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ABSTRACT:
Despite a vast literature on how speech intelligibility is affected by hearing loss and advanced age, remarkably little

is known about the perception of talker-related information in these populations. Here, we assessed the ability of lis-

teners to detect whether a change in talker occurred while listening to and identifying sentence-length sequences

of words. Participants were recruited in four groups that differed in their age (younger/older) and hearing status

(normal/impaired). The task was conducted in quiet or in a background of same-sex two-talker speech babble. We

found that age and hearing loss had detrimental effects on talker change detection, in addition to their expected

effects on word recognition. We also found subtle differences in the effects of age and hearing loss for trials in which

the talker changed vs trials in which the talker did not change. These findings suggest that part of the difficulty

encountered by older listeners, and by listeners with hearing loss, when communicating in group situations, may be

due to a reduced ability to identify and discriminate between the participants in the conversation.
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I. INTRODUCTION

Speech contains a rich array of acoustic cues that allow

a listener to identify who is talking (Kreiman et al., 2005;

Mathias and von Kriegstein, 2014; Scott and McGettigan,

2016). These cues include features related to the anatomy

and physiology of the vocal source and vocal tract

(Schweinberger and Zaske, 2018) and also talkers’ idiosyn-

cratic patterns of articulation, which convey both individual

and sociocultural identity (Perrachione et al., 2010;

Perrachione et al., 2019). Because the acoustic characteris-

tics of a given talker are so numerous, and so highly variable

during natural speech dynamics, what listeners perceive as a

talker’s voice is ultimately an auditory gestalt that cannot be

easily decomposed into a linear combination of acoustic

primitives (Kreiman and Sidtis, 2011). Here, and through-

out, we use the term “voice” to refer to a listeners’ holistic

auditory perception of a talker’s identity. Recent work has

suggested that voice recognition involves two complemen-

tary processes. First, listeners must be able to distinguish

between different voices, which requires sensitivity to

acoustic differences between one voice and another. Second,

listeners must also be able to maintain a consistent percep-

tion of a given individual’s voice across different utterances,

which requires sensitivity to acoustic similarities in the face

of substantial situational variability. These two processes

are sometimes termed “telling people apart” and “telling

people together,” respectively (Lavan et al., 2019). The

acoustic cues supporting these two processes are likely to be

different and highly dependent on the voice or set of voices

in question (Lee et al., 2019; Lee and Kreiman, 2022).

Moreover, the role of learning may be quite different for the

two processes. Telling people apart is possible based on

very brief samples of each voice, such as a vowel (Baumann

and Belin, 2010). Telling people together, on the other hand,

would seem to require a more extended exposure as listeners

must learn which features are reliably associated with a

voice and acquire knowledge about the variance of the dis-

tributions of these features (Kanber et al., 2022).

While the detrimental effects of advanced age and hear-

ing loss on word recognition and speech comprehension are

well known and have been extensively characterized

(Humes and Dubno, 2010), surprisingly little is known about

how these factors affect access to and use of talker-related

information in speech. Best et al. (2018) examined the abil-

ity to identify talkers based on spoken sentences, in 32 lis-

teners varying in age and hearing loss. Both age and hearing

loss affected talker identification in quiet, with hearing loss

further impairing talker identification in background noise.

However, the identification task could not distinguish diffi-

culties with voice recognition per se from difficulties with

learning and remembering the previously unfamiliar voices.

The authors speculated that hearing loss may disrupt the fine

acoustic distinctions required to discriminate between

similar-sounding voices, while age-related cognitive

declines may disrupt the ability to learn and remember voi-

ces. Subsequent work using simpler tasks, with minimal

memory requirements, have not fully clarified the uniquea)Email: ginbest@bu.edu
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effects of aging vs hearing loss on processing voice informa-

tion. Xu et al. (2021) examined talker discrimination for

word pairs and found that older adults performed more

poorly than younger adults. While the older group contained

listeners with and without hearing loss, all listeners in this

group performed extremely poorly on this task, obfuscating

any unique effect of hearing loss. Zaltz and Kishon-Rabin

(2022) tested older and younger listeners on a voice discrim-

ination task in which the available cues were limited to F0,

formant cues, or both. They also found poorer discrimina-

tion by older listeners, but could not rule out a contribution

from their poorer hearing thresholds.

