ABSTRACT In July 2016, a severe coral reef invertebrate mortality event occurred approximately 200 km southeast of Galveston, Texas, at the East Flower Garden Bank, wherein ~82% of corals in a 0.06-km² area died. Based on surveys of dead corals and other invertebrates shortly after this mortality event, responders hypothesized that localized hypoxia was the most likely direct cause. However, no dissolved oxygen data were available to test this hypothesis, because oxygen is not continuously monitored within the Flower Garden Banks sanctuary. Here, we quantify microbial plankton community diversity based on four cruises over 2 years at the Flower Garden Banks, including a cruise just 5 to 8 days after the mortality event was first observed. In contrast with observations collected during nonmortality conditions, microbial plankton communities in the thermocline were differentially enriched with taxa known to be active and abundant in oxygen minimum zones or that have known adaptations to oxygen limitation shortly after the mortality event (e.g., SAR324, Thioglobaceae, Nitrosopelagicus, and Thermoplasmata MGII). Unexpectedly, these enrichments were not localized to the East Bank but were instead prevalent across the entire study area, suggesting there was a widespread depletion of dissolved oxygen concentrations in the thermocline around the time of the mortality event. Hydrographic analysis revealed the southern East Bank coral reef (where the localized mortality event occurred) was uniquely within the thermocline at this time. Our results demonstrate how temporal monitoring of microbial communities can be a useful tool to address questions related to past environmental events.

IMPORTANCE In the northwestern Gulf of Mexico in July 2016, ~82% of corals in a small area of the East Flower Garden Bank coral reef suddenly died without warning. Oxygen depletion is believed to have been the cause. However, there was considerable uncertainty, as no oxygen data were available from the time of the event. Microbes are sensitive to changes in oxygen and can be used as bioindicators of oxygen loss. In this study, we analyze microbial communities in water samples collected over several years at the Flower Garden Banks, including shortly after the mortality event. Our findings indicate that compared to normal conditions, oxygen depletion was widespread in the deep-water layer during the mortality event. Hydrographic analysis of water masses further revealed some of this low-oxygen water likely upwelled onto the coral reef.

KEYWORDS coral reefs, flood waters, hydrography, hypoxia, mortality event, upwelling
Bank (2.6% of the coral reef) experienced partial or full mortality (1). Many other sessile or sedentary invertebrates were affected as well, including sponges, echinoderms, crustaceans, and mollusks. Within the affected area, mortality was concentrated in sand flats, channels, and other reef depressions and sometimes formed visible “bath-tub rings,” with tissue above the rings appearing healthy, whereas tissue below exhibited bleaching, sloughing, and death (Fig. 1) (1).

The localized mortality event is hypothesized to have been caused by the formation of hypoxia (defined as a dissolved oxygen [DO] concentration less than 2 mg/liter) within reef depressions (1), suffocating animals in these areas. Unfortunately, no DO data are available from within the sanctuary at the time the mortality event occurred, and, as such, the presence and distribution of hypoxia within the Flower Garden Banks during the mortality event remain hypothetical. Despite this, we hypothesize that the presence of hypoxic waters on the Flower Garden Banks would be reflected in microbial plankton community composition and structure and allow us to further resolve what caused the mortality event. Microbial communities are key drivers of biogeochemical cycles in the oceans and respond quickly and specifically to environmental disturbances. As a result, shifts in microbial composition and structure can serve as useful bioindicators of specific biogeochemical changes (2, 3), including the development and presence of hypoxia (4–6).

Although there is uncertainty surrounding the extent of hypoxia during the mortality event, multiple mechanisms for how hypoxia may have formed on the East Bank coral reef have been proposed. One proposed mechanism is an unusually large plume of coastal freshwater that transited over the Flower Garden Banks in the summer of 2016 provided favorable conditions for the local formation of hypoxic waters on top of the East Bank coral reef (7). Oceanographic and satellite data from the summer of 2016 showed the presence of turbid, brackish freshwater in the northwest Gulf of Mexico that was associated with bottom-water hypoxia near the Texas-Louisiana coast in June 2016 (7). This plume of coastal water primarily originated from the Mississippi/Atchafalaya River system (8) and was supplemented by an unusually high (~10 times larger than usual) discharge of water from the Trinity, San Jacinto, and Brazos Rivers, resulting from intense precipitation and flooding events (e.g., the Tax Day Flood) that occurred across southeast Texas and southwest Louisiana in the spring of 2016 (9). Upwelling-favorable (southerly) winds along the Texas coast in June and July 2016 subsequently drove this brackish freshwater plume offshore and over the coral reefs within the Flower Garden Banks (7). Microbial respiration of organic matter deposited by the plume has been hypothesized to have depleted dissolved oxygen concentrations within reef depressions, leading to invertebrate mortality (8).

