
PennState Indianapolis Flux Experiment – Davis et al, 2017, Elementa 📝

INFLUX multi-method, multi-year greenhouse gas emissions quantification

Tower-based GHG measurements

- 8 years of continuous observations
- Communications towers
 ~100 m AGL
- 12 Picarro CRDS sensors: (CO₂, CH₄, and CO)
- 6 NOAA automated flask samplers (¹⁴CO₂, other trace gases)

Fossil emissions inventory

- Hestia 250m resolution, daily and seasonal cycles
- utility, residence, aircraft, commercial, traffic sectors

Airborne sampling

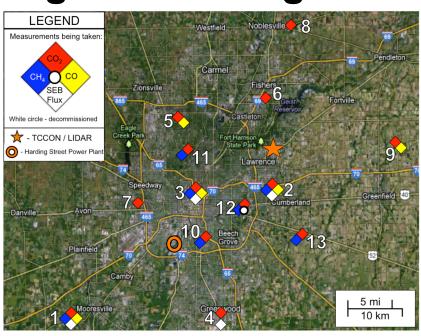
- 54 mass balance flights over 10 years, CO₂, CH₄, and CO, flasks
- Additional "grid" and eddy covariance flights

Boundary layer monitoring

- NOAA Doppler LIDAR
- Eddy flux at 3-4 towers

Modeling / inversion system

- WRF-Chem FDDA, 1 km
- Lagrangian Particle Dispersion Model
- Bayesian matrix inversion



PennState

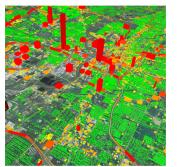
PennState Indianapolis Flux Experiment – Davis et al, 2017, Elementa 📝

INFLUX multi-method, multi-year greenhouse gas emissions quantification

Tower-based GHG measurements

- 8 years of continuous observations
- Communications towers
 ~100 m AGL
- 12 Picarro CRDS sensors: (CO₂, CH₄, and CO)
- 6 NOAA automated flask samplers (¹⁴CO₂, other trace gases)

Boundary layer monitoring


- NOAA Doppler LIDAR
- Eddy flux at 3-4 towers

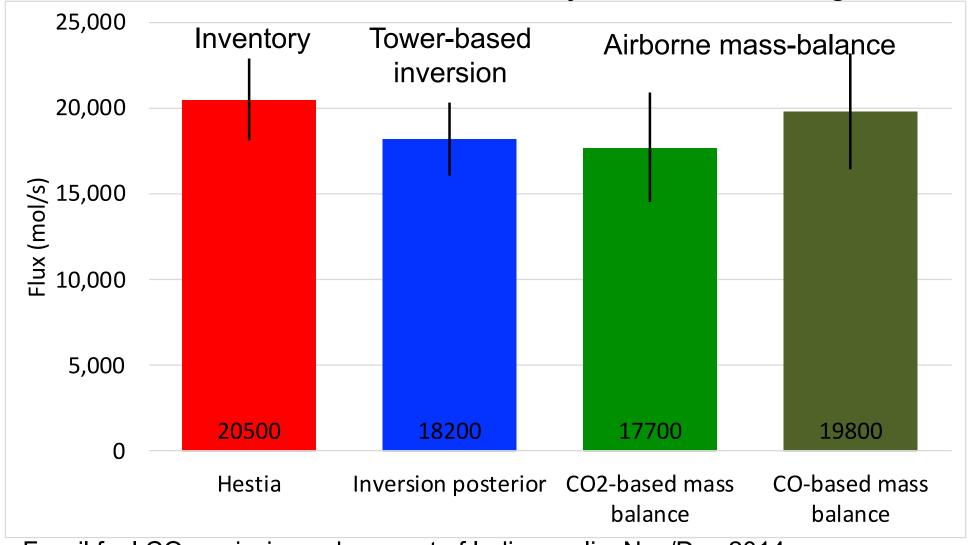
Modeling / inversion system

- WRF-Chem FDDA, 1 km
- Lagrangian Particle Dispersion Model
- Bayesian matrix inversion

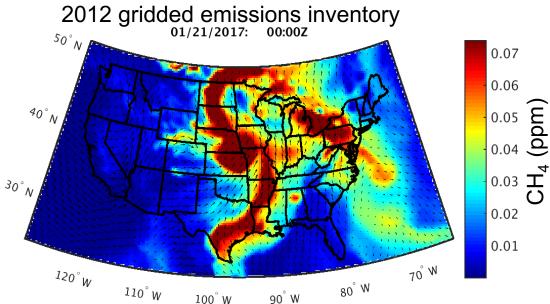
- Hestia 250m resolution, daily and seasonal cycles
- utility, residence, aircraft, commercial, traffic sectors

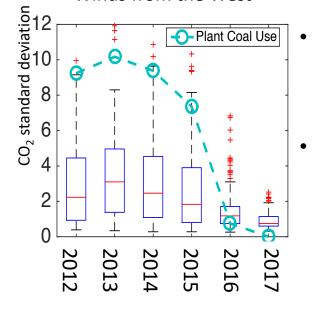
Airborne sampling

- 54 mass balance flights over 10 years, CO₂, CH₄, and CO, flasks
- Additional "grid" and eddy covariance flights

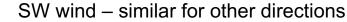


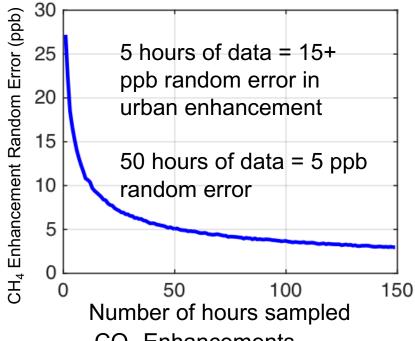
Indianapolis CO₂ emissions estimates converge to within 10%!

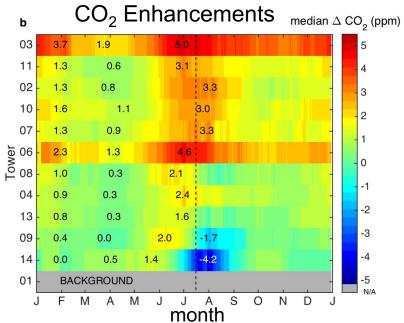

Sufficient to evaluate whole-city emissions changes


Fossil fuel CO₂ emissions, day, most of Indianapolis, Nov/Dec 2014. Area, time of day, non-fossil CO₂, background corrections. Turnbull et al., submitted.

Work on CO₂ trends, CO₂ and CH₄ background


WRF-Chem boundary layer CH₄ with EPA 2012 gridded emissions inventory





- CO₂ variability drops as power plant switches from coal to gas
- CO₂ enhancement triples in summer, enhancement changes by 100% with changing summer background site.