In the current study, we again approached the question

of how age and hearing loss affect sensitivity to talker-

related information in speech. We used a talker change

detection task (inspired by Sharma et al., 2019; Sharma

et al., 2020), in which listeners heard a sequence of words

and listened for a change in talker during the sequence. Like

the tasks of Xu et al. (2021) and Zaltz and Kishon-Rabin

(2022), talker change detection does not require explicit

learning of voices but rather a comparison of voices pre-

sented sequentially. In a modification of the task, we also

asked listeners to identify the words in the sequence. This

dual-task structure was adopted for two reasons. First, it

reflects everyday communication, in which a listener often

must process who is talking in addition to what is being

said. Second, it is convenient in that effects of age and hear-

ing loss on talker change detection and on word recognition

can be measured simultaneously for the same stimuli. To

provide a more complete picture of these abilities, we

included both an ideal condition with no background noise

and a more challenging condition with speech babble in the

background. Finally, to enable us to tease apart effects of

age and hearing loss, we used a four-group design (see

Sec. II A) in which these two variables were not tightly

coupled.

II. METHODS

A. Participants

We recruited 35 participants in total, all of whom con-

sidered English to be their primary language. As in the study

by Best et al. (2018), we recruited participants into four

groups that differed in age and/or hearing status. The groups

will be referred to as younger with normal hearing (YNH),

younger with hearing impairment (YHI), older with normal

hearing (ONH), and older with hearing impairment (OHI).

The younger participants were recruited and tested at

Boston University (BU) and the older participants were

recruited and tested at the Medical University of South

Carolina (MUSC). Criteria for normal audiometric thresh-

olds in the younger group were 20 dB hearing level (HL) or

better at octave frequencies from 0.25–8 kHz in both ears.

For the older individuals, normal hearing was defined as

thresholds of 30 dB HL or better bilaterally from 0.25–4

kHz. The participants with hearing impairment had bilateral,

symmetric, sensorineural losses. Symmetry was defined as a

between-ear difference in the low-frequency pure-tone aver-

age (0.25–1 kHz) of no more than 10 dB and a between-ear

difference in the high-frequency pure-tone average (2–8

kHz) of no more than 15 dB. Figure 1 shows individual

audiograms for listeners in each group, and summary char-

acteristics are presented in Table I. Note that we chose to

use the all-frequency average hearing loss (0.25–8 kHz) to

quantify hearing loss because losses in the YHI group were

quite heterogeneous in their configuration, and no one fre-

quency region captured the variation in severity across our

population. Because of our four-group design, age and the

all-frequency hearing loss were only weakly correlated in

this population (r¼ 0.34; p¼ 0.02). The correlation was not

significant when using the more common four-frequency

average hearing loss (0.5–4 kHz; r¼ 0.18; p¼ 0.15).

B. Equipment

The BU and MUSC laboratories ran the same custom

MATLAB code (MathWorks, Natick, MA) to control signal cali-

bration, presentation of stimuli, instructions, and feedback,

and collection of responses. At MUSC, the output of a

LynxTWO sound card (Lynx Studio Technology, Inc., Costa

Mesa, CA) was passed through a Tucker-Davis Technologies

(Alachua, FL) anti-aliasing filter (FT5), signal mixer

(SM3A), and headphone driver (HB7) before being delivered

to the Sennheiser 280 Pro headphones (Wedemark,

Germany). At BU, the output of an RME Digiface sound card

(Haimhausen, Germany) was delivered to the same model

headphones. At both sites, the experiment was conducted in a

sound-attenuating booth. At BU, a monitor displayed instruc-

tions and the response interface, and responses were given

using a standard computer mouse. At MUSC, listeners

entered their responses using a touch screen.

