

MA 226 Section B – Exam 1a

Question Number	Possible Points	Student Score
1	15	
2a	10	
2b	10	
2c	10	
2d	10	
3	12	
4	15	
5	10	
6	8	
Total Points	100	

You must show your work to receive full credit

Discussion Sections:

B2: Wednesday 9-10

B3: Wednesday 2-3

1. Short Answer (15 pts)

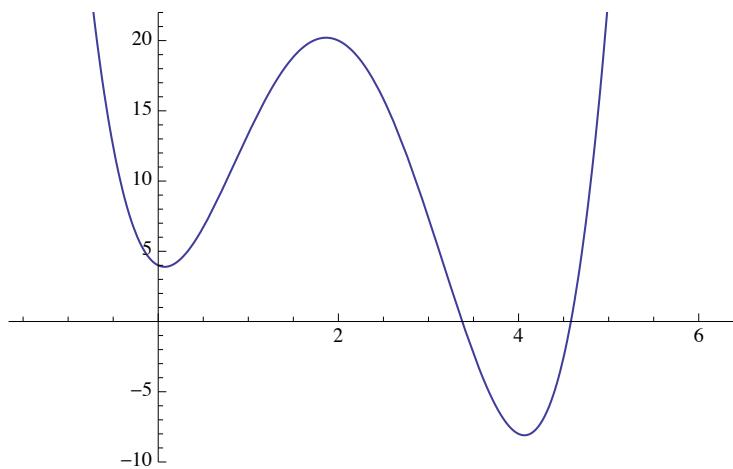
a) Given the differential equation : $\frac{dy}{dt} = 3(y-1)(y-5)(y-7)$. Let $y_1(t)$ be a solution that satisfies the initial condition $y_1(0)=3$. Evaluate

$$\lim_{t \rightarrow \infty} y_1(t) =$$

$$\lim_{t \rightarrow -\infty} y_1(t) =$$

b) Find the equilibrium solutions of the differential equation $\frac{dy}{dt} = y^3 + 2y^2 - 8y$

c) Given the one parameter family of differential equations $\frac{dy}{dt} = f(y) + \alpha$ where $f(y)$ is given by the graph below, identify the bifurcation value(s). You **DO NOT** need to draw a bifurcation diagram just identify the bifurcation values. Note that the critical points on the graph of $f(y)$ occur at $(0,4)$, $(2,20)$ and $(4,-8)$



2. Solving differential equations and initial value problems

a) (10 pts) Find the general solution of the equation: $\frac{dy}{dt} = \frac{5y(4-y)}{8}$

b) (10 pts) Solve the initial value problem $\frac{dy}{dt} + 3y = 12 \sin(3t) + 9t$ with $y(0) = 0$

c) (10 pts) Solve the initial value problem $\frac{dy}{dt} = -2t \cdot y + 5e^{-t^2}$ with $y(0) = 6$

d) (10 pts) Solve the initial value problem with $\frac{dy}{dt} = \frac{y}{3} + 5e^{\frac{t}{3}}$ and $y(0) = 2$

3. (12 pts) Matching slope fields

(i) $\frac{dy}{dt} = t - 1$

(ii) $\frac{dy}{dt} = y^2 - 1$

(iii) $\frac{dy}{dt} = ty - t$

(iv) $\frac{dy}{dt} = 1 - y^2$

(v) $\frac{dy}{dt} = 1 - t$

(vi) $\frac{dy}{dt} = 1 - y$

(vii) $\frac{dy}{dt} = y - t^2$

(viii) $\frac{dy}{dt} = y + t^2$

Slope Field A

equation: _____

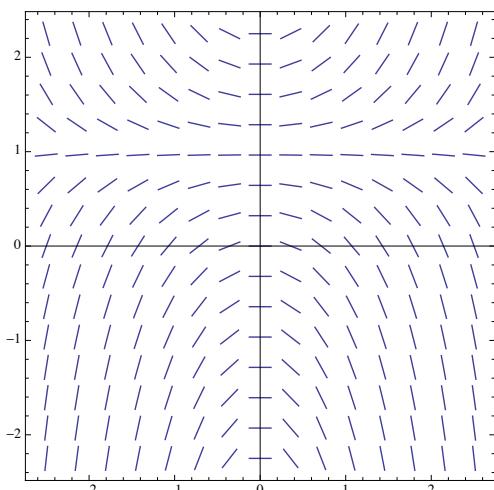
Reason:



