MA 226 Section B – Final Exam - b Fall 2014

Question Number	Possible Points	Student Score
1	12	
2	12	
3	10	
4	10	
5	12	
6	12	
7	6	
8	6	
9	12	
10	8	
Total Points	100	

You must show your work to receive full credit

Discussion Sections:

B2: Wednesday 9-10

B3: Wednesday 2-3

1. (3 pts each) Match the slope field with the corresponding equation

(i)
$$\frac{dy}{dt} = 2y(y-1)$$
 (ii) $\frac{dy}{dt} = -2y(y-1)$ (iii) $\frac{dy}{dt} = \cos(t)$ (iv) $\frac{dy}{dt} = \sin(t)$

(ii)
$$\frac{dy}{dt} = -2y(y-1)$$

(iii)
$$\frac{dy}{dt} = \cos(t)$$

(iv)
$$\frac{dy}{dt} = \sin(t)$$

(v)
$$\frac{dy}{dt} = \frac{y}{t}$$

(vi)
$$\frac{dy}{dt} = -\frac{y}{t}$$

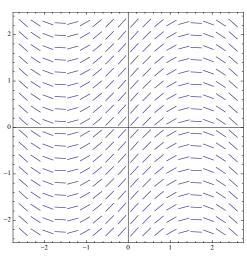
(vii)
$$\frac{dy}{dt} = \frac{t}{\sqrt{1}}$$

(v)
$$\frac{dy}{dt} = \frac{y}{t}$$
 (vi) $\frac{dy}{dt} = -\frac{y}{t}$ (vii) $\frac{dy}{dt} = \frac{t}{y}$ (viii) $\frac{dy}{dt} = -\frac{t}{y}$

Slope Field A

equation: _____

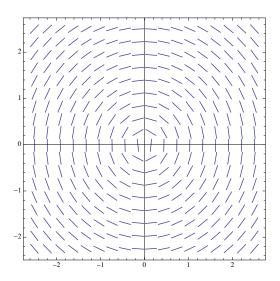
Reason:



Slope Field B

equation: _____

Reason



1.) (continued) Match the slope field with the equation

(i)
$$\frac{dy}{dt} = 2y(y-1)$$

(i)
$$\frac{dy}{dt} = 2y(y-1)$$
 (ii) $\frac{dy}{dt} = -2y(y-1)$ (iii) $\frac{dy}{dt} = \cos(t)$ (iv) $\frac{dy}{dt} = \sin(t)$

(iii)
$$\frac{dy}{dt} = \cos(t)$$

(iv)
$$\frac{dy}{dt} = \sin(t)$$

(v)
$$\frac{dy}{dt} = \frac{y}{t}$$

(vi)
$$\frac{dy}{dt} = -\frac{y}{t}$$

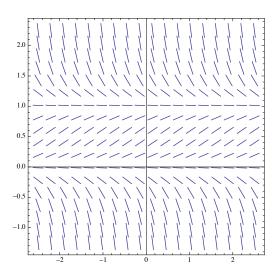
(vii)
$$\frac{dy}{dt} = \frac{t}{\sqrt{1}}$$

(v)
$$\frac{dy}{dt} = \frac{y}{t}$$
 (vi) $\frac{dy}{dt} = -\frac{y}{t}$ (vii) $\frac{dy}{dt} = \frac{t}{y}$ (viii) $\frac{dy}{dt} = -\frac{t}{y}$

Slope Field C

equation: _____

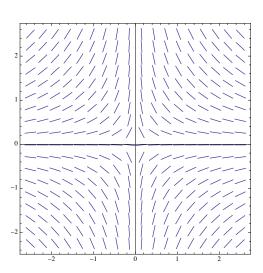
Reason



Slope Field D

equation: _____

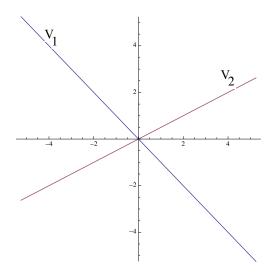
Reason



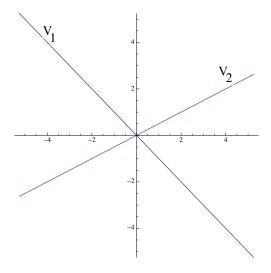
2. (3 pts each) Sketch phase portraits

a.) Given eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 3$ with corresponding eigenvectors $\overrightarrow{V}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and

$$\vec{V}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

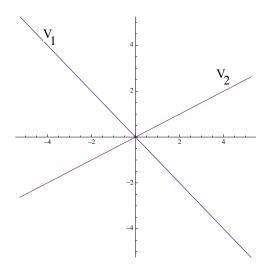


b.) Given eigenvalues $\lambda_1 = -3$ and $\lambda_2 = 0$ with corresponding eigenvectors $\overrightarrow{V_1} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $\overrightarrow{V}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

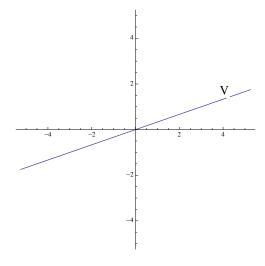


c.) Given eigenvalues $\lambda_1 = 3$ and $\lambda_2 = -1$ with corresponding eigenvectors $\vec{V}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and

$$\vec{V}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$



d.) Given the linear system $\frac{d\vec{Y}}{dt} = \begin{pmatrix} 3 & -18 \\ 2 & -9 \end{pmatrix} \vec{Y}$ with repeated eigenvalue $\lambda = -3$ and corresponding eigenvector $\vec{V} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$. Draw the phase portrait for this system and show how you determined which orientation to use.