C. Speech materials

The speech materials were taken from a multi-talker cor-

pus that has been described previously and used for many

experiments in the BU laboratory (Kidd et al., 2008). The

matrix-style corpus contains eight word choices in each of five

syntactic categories (name, verb, number, adjective, object)

for a total of 40 words. The entire corpus was recorded by

multiple talkers with American-accented English, and for the

current study, we used ten male and ten female talkers. The

average F0, estimated for each talker using STRAIGHT

(Kawahara et al., 2005), ranged from 81–138 Hz for the male

talkers and from 183–222 Hz for the female talkers.

Perceptual dissimilarity ratings of these talkers were

obtained from eight additional YNH listeners who did not

participate in the main experiment. These listeners were ran-

domly assigned to rate either the male or female talker pairs.

On each trial, the listener heard two talkers each say three

random words from the corpus and were asked to rate their

perceived dissimilarity on a continuous scale from 0 to 1

(with 0 being the most similar and 1 being the most dissimi-

lar; Perrachione et al., 2019). These listeners rated all possi-

ble pairings of the ten talkers (including same-voice pairs).
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Dissimilarity ratings were highly consistent across listeners:

Intraclass correlation coefficients were 0.91 for the female

talkers and 0.83 for the male talkers. The mean dissimilarity

rating for each pair of talkers was compared to listeners’

talker change detection performance for that pair in the

main experiment.

D. Stimuli and task

On every trial, the target was a five-word sequence that

was constructed by choosing one word at random from each

of the syntactic categories in order. On a given trial, the five

target words were all spoken either by the same talker, or by

two different talkers of the same sex. When there was a

change in talker, it happened unpredictably at any word

boundary in the sequence, with the constraint that each word

boundary was sampled equally within a block. Figures 2(A)

and 2(B) show examples of one-talker and two-talker trials,

respectively. The target was presented either in quiet, or in

the presence of same-sex two-talker babble.

The babble was created by level-equalizing and

concatenating (in random order) the 339 Bamford-Kowal-

Bench sentences from the Hoosier Database of Native and

Nonnative Speech for Children (speechperceptionlab.com).

Concatenated sentence streams were made for two ran-

domly chosen males and two randomly chosen females and

then summed to produce male and female two-talker bab-

ble. Random starting points were chosen to begin each

masker stream on each trial and end points were chosen to

match the length of the chosen target sentence on any

given trial.

The target was presented at 60 dB sound pressure level

(SPL) and the masker, when present, was presented at 64 dB

SPL, for a target-to-masker ratio of –4 dB. All participants

with hearing loss (including some in the ONH group, when

thresholds exceeded 25 dB HL) were given compensatory

linear gain according to the National Acoustic Laboratories’

revised formula with profound correction factor (NAL-RP;

Byrne et al., 1991). The gain was calculated from the aver-

age thresholds across ears for each individual and applied to

the diotic speech signals before delivery to the headphones.

A dual-task structure was employed to assess the lis-

tener’s ability to make a judgement about the talker

change while trying to recognize the words in the

TABLE I. Summary characteristics for the four participant groups.

Group YNH YHI ONH OHI

N 8 8 8 11

Age in years (range,

mean 6 standard

deviation)

18–27 18–32 64–84 62–88

22 6 3.2 24.5 6 4.7 71.9 6 6.1 73.6 6 7.4

All-frequency average

hearing loss in dB HL

(mean 6 standard

deviation)

5.0 6 2.3 39.5 6 16.8 17.8 6 7.4 42.6 6 12.1

FIG. 1. Audiograms (averaged across left and right ears) for each listener in each of the four groups.
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sequence. Figure 2(C) shows the response interface.

Listeners were asked to indicate which keywords were spo-

ken, and also to indicate whether the sequence was spoken

by one or two talkers. Responses thus consisted of six

mouse clicks (BU) or touch screen taps (MUSC) to indicate

the five target words they heard and the number of target

talkers (one or two). Participants were free to provide these

six responses in any order they wished.