Slope Field B

equation: _____

Reason



$$(i) \frac{dy}{dt} = t - 1$$

$$(ii) \frac{dy}{dt} = y^2 - 1$$

$$(iii) \frac{dy}{dt} = ty - t$$

$$(iv) \frac{dy}{dt} = 1 - y^2$$

$$(v) \frac{dy}{dt} = 1 - t$$

$$(vi) \frac{dy}{dt} = 1 - y$$

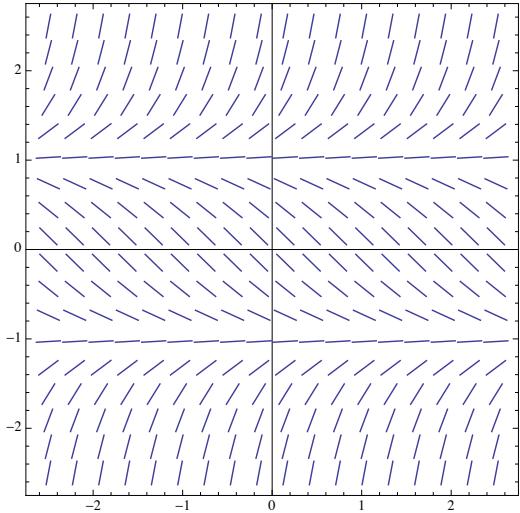
$$(vii) \frac{dy}{dt} = y - t^2$$

$$(viii) \frac{dy}{dt} = y + t^2$$

Slope Field C

equation: _____

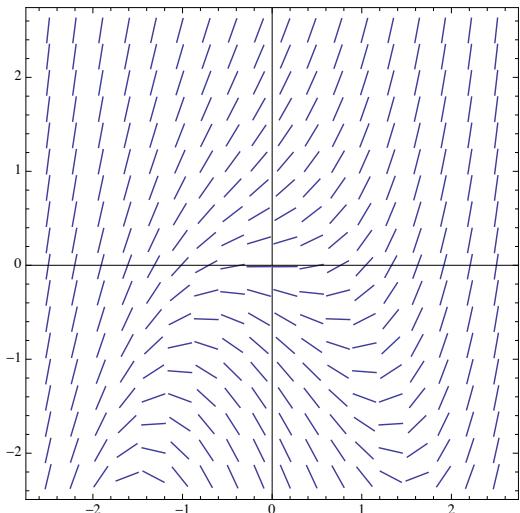
Reason



Slope Field D

equation: _____

Reason



4. (15 pts) Consider a large vat containing sugar water that is to be made into soft drinks.

- Initially the vat contains only pure water.

- The vat contains 100 gals of liquid. Moreover, the amount flowing in is the same as the amount flowing out, so there are always 100 gallons in the vat.

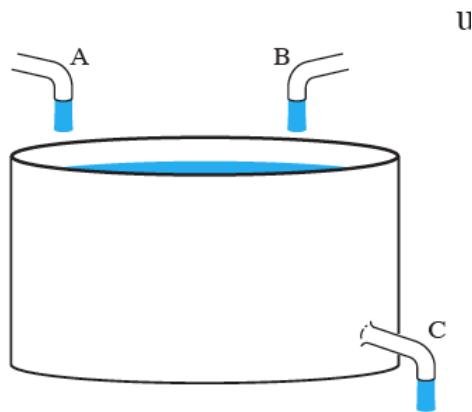
- The vat is kept well mixed, so that the sugar concentration is uniform throughout the vat.

- Sugar water containing 6 tablespoons per gallon enters the vat through pipe A at a rate of 3 gallons per minute.

- Sugar water containing 7 tablespoons per gallon enters the vat through pipe B at a rate of 2 gallons per minute.

- Sugar water leaves the vat through pipe C at a rate of 5 gallons per minute.

a.) (4 pts) : Write the initial value problem that describes the amount of sugar in the vat as a function of time.



b.) (7 pts) : Solve the initial value problem

c.) (2 pts): How much sugar will be in the tank after 30 minutes?

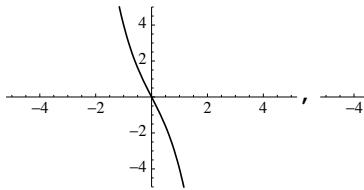
d.) (2 pts) : What is $\lim_{t \rightarrow \infty} S(t)$

5. (10 pts) Given the one parameter family of differential equations:

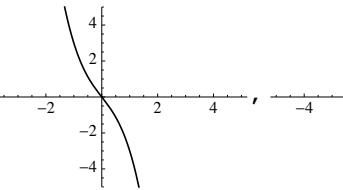
$\frac{dy}{dt} = Ay - y^3$ and a parameter study for values of the parameter A ranging from $A = -3$ to 3

create a bifurcation diagram and indicate the bifurcation value(s).

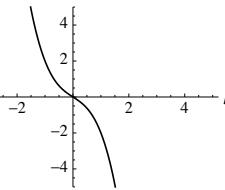
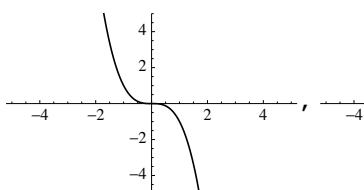
$A = -3$



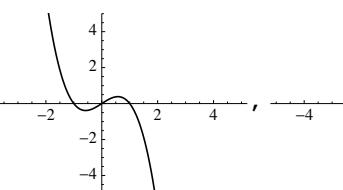
$A = -2$



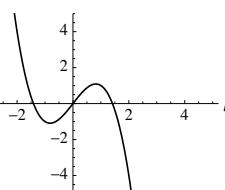
$A = -1$



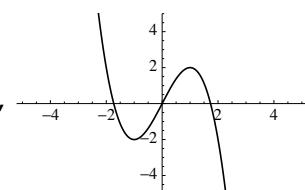
$A = 1$



$A = 2$



$A = 3$



6. (8 pts) Use Euler's Method with a step size of 0.25 to approximate the solution of the initial value problem $\frac{dy}{dt} = y^2 - 2t$ and $y(0) = 1$ over the interval $0 \leq t \leq .75$.

Create a table that shows how you computed the approximate y values for values of $t = .25, .5$, and $.75$

Please use 6 places of accuracy in your calculations.