Another proposed mechanism is that, in addition to the presence of a surface freshwater plume, dense water may have upwelled from the seaward side of the East Bank onto the coral reef and settled in reef depressions (8). Indeed, observations of water upwelling from depths of at least 200 m into the upper water column and onto the East Bank have been observed before (10). This hypothesis is based on the principal that the formation of bottom-water hypoxia is a vertical process that intrinsically depends not only on increased net respiration but also the formation of a vertically
stratified water column (11, 12). This stratification necessarily inhibits exchanges between the water column and therefore prevents replenishment of consumed oxygen in the bottom boundary layer, in this case, depressions on the East Bank reef (13, 14). Higher water density, dissolved inorganic carbon (DIC), ammonium concentrations, and salinity, along with lower temperature and aragonite saturation state (Ω_{ar}), were measured at 75 m near East Bank in August 2016, all of which support upwelling of water from the deeper Gulf of Mexico onto the East Bank coral reef (Fig. 2). Isopycnal direction and slope were also indicative of upwelling (8).

Following the 2016 mortality event at East Bank, analysis of microbial communities in the overlying water column revealed community differences in the floodwater plume over East Bank compared to surface water outside the plume. In addition, elevated abundances of microbial taxa from deeper waters were found near East Bank, where the localized mortality event occurred (8). Although these microbial data were interpreted as potential additional evidence of upwelling onto the East Bank, it was unknown if this finding was anomalous compared to normal conditions.
Here, we present new data from an additional three cruises that provide a baseline for the region in summer and fall. Note that because no microbial data are available from before the mortality event, we define baseline here as nonmortality conditions after the event. We tested whether microbial communities collected shortly after the mortality event differed in composition and structure from those collected during normal conditions in the same season within the Flower Garden Banks. By establishing baseline microbial trends over time, we found the mortality event indeed coincided with significant differences in microbial community composition and structure. These differences were primarily due to the relative outgrowth of several microbial taxa typically found in marine oxygen minimum zones (OMZ), providing the first direct evidence of low-oxygen conditions around the time of the localized mortality event compared to baseline conditions. This microbial evidence of low oxygen concentrations occurred not in the surface floodwater plume but in the underlying thermocline layer. Surprisingly, the enrichment of several OMZ-associated taxa was not localized near the mortality site but rather occurred widely both throughout the deep portions of the water column and across the East and West Flower Garden Banks.

RESULTS AND DISCUSSION

Microbial plankton communities varied with water mass. The depth of the surface mixed layer at each station was calculated from CTD profiles using a temperature difference criterion of 0.5°C (15) (see Fig. S1 in the supplemental material). Seawater beneath the mixed layer depth was considered to be within the thermocline, which extended to the seafloor at all stations for all cruises (Fig. S1). Principal-component analysis (PCA) of microbial community beta-diversity (robust Aitchison distances) from all 4 cruises revealed samples were structured by depth (Fig. 3). Given this vertical stratification, we binned samples into two groups by depth: (i) those collected in the surface mixed layer and (ii) those collected in the underlying thermocline. Comparing these two groups, communities from the mixed layer were significantly less heterogeneous (decreased beta dispersion) (Fig. 3D) and less diverse (inverse Simpson) (Fig. 3C) than those from the thermocline (Mann-Whitney U tests, $P < 0.01$). This pattern is likely a reflection of the comparatively steeper temperature gradients found within the
thermocline (temperature change ΔT across total depth profile = 8.7 ± 3.6°C, means ± standard deviations [SD]) versus those found in surface mixed layers ($\Delta T = 0.7 \pm 0.3^\circ$C). Community compositions within the mixed layer were characterized by elevated populations of *Prochlorococcus* (MIT9313) and other Cyanobacteria-, SAR86-, and SAR11-related members ($t(417) = 20.57$, $P < 0.001$) (Fig. 4). Combined, these groups accounted for 63.2% ± 13.5% of all sequences in the mixed layer. In contrast, communities in the thermocline had larger populations of *Nitrosopelagicus* and other Thaumarchaeota, SAR324, and Thioglobaceae (gammaproteobacteria) ($t(417) = 20.03$, $P < 0.001$), which collectively accounted for 29.0% ± 10.7% of all sequences in the thermocline layer (Fig. 4).