- 3. Laplace Transforms
- a.) (2 pts) Wrtie the Laplace transforms of : $u_3(t)(t-3)^2$

b.) (2 pts) Write the Laplace transform of : $e^{2t}\cos(5t)$

c.) (3 pts) Write the Laplace transform of: $u_4(t)e^{-2(t-4)}\cos(\pi(t-4))$

d.) (3 pts) Find the inverse Laplace transform of : $\frac{5e^{-3s}}{(s-2)^2+4}$

N.T	
Name:	

Discussion Section :_____

4. (10 pts) Solve the initial value problem

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 9y = \delta_2(t) - 5\delta_3(t) \quad \text{and } y(0) = 2, \ y'(0) = 4$$

Phase Line

5. (4 pts each) Short answer

a) Find all the equilibrium solutions of the system of differential equations

$$\frac{dx}{dt} = 4x - 2x^2 - 6xy$$

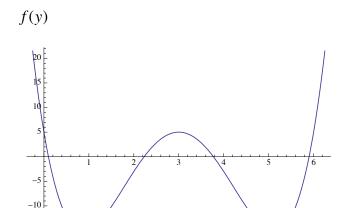
$$\frac{dy}{dt} = 12y - 4xy - 3y^2$$

b) Given the differential equation: $\frac{dy}{dt} = -3y(y+2)(y-2)$ draw the corresponding phase line. Let $y_1(t)$ be a solution that satisfies the initial condition $y_1(0) = -3$. Evaluate the following limits:

$$\lim_{t\to\infty} y_1(t) =$$

$$\lim_{t \to -\infty} y_1(t) =$$

c) Given the one parameter family of differential equations $\frac{dy}{dt} = f(y) + \alpha$ where f(y) is given by the graph below, identify the bifurcation value(s) and draw a bifurcation diagram. That is draw the phase lines at the bifurcation values as well as the phase lines for the values of α that are smaller and greater than the bifurcation values. The critical points on the graph of f(y) occur at (1,-15), (3,5), and (5,-15)



-15

6. (12 pts) Solve the initial value problem: $\frac{d\vec{Y}}{dt} = \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix} \vec{Y}$ with initial condition

$$\vec{Y}(0) = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
.

- a.) Write the general solution
- b.) Write the solution of the initial value problem

- 6.) (continued)
- c.) Make a sketch of the solution in the phase plane

d.) Make a sketch of x(t) and y(t) functions for the solution passing through the initial condition $\vec{Y}(0) = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$. Be sure to show the graph for both positive and negative values of t.

Name:		

Discussion Section:_____

7. (6 pts) Use Euler's Method with a step size of 0.2 to approximate the solution of the initial value problem $\frac{dy}{dt} = 2y - t$, y(0) = 1 over the time interval $0 \le t \le .6$.

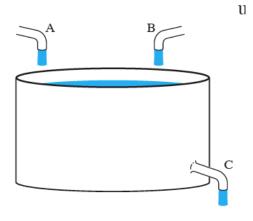
Create a table that shows how you computed the approximate y for values of t = .2, .4, and .6. Please use 4 decimal places of accuracy in our calculations.

8. (6 pts) Find the general solution of : $\frac{dy}{dt} = 3y(y+2)$

9. (12 pts) Consider a large vat containing sugar water that is to be made into soft drinks.

Let y(t) represent the amount of sugar in the vat at time t.

- Initially the vat contains only pure water.
- -The The vat contains 100 gals of liquid. Moreover, the amount flowing in is the same as the amount flowing out, so there are always 100 gallons in the vat.
- The vat is kept well mixed, so that the sugar concentration is uniform throughout the vat.
- -Sugar water containing 3 tablespoons per gallon enters the vat through pipe A at a rate of 3 gallons per minute.
- -Sugar water containing 4 tablespoons per gallon enters the vat through pipe B at rate of 2 gallon per minute.
- -Sugar water leaves the vat through pipe C at a rate of 5 gallons per minute.
- a.) (3 pts): Write the initial value problem for y(t) that describes the amount of sugar in the vat as a function of time.



b.) (5 pts): Solve the initial value problem. You are free to use any technique to solve the problem.

c.) (2 pts): How much sugar will be in the tank after 10 minutes?

d.) (2 pts): What is $\lim_{t\to\infty} y(t)$

- 10. (8 pts) Given the one parameter family : $\frac{d\vec{Y}}{dt} = \begin{pmatrix} a & a^2 a \\ 1 & a \end{pmatrix} \vec{Y}$ that depends on the parameter : a.
- a.) (2 pts) Compute the trace and the determinant for the coefficient matrix and draw the corresponding curve in the trace determinant plane.
- b.) (4 pts) List the different type of behaviors that are exhibited by the system as the parameter a is varied from $-\infty$ to $+\infty$.
- c.)(2 pts) Identify the values of the parameter that correspond to bifurcation values.