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MA 226 Section B - Exam 2a

Question Possible Student
Number Points Score
1 15
2a 5
2b 5
2c 5
2d 5
2e 5
3 10
4 8
5 12
6 8
7 14
8 8
Total Points 100

You must show your work to receive full credit

Discussion Sections:
B2: Tuesday 4:30-5:30
B3: Tues : 3:30-4:30
B4: Weds: 9-10
B5: Weds: 10-11
B6: Weds: 4:30-5:30
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1. Short Answer (15 pts)

a) Characterize the behavior of the harmonic oscillator with mass m = 2, spring

constant k = 1 and damping coefficient b = 3, as under damped, over damped
or critically damped. Show the work that justifies your answer.
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c) Suppose % = AY is a linear system with two distinct real valued

eigenvalues. One eigenvalue A, =-1 hasa corresponding eigenvector

V,=[ ]2 J . The two functions T’;(r)=2e"[ 12 ] and

z(r)=4e"[

same points for — c <t <. Why is this not a violation of the Uniqueness
Theorem and what is the specific relationship between }_’,'(a') and I’;(r) ?
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2. (5 pts each)Draw the phase portrait of a linear system given the following
information:

a.) Given eigenvalues 4, =-3 and A, =1 with corresponding eigenvectors

SRR

b.) Given eigenvalues 4, =2 and A, =1 with corresponding eigenvectors
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c.) Given eigenvalues A4, =0 and A, =-2 with corresponding eigenvectors

ol oS

d.) Given eigenvalues 4, =-2 and A, =-1 with corresponding eigenvectors
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-6 -5

5 ¥ ]1—’ with repeated eigenvalue A =-1

e.) Given the linear system % =[

and corresponding eigenvector V =[ _]1 ) draw the phase portrait. Please show

how you determined the correct orientation to use.
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3. (a) (7 pts) Find the general solution to the partially coupled system without
using matrix techniques.
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(b) Find the solution with the initial value (x,,y,)=(4,3)
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4. (8 pts) Use Euler’s Method with a step size of .25 to approximate the solution of
the initial value problem at time t =.75.

_ 7&*6'*’? (,\CF'
%:—3x = ‘(é’n'}“ -{_ -[( }«"B
d; where (x,,5,)=(4,3) Xy 4 b x‘h’g) \
—=2x-3y 7 §xy) \J G

Kkl T X Y« / ‘((Xz. ) [ jCXtm‘r’.c_\ ) hew X } el

0 o gl 3 -2 | = E 2.3
| 25 | 2.3 G =3 -6,25 i %S 1828
2. | 59 £2S 1838 | =15 ~3,06285 D2 | L4225

2 | .35 (o2 | apac D

x(?'i‘\ a o062LS

y(‘:m'\ X ,4UBS



Name: Discussion Section :

11

5. (12 pts) Solve the initial value problem: %:{ Pl

]}7 with initial condition

5

Y(0) =[ ] Be sure to show the general solution too. What type of equilibrium

point do we have at the origin?
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6. (8 pts) The linear system % ={ 2 '-]13 J? has complex eigenvalues.

a.) Compute the eigenvalues T I
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has complex eigenvalues. One

7. The linear system ﬂ= “ & Y
dt -4 6

eigenvalue is A =4+2i and the corresponding eigenvector is V =( : ; ] L

a.) (8 pts) Find two linearly independent real valued functions that solve the
system and write the general solution for the system.
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b.) (4 pts.)Find the particular solution that satisfies the initial condition
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Problem # 7 Continued: £= 2 2 Y
dt -4 6

c.) (2 pts) Classify the type of equilibrium point we find at the origin. What is it’s
orientation? Clockwise or counter clockwise?
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8. Trace determinant plane. Using the definitions of Trace and Determinant we can

T+\T? 4D

express the eigenvalues of a 2x2 linear system as 4 = 5

For each of the linear systems given below: (i) Compute the Trace and the
Determinant (ii) Shade in the region of the Trace determinant plane where the
specified matrix lives. (iii) State the behavior at the equilibrium point of systems in
this region.
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