Mixed-layer microbial communities were strongly affected by a floodwater plume during the mortality event. In the mixed layer, approximately 40% of the compositional heterogeneity among microbial plankton communities was explained by the cruise during which they were sampled. Although overall microbial community variability was lower in the mixed layer (Fig. 3D), samples formed distinct clusters for each cruise in a distance-based redundancy analysis (db-RDA) (Fig. 5). This pattern indicates there were clear differences in community composition between all four cruises despite the decreased beta-dispersion. During baseline conditions (i.e., October 2017, August 2018, and October 2018), these differences were generally small and were primarily a result of minor (~4%) variations in the relative abundances of various SAR11 and Cyanobacteria amplicon sequence variants (ASVs) (Table S1A). In contrast, the mixed-layer microbial communities collected in August 2016, just 5 to 8 days after the localized mortality event, were notably distinct [pseudo-$F(1,159) = 153.6$, $P < 0.001$] in RDA space from the other three cruises.

In the August 2016 samples, relative abundances of ASVs classified in the SAR11 clade...
Ill subgroup were ~18-fold higher than those during the other three cruises (Fig. 6). The increase in abundance of this SAR11 subgroup, which typically inhabits brackish or freshwater (16, 17), indicates that microbial community composition and structure within the mixed layer at both West and East Banks were altered by the presence of a floodwater...
plume shortly after the mortality event. Indeed, satellite imagery from June and July 2016 indicate a surface plume of coastal flood water had reached the Flower Garden Banks (7) prior to the localized mortality event. CTD measurements of near-surface salinities taken during the August 2016 cruise subsequently found this coastal flood water mass was primarily distributed over the East Bank and contained elevated concentrations of total inorganic nitrogen (TIN) and urea (Fig. 5G and H). In agreement with this, we found the highest abundances of SAR11 clade III subgroup in the eastern stations, where salinities were most depressed during the cruise. Notably, stations with the lowest surface salinities and highest abundance of SAR11 clade III subgroup were closest to the area of the East Bank where invertebrate mortality occurred (1). However, this observed spatial west-east pattern was likely only due to timing. Both Texas Automated Buoy System buoy data (8) and satellite observations indicate the floodwater plume was transiting the Flower Garden Banks sanctuary from the west and was over the West Bank before our August 2016 cruise first arrived on station (7). Hence, while the floodwater plume was located primarily over the East Bank during the August 2016 cruise, the plume likely impacted mixed-layer microbial communities at both banks.

Thermocline microbial communities were distinct from baseline conditions during the mortality event. Following the pattern observed in the mixed layer, microbial plankton communities in the underlying thermocline waters during baseline conditions all clustered together in a db-RDA while those collected shortly after the localized mortality event were significantly different $[\text{pseudo-}F(1,236) = 34.7, P < 0.001]$ (Fig. 7). These differences were not restricted to shallower sections of the thermocline immediately underneath the surface mixed layer, where the floodwater plume was located, but were instead present throughout the water column, even in water up to ~ 300 m deep. These differences also were not localized to samples collected near the East Bank, where the mortality event occurred. Instead, we found distinct thermocline communities across the entire 40-km-by-30-km study area. Indeed, unlike in the mixed layer, we did not observe any obvious spatial west-east pattern in the thermocline communities that mirrored the eastern distribution of the floodwater plume during the August 2016 cruise.

Compared to baseline conditions, changes in thermocline microbial communities 5 to 8 days after the mortality event appear to have been driven largely by increased ASV richness (Fig. 7E). However, very little of this increased richness was well explained by any measured physiochemical parameters associated with the overlying floodwater
plume. Nutrient concentrations within the thermocline were not significantly different from those measured during baseline conditions, and the marginal effects of urea, TIN, and DO concentrations on microbial community structure explained less than ~1% of the microbial community variation we observed across the four cruises. Likewise, although temperature and salinity had larger marginal effects of 8.3% and 11.8%, respectively, neither was significantly different among cruises. Rather, both parameters reflected the typical temperature and salinity gradients found through a thermocline.