E. Procedures

Participants completed two listening sessions for a total

of 2–3 h (including rest periods). In Session 1 all talkers

were female and in Session 2 all talkers were male. All of

the younger adults chose to complete both sessions during

the same visit and all of the older adults chose to complete

one session per visit. In each session, the participants

received instructions, familiarization trials, two practice

blocks, and eight test blocks.

Familiarization trials were self-guided. Participants

were presented with an interface with buttons that played

sample targets in quiet or in babble. Participants could

select either condition and listen to as many examples as

they wished. After familiarization, participants completed

two practice blocks, each comprising eight trials. The first

block was in quiet and the second block was in babble.

After each stimulus, the participant responded using the

test interface and the correct responses were displayed as

feedback. After the practice blocks, participants completed

eight test blocks (alternating between quiet and babble to

get four of each). Each test block contained 24 trials. Half

of the trials included words spoken by only one talker and

half had a switch to a second target talker during the

sequence.

III. RESULTS

A. Summary of talker change detection and word
recognition

Figure 3(A) shows group mean scores for talker change

detection in quiet and in babble (left and right panels). The

four bars depict the four groups as shown along the x axis.

Talker change detection scores were calculated based on

192 trials per participant and noise condition (24 trials � 4

blocks � male/female sessions). Figure 3(B) shows similar

data for the word recognition task. Word recognition scores

were based on a total of 960 keywords per participant and

noise condition (24 trials � 5 keywords � 4 blocks � male/

female sessions). This summary plot shows that scores were

better in quiet than in babble, that word recognition scores

were higher than talker change detection scores, and that

there were differences in performance across the four groups

(see Sec. III B).

To understand the relationship between word recogni-

tion and talker change detection in this dual-task paradigm,

Fig. 4 shows individual data for the two tasks plotted against

each other. In quiet (left panel), word recognition was at or

near ceiling for nearly all listeners, whereas an enormous

range of scores was observed for the talker change detection

task (essentially from chance to ceiling performance). In

babble (right panel), there was a range of scores in both

tasks, and scores were significantly correlated across partici-

pants [r(33)¼ 0.755; p < 0.0001]. This confirms that, in bab-

ble, the better/worse performers in one task tended to be the

better/worse performers in the other task. However, talker

change detection scores were consistently poorer than word

recognition scores (i.e., below the diagonal, or closer to

chance; see also Fig. 3). Moreover, echoing what was seen

in quiet, a good word recognition score was no guarantee of

a good talker change detection score (note the substantial

FIG. 2. (Color online) (A) Example one-talker sequence. (B) Example two-talker sequence. Different colors/fonts in (A) and (B) indicate different voices.

(C) The response interface.
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vertical spread in the data for high word recognition scores).

The opposite was not true; all participants with poor word

recognition also had poor talker change detection (and they

were all OHI).

To better understand the kinds of errors driving the

talker change detection scores, trials were divided into those

with no change in talker (one-talker trials) and those with a

change in talker (two-talker trials). Figure 5(A) shows

scores for these two trial types, in a manner that parallels

Fig. 3(A). This breakdown shows that performance for one-

talker trials was slightly better than for two-talker trials on

average, and also suggests subtle differences in how age and

FIG. 3. (Color online) (A) Mean talker change detection scores in quiet (left) and in babble (right). (B) Mean word recognition scores in quiet (left) and in

babble (right). The four bars in each panel show the four listener groups as labeled. Error bars show across-subject standard deviations. Dashed lines show

chance performance for each task.

FIG. 4. (Color online) Individual talker change detection scores plotted as a function of word recognition scores in quiet (left) and in babble (right). Colors

and symbols indicate the different groups as labeled. Dashed lines indicate chance performance for each task, and the dotted line indicates equivalent perfor-

mance on the two tasks.
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hearing loss affected performance on each kind of trial. In

babble, distinct patterns of scores are visible for the one-

talker and two-talker trials. Specifically, for one-talker trials,

the effects of age (red vs blue bars) are more prominent than

the effects of hearing loss (open vs filled bars). Conversely,

for two-talker trials, the effects of hearing loss are more

prominent than the effects of age. In quiet, the effects of age

and hearing loss appear to be more uniform across one-

talker and two-talker trials, although a compressed effect of

hearing loss for one-talker trials is again apparent in the

older groups. Figure 5(B) shows the word recognition data

[from Fig. 3(B)] broken down into one-talker and two-talker

trials. For this task, the patterns of performance are essen-

tially indistinguishable for one-talker and two-talker trials.

