the ANN reproduced the overall pattern of results across the fine- and coarse-scale 

orientation categorization tasks, there was a notable difference between the ANN and human 

data. Unlike the human data in Experiment 2 where d’ peaks around 14 degrees, the ANN 

model has maximum d’ at around 8 degrees which then decreases before saturating. Overall, 

manipulating stimulus contrast had the effect of scaling model performance, but whereas the 

peak and decrease is less pronounced at lower contrast and more exaggerated at higher 

contrast, the location of the peak did not change. We attempted to identify what might be 
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causing this pattern of results in the ANN’s task performance. Our first intuition is that the 

pattern was driven by how much noise there is in the stimulus. However, like the effect of 

manipulating contrast, manipulating the amount of noise only scaled performance without 

affecting the peak. Another possibility was that this pattern reflected idiosyncratic behavior 

arising from random initialization of model weights, but we reject this explanation because each 

of the thirty-model initialization reflected a highly similar pattern. A third possibility that we did 

not explore is whether the pattern is caused by our choice of hyperparameters, such as the 

choice of using a 3 × 3-pixel receptive field size. Although it is unclear at this point what drives 

this slight difference in performance between humans and the ANN model, we posit that 

identifying what causes the model to exhibit this pattern of results will generate a testable 

hypothesis for future experiments with human subjects. 

 

Using ANNs as hypothesis-generation platforms 

One of the big promises of ANN models is that they can function as increasingly more 

appropriate models of the human visual system (Doerig et al., 2023; Kriegeskorte, 2015). It is 

clear that current versions of these models differ from human visual perception in many ways 

(Bowers et al., 2022), which is not surprising given the vast differences between brains and 

ANNs in both architecture and training. Nevertheless, despite these vast differences, many 

similarities between ANNs and brains have also been reported (Kheradpisheh et al., 2016; 

Kubilius et al., 2019). The existence of these similarities suggests that ANNs may sometimes be 

useful as hypothesis-generation platforms even without aligning their architecture or training 

with that of human brains. The reasoning here is that some tasks may involve built-in 
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constraints, such that most systems that learn to complete the task, regardless of their details, 

will also exhibit the same dependencies. We believe that this may be why the simple ANN used 

here was able to reproduce, out of the box, the complex qualitative pattern in human data 

despite this ANN being so different from human brains. If so, many ANNs may already be useful 

as hypothesis-generation platforms, at least in the specific cases where they are trained and 

tested on the same specific task performed by human subjects. On the other hand, when ANNs 

are trained on one task/dimension and tested on a different task/dimension, there is little 

reason to believe that they will behave similarly to humans.  

 

Here we tested how a very simple visual feature, orientation, maps onto internal evidence in 

the context of a single class of stimuli (Gabor patches). The simplicity of this task allowed us to 

build a relatively small and shallow ANN (with just two layers). In fact, the simplicity of the task 

makes it superfluous to employ a deep network, such as the ones in most contemporary deep-

learning models (e.g., VGG or ResNet). Indeed, we found that even this simple ANN model 

mirrored human performance without additional assumptions or special training. However, 

more complex features, such as ones that allow for image classification or person recognition, 

will certainly require deeper and more complex networks. Thus, the network chosen as a 

hypothesis-generation platform should have complexity commensurate to the task at hand. 

 

Conclusion 

Whereas previous work has shown that the external-to-internal mapping often varies from one 

visual domain to another, here we show that the mapping varies drastically across tasks within a 
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visual domain. We further demonstrated that a shallow ANN, trained on the orientation 

discrimination task, mirrored the pattern of results observed in human subjects without any 

additional assumptions or training. Taken together, these results begin to reveal how external 

sensory information is mapped onto internal decisional evidence. Critically, our findings suggest 

that artificial neural networks could serve as a powerful hypothesis-generation platform for 

building a theory of this critical external-to-internal transformation, such that one can examine 

their behavior in detail, generate novel hypotheses, and then test them in human subjects.   
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Supplementary Materials 

Our goal was to examine the predictions of an off-the-shelf probabilistic population coding 

model for the fine- and coarse-scale orientation discrimination tasks. Data were simulated from 

a model based on an encoder-decoder framework (M. L. Green & Pratte, 2022; Jazayeri & 

Movshon, 2006; Webb et al., 2007) in which evidence for the orientation category of a given 

stimulus is represented across a bank of orientation selective channels. The orientation sensitiv-

ity function of each detector followed a von Mises distribution to ensure that response profiles 

respected the circular nature of orientation space. The precision of each orientation detector 

(κ≈2.95) was chosen to approximate the Gaussian half-width half-max of 40⁰. Each model in-

cluded 180 motion detectors centered one degree apart at θi. The sensitivity function of the ith 

orientation detector (Si) to orientation θj follows: 

𝑆𝑖(𝜃𝑗) =
𝑒𝜅 cos (𝜃𝑗−𝜃𝑖)

2𝜋𝐼0(𝜅)
 

The response profile of the ith orientation detector to a particular stimulus (R(D)) is given by: 

𝑅(𝐷) = 𝑆𝑖(𝜃)𝑏𝑔 

where b is the baseline firing rate in spikes per second (10 spike/s) and g is response gain repre-

senting the contrast of the Gabor wavelet (gs) and visual noise (gn). The number of spikes from 

an orientation detector (ni) follows a Poisson distribution with mean determined by that detec-

tor’s response profile (Ri(D)), 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛𝑖|𝐷) = 𝑒−𝑅(𝐷)
𝑅(𝐷)𝑛𝑖

𝑛𝑖!
 

The distribution of orientation channel spikes is then multiplied by the log of the channel sensi-

tivity functions to read out the evidence for a given stimulus. 
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𝑙𝑜𝑔𝐿(𝜃𝑗) = ∑ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛𝑖|𝐷)log (𝑆𝑖(𝜃𝑗))

1801

𝑗=−90

 

Evidence for whether a given stimulus was left or right of vertical (zero degrees) was computed 

by taking the argmax of the log Likelihood for orientations greater than zero (rightwards tilts) 

and less than zero (leftwards tilts). The ratio of evidence for one choice and the other is com-

pared to the criterion of zero.  

 

We examined how the model’s orientation sensitivity changes with manipulations of orienta-

tion offset. Responses to simulated orientation stimuli were generated from each model 1000 

times for each stimulus tilt and contrast. We computed d’ using the standard formula (D. M. 

Green & Swets, 1966) by treating clockwise tilt stimuli as the target and calculating the hit rate 

(HR) and false alarm rate (FAR). The PPC model predicts that increasing orientation offset in 

fine-scale increments results in a linear increase in sensitivity (d’), a pattern that is identical to 

that of human subjects. Critically, the PPC model also predicts that increasing orientation offset 

in coarse-scale increments similarly results in a linear increase in sensitivity (d’), a pattern which 

is starkly different from that of human subjects. Although this off-the-shelf PPC model does not 

predict the same pattern of results obtained from human subjects, it is of course likely that a 

better fit can be obtained if additional assumptions are included in the model. 
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Figure S1. Probabilistic Population Coding (PPC) model and synthetic data. (A) An off-the-shelf 
probabilistic population coding model represents orientation evidence as a log likelihood 
function. (B) The PPC model predicts that increasing orientation offset in fine-scale increments 
results in a linear increase in sensitivity (d’). (C) The PPC model similarly predicts that increasing 
orientation offset in coarse-scale increments results in a linear increase in sensitivity. 
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