Differentially abundant taxa in the thermocline after the 2016 mortality event suggest dissolved oxygen was depressed across both the East and West Banks. Given the weak correlations between microbial community structure and environmental factors in the thermocline samples, we applied a differential abundance analysis to the ASV data set to determine which taxa were driving the observed differences between the August 2016 cruise and the other three cruises. Bacterial ASVs belonging to the SAR324 clade and *Thioglobaceae* (SUP05 clade) as well as several ASVs of marine ammonia-oxidizing archaea (*Nitrosopumilus* and *Nitrosopelagicus*) were enriched in thermocline samples during the mortality event (Fig. 8). These taxa are commonly found throughout the marine water column but are particularly abundant and active in OMZs, both on continental shelves and in deep water (18–24). Indeed, several of the enriched ASVs we observed were 100% identical to microbes detected in several other oxygen minimum zones (Table S1B). We also observed elevated relative abundances of Marine Group II (MGII) *Thermoplasmata*. Although not directly associated with OMZs, phylogenomic analyses of MGII metagenome-assembled genomes suggest this group of *Archaea* is adapted to oxygen limitation (25). In addition, we observed relative abundances of SAR86 bacteria were depleted within the Flower Garden Banks shortly after the mortality event. SAR86 bacteria are an abundant and cosmopolitan marine clade that typically thrive in oxygen-rich (~70 μM) waters (26, 27). As we did not measure any hypoxia (i.e., DO < 2 mg/liter) when these samples were collected, these findings collectively suggest oxygen concentrations were depressed within the thermocline across the entire sampling area some time before the August 2016 cruise. Because that cruise occurred 5 to 8 days after the 2016 mortality event was first detected, we hypothesize that oxygen concentrations were depressed compared to baseline conditions across both West and East Bank subsurface thermocline waters. Whether these waters were hypoxic is not known.

The specific mechanisms that could have lowered oxygen concentrations so far offshore remain unclear. One possible explanation is that an increased flux of organic material sinking from the mixed layer drove increased respiration rates in the thermocline. Although we did not measure organic matter in the water column, a microbiome analysis of both diseased and visually healthy sponge samples collected from the East Bank after the mortality event found the presence of several human fecal indicator bacteria within the sponges’ tissues (28). This shows organic material originating in the overlying floodwater plume had made its way onto the reef. Respiration of plume-derived organic matter could then plausibly lead to depressed oxygen concentrations across the East and West Bank, similar to the mechanism by which seasonal bottom hypoxia forms on the Texas-Louisiana shelf (7, 8, 29, 30) during the summer. One issue with this hypothesis is that these seasonal low-oxygen waters are typically found inshore of the 60-m isobath and quickly ventilate within ~10 km as they move offshore and encounter oxygen-rich water (13, 14, 31). As a result, seasonal plumes of hypoxic water typically do not extend far enough offshore to impact benthic organisms within the East and West Bank coral reefs. Thus, one explanation for the 2016 localized mortality event may be that the unusually large amount of coastal precipitation along the Gulf coast in the spring of 2016 (32) led to an abnormally large plume of floodwater, which was able to stretch farther offshore than in typical years (7). However, this mechanism alone would not explain why the mortality event only occurred in a relatively small area of the East Bank coral reef. Indeed, the lack of any observed mortality at the West Bank reef, which was also impacted by the floodwater plume, strongly suggests an additional mechanism, such as the upwelling of low-oxygen deep water, was involved.
The East Bank’s coral reef was within the thermocline layer during the mortality event. The mixed layer was deepest in October 2017, with an average depth of ~68 m. Mixed-layer depth was, on average, 29 m during the other three cruises. These depths are consistent with those previously observed by an array of temperature/conductivity/
pressure (TCP) string moorings in the Flower Garden Banks from December 2010 to December 2011, which showed mixed-layer depths between 20 and 40 m for spring, summer, and early fall, followed by seasonal deepening to 60 to 80 m in the late fall and winter (10).

This analysis also revealed a critical difference between the West and East Banks that may explain why the mortality event was localized to the East Bank coral reef. While the West Bank coral reef was within the mixed layer during all four cruises, the mixed layer depth near the East Bank localized mortality area appears to have shoaled slightly during the August 2016 mortality event cruise, possibly due to upwelling of deeper waters up the southern slope of the bank (Fig. 9). As a result, the East Bank coral reef was uniquely within the underlying thermocline layer in August 2016, where microbial data suggest oxygen had been depressed (Fig. 8).