B. Statistical analysis of effects related to age and
hearing loss

Talker change detection accuracy across all trials was

analyzed in a generalized linear mixed-effects model for bino-

mial data using the packages lmerTest and lme4 in R. The

model included fixed effects terms for the categorical factors

noise condition (quiet vs babble) and trial type (one-talker vs

two-talker), continuous factors hearing loss (all-frequency

average) and age, and all interactions; the random effects

terms included by-participant intercepts. By-participant ran-

dom slopes were not included because we were testing

a priori hypotheses about between-subjects factors that

should affect performance on our tasks; namely, hearing

loss and age. This decision was validated by observing that

the same models, when fit including random slopes, were

prone to singular fit and low variance on the random slope

terms. Contrasts on categorical factors were sum coded.

Values of hearing loss and age were standardized for this

analysis (converted to z-scores). Results of the model fit-

ting and contrasts on model terms are shown in Table II.

The model confirmed that talker change detection scores

were significantly affected by noise condition, trial type, hear-

ing loss, and age. Hearing loss interacted significantly with

noise condition, revealing slightly larger effects of hearing loss

in the quiet condition. Hearing loss also interacted with trial

type, confirming our observation from Fig. 5(A) that there is a

stronger effect of hearing loss for two-talker than one-talker

trials. Age interacted significantly with trial type, confirming

our observation from Fig. 5(A) that there is a stronger effect of

age for one-talker than two-talker trials. A marginally signifi-

cant interaction between hearing loss, age, and trial type con-

firmed the observation that the compressed effect of hearing

loss in one-talker trials was most apparent for older listeners.

Finally, a significant interaction between age, noise condition,

and trial type, confirmed the observation that the compressed

effect of age in two-talker trials was most apparent in babble.

An identically structured generalized linear mixed-

effects model was applied to the word recognition data.

FIG. 5. (Color online) Mean talker change detection scores in quiet (left) and in babble (right) broken down by trial type. The four bars in each cluster show

the four listener groups as labeled. Error bars show across-subject standard deviations. Dashed lines show chance performance.
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Results of the model fitting and contrasts on model terms

are shown in Table III. The model found that word recogni-

tion scores were significantly affected by noise condition,

trial type, hearing loss, and age. The significant effect of

trial type reflected an extremely small drop in scores on

two-talker trials [around 1%; see Fig. 5(B)]. Significant two-

way interactions between hearing loss and noise condition,

and age and noise condition, with stronger effects of hearing

loss and age in the babble condition, are driven primarily by

the fact that scores were limited by the ceiling in the quiet

condition [see Figs. 3(B) and 5(B)]. A significant interaction

between hearing loss, age, and noise condition reflects stron-

ger effects of hearing loss in the older group that can only

be observed in babble [again because of ceiling effects in

quiet; see Figs. 3(B) and 5(B)].

C. Relationship to dissimilarity ratings

Responses on the talker change detection task were

compared to subjective ratings of dissimilarity, collected on

a different group of YNH listeners for these same stimuli

(see Sec. II C). This comparison was done separately for

male and female talker sets, as the respective dissimilarity

ratings were collected in separate groups of participants.

The tendency to report “two talkers” on the talker change

detection task was strongly and positively correlated with

mean dissimilarity ratings across all pairs of talkers (Fig. 6).