Conclusions. The lack of in situ observations of depleted oxygen concentrations previously prevented a definitive conclusion on whether hypoxia was the primary cause of the 2016 localized mortality event at East Bank (1). Collectively, this study reinforces this hypothesis and reveals that this hypoxia was created by a combination of two processes (8). First, leading up to the mortality event, an unusually large discharge of turbid coastal floodwater atypically extended nearly 200 km offshore and over the Flower Garden Banks. This plume either deposited additional organic matter to the area or inhibited photosynthesis due to the reduction of sunlight via its turbidity. In either case, this likely resulted in the underlying water column becoming net respiring, even during daylight hours, and may be an explanation for the observed enrichment of hypoxia-associated microbial taxa in the thermocline across the entire study area. Concurrently with the arrival of the floodwater plume, several lines of evidence suggest deep water had upwelled onto the southern coral cap at East Flower Garden Bank and become trapped in depressions on the reef. This stratification would have prevented reoxygenation from the surrounding water column and led to localized pockets of hypoxia on the reef.

Our work also highlights the importance of collecting baseline data (33), without which we could not have drawn these conclusions. Because microbial plankton communities respond rapidly to physiochemical disturbances such as hypoxia, monitoring...
of microbial communities on reef systems may be useful indicators of imminent change (34). Indeed, significant changes in microbial communities are known to occur at oxygen concentrations significantly higher than the classic threshold for hypoxia (≤2.0 mg O₂ liter⁻¹) and thus precede effects on macrofauna (4). Recent work has highlighted mortality events related to hypoxia on coral reefs (35–37), indicating that these events are important stressors in reef ecosystems. Both upwelling and hypoxia are affected by ocean circulation, extreme rainfall events, and decreases in oxygen content, which are all affected by climate change. Understanding how these forces interact in the future will be critical for understanding the future health of the Flower Garden Banks and other coral reefs.

MATERIALS AND METHODS

Site description. Designated in 1992 as a national marine sanctuary, the Flower Garden Banks originally consisted of three ocean banks, West Bank, East Bank, and Stetson Bank, located in the northwestern Gulf of Mexico approximately 190 km offshore of Galveston, Texas (Fig. 2), on the edge of the continental shelf. In 2021, the boundaries of the sanctuary were expanded to include 14 additional reefs and banks. This study focuses on West Bank and East Bank, which rise more than 100 m above the surrounding seabed to within 16 m of the sea surface. The tops of West and East Banks are capped by shallow water coral reef communities that provide critical habitat for ecologically and economically important fisheries in the northwestern Gulf of Mexico (38).

Sampling. Four cruises to the Flower Garden Banks were performed: 30 July to 2 August 2016 aboard the R/V Manta, 20 to 24 October 2017 aboard the R/V Point Sur, 2 to 7 August 2018 aboard the R/V Pelican, and 23 to 28 October 2018 aboard the R/V Point Sur. During each cruise, we collected samples at 25 CTD stations arranged in a 5-by-5 grid (40 km by 30 km) that encompassed the East and West Banks of the Flower Garden Banks (Fig. 2D). The August 2016 cruise occurred as soon as logistically possible (5 days) after the mortality event was discovered on July 25. Seawater samples were collected using a Niskin bottle rosette on a Seabird Electronic (SBE) 25 CTD profiler. At each station, seawater samples from between 4 and 5 individual depths were collected. Across all four cruises, a total of 419 samples were collected. Due to the short notice of the August 2016 cruise, science staff shortages on the R/V Manta led to fewer samples being collected from the mixed layer.

Oxygen and nutrient measurements. Oxygen concentrations were determined in situ with a sensor attached to the Niskin rosette and were verified using the Winkler method (39) shipboard. For nutrient measurements, 60-ml water samples were filtered through 0.45-μm-pore-size filters and frozen at −20°C. Dissolved inorganic nitrate, nitrite, silicate, phosphate, urea, and ammonium were quantified via standard colorimetric analysis using an Astoria autoanalyzer (40).

DNA extraction and PCR amplification. For each sample (n = 419), microorganisms were collected from 1 liter of seawater by vacuum filtration (≤20 cm Hg) onto 47-mm, 0.22-μm Supor PES filter membranes (Pall). Filters were immediately stored at −20°C on the ship after collection. After returning to port, filters were transported on dry ice to Texas A&M University (College Station, TX) and stored at −80°C until DNA extraction. Total DNA was extracted from filters using FastDNA Spin kits (MP Biomedical) and then stored at −20°C until PCR amplification.

Processing of 16S rRNA amplicon sequences. Raw fastq files were processed using the DADA2 R package v.1.18 (41). Forward and reverse reads were truncated at lengths of 240 bp and 160 bp, respectively. A maximum expected error threshold of 2 was imposed, and reads were truncated at the first base with a Q score of 2 or below before denoising with the DADA2 sample inference algorithm. Denoised reads were merged into ASVs using a global end-free alignment, and those containing mismatches in the overlapping region were discarded. ASVs from separate Illumina runs were combined into a single matrix with the mergeSequenceTables function. Chimeric ASVs were identified and removed using the consensus method within the removeBimerSOGenovo function. Taxonomy was assigned using the Silva 138 rRNA database with the IDTAXA algorithm in the DECIPHER R package (42). ASVs that were classified as plastids or for which at least a phylum-rank taxonomy could not be assigned were removed from the data set. Retained ASVs were further screened by aligning them to the Silva 138 rRNA database (43); those that did not properly overlap the targeted V4 hypervariable region or contained a homopolymer >8 bp in length were removed. As a final curation, ASVs that were observed in a sequenced negative control, present in fewer than 2% of total samples, or having a combined relative abundance of less than 0.001% across all samples were removed from analysis.

Ecological analyses. All downstream analyses of the 16S rRNA amplicon data were performed using compositional approaches. Using the rpca function in DEICODE (44), normalization was performed using a robust centered log-ratio transformation followed by matrix completion to impute missing data, and dissimilarity between samples was then calculated as the Aitchison distance metric (45). Aitchison distance-based redundancy analysis (db-RDA) was performed with the capscale function from the vegan R package (46) to summarize the variation in microbial community composition that could be explained by linear relationships with environmental variables. Due to differences in units, all environmental variables were centered and scaled before model calculation. Each db-RDA model was initially constrained.
by the following variables: individual cruise (categorical), salinity (practical salinity unit (PSU)), temperature (°C), total dissolved inorganic nitrogen (TIN), phosphate (PO₄⁻), and dissolved oxygen (milligrams per liter). The significance of the marginal effect of each variable was assessed using permutational multivariate analysis of variance tests (calculated in vegan with `anova.cca` function) (47). Variables that did not contribute significantly to a model (P > 0.05) were dropped and the db-RDA recalculated. Differential abundance analysis was performed using the ANCOM-BC package (48) with structural zero detection enabled (`struc_zero=TRUE`, `neg_lb=TRUE`), false discovery rate controlled using the Benjamini-Hochberg procedure (`p_adj_method="BH"`), and all remaining parameters set to their defaults.

Data availability. Raw sequence data files are available in the NCBI Sequence Read Archive under accession numbers PRJNA509639 (August 2016 cruise) and PRJNA691373 (August 2018, October 2017, and October 2018 cruises).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.

SUPPLEMENTAL FILE 2, XLSX file, 2.5 MB.

ACKNOWLEDGMENTS

This research was supported in part by NSF award OCE-1800913 to K.E.F.S. and J.B.S., OCE-1800904 to S.W.D., OCE-1800905 to L.S.V., OCE-1800914 to A.S.C., and a High Impact Learning Experience Grant from the College of Geosciences, Texas A&M University, to K.E.F.S. and J.B.S. A.S.C. and S.W.D. were additionally supported by NASA Gulf Research Program Early Career Fellowships. We also thank the NSF-REU summer research program (NSF OCE-1455851) for support of J.H.

We thank Marissa Nuttall, John Embesi, and James MacMillan (NOAA), Jake Emmert and Kaitlin Buhler (Moody Gardens), and Ryan Eckert (Florida Atlantic University) for field and logistical support. We also express our sincere gratitude to all members of the crew and shore support teams of the R/V Manta, R/V Pelican, and R/V Point Sur as well as members of the NOAA FGBNMS office and Moody Gardens Aquarium (Galveston, TX) for facilitating successful cruises.

We declare no conflict of interest.

REFERENCES