The correlation was stronger in quiet (male: r¼ 0.92;

female: r¼ 0.96; p < 0.001) than in babble (male: r¼ 0.80;

female: r¼ 0.82; p < 0.001), perhaps because the dissimi-

larity ratings were obtained in quiet. Note that the talker

change detection scores in Fig. 6 were averaged across

groups. When the scores were separated out by group, the

correlations remained significant in all cases (p < 0.05). It is

also worth pointing out that these correlations with dissimi-

larity ratings (which are presumably based on a global col-

lection of features) were substantially stronger than the

correlations with any of the individual acoustic features of

the voices we considered. For example, in quiet, correlations

between talker change detection accuracy and talkers’ mean

TABLE II. Generalized linear mixed-effects model for talker change detection scores. Significant p-values are bolded.

Model term Estimate (b) Standard error z p

Hearing loss �0.226 0.067 �3.381 <0.001

Age �0.233 0.066 �3.554 <0.001

Noise condition �0.304 0.021 �14.581 <0.001

Trial type 0.165 0.021 7.929 <0.001

Hearing loss � Age �0.083 0.064 �1.297 0.195

Hearing loss � Noise condition 0.066 0.021 3.100 <0.002

Age � Noise condition 0.000 0.021 �0.003 0.998

Hearing loss � Trial type 0.080 0.021 3.793 <0.001

Age � Trial type �0.165 0.021 �7.748 <0.001

Noise condition � Trial type �0.004 0.021 �0.213 0.832

Hearing loss � Age � Noise condition 0.036 0.020 1.784 0.074

Hearing loss � Age � Trial type 0.040 0.020 1.967 0.049

Hearing loss � Noise condition � Trial type 0.016 0.021 0.749 0.454

Age � Noise condition � Trial type �0.097 0.021 �4.560 <0.001

Hearing loss � Age � Noise condition � Trial type 0.009 0.020 0.468 0.640

TABLE III. Generalized linear mixed-effects model for word recognition scores. Significant p-values are bolded.

Model term Estimate (b) Standard error z p

Hearing loss �0.491 0.125 �3.925 <0.001

Age �0.388 0.122 �3.173 <0.002

Noise condition �1.357 0.023 �57.824 <0.001

Trial type 0.065 0.023 2.775 <0.006

Hearing loss � Age �0.181 0.119 �1.515 0.130

Hearing loss � Noise condition �0.342 0.024 �14.438 <0.001

Age � Noise condition �0.136 0.023 �5.822 <0.001

Hearing loss � Trial type 0.013 0.024 0.559 0.576

Age � Trial type �0.025 0.023 �1.081 0.280

Noise condition � Trial type 0.011 0.023 0.468 0.640

Hearing loss � Age � Noise condition �0.131 0.022 �5.893 <0.001

Hearing loss � Age � Trial type �0.015 0.022 �0.698 0.485

Hearing loss � Noise condition � Trial type �0.039 0.024 �1.671 0.095

Age � Noise condition � Trial type 0.019 0.023 0.801 0.423

Hearing loss � Age � Noise condition � Trial type �0.007 0.022 �0.339 0.735
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F0 difference were relatively weak (male: r¼ 0.26; female:

r¼ 0.49; p < 0.05). A similar observation was made by

Sharma et al. (2019), who found that F0 differences did a

very poor job of predicting reaction times in a talker change

detection task, with better predictions for more complex rep-

resentations of acoustic similarity.

IV. DISCUSSION

The goal of the current study was to determine how age

and hearing loss affect sensitivity to talker-related informa-

tion in speech. We used an experimental task that assessed a

listener’s ability to detect changes in the talker during a

five-word sequence. This allowed us to use a large set of

voices and words, capturing the variability that is present in

real-world speech perception, but avoided the added cogni-

tive requirements of learning and remembering specific indi-

vidual voices. Talker change detection judgements were

strongly correlated with dissimilarity ratings collected inde-

pendently for these stimuli, suggesting that participants in

our task based their decision on a broad and complex set of

features that make these voices sound more or less alike,

rather than on a change in a particular feature (such as F0).

One perhaps unusual feature of our task was that talker

changes occurred in the middle of a syntactically correct

sentence (rather than between sentences like in the task of

Sharma et al., 2019; Sharma et al., 2020). While this kind of

change may break certain expectations about the relation-

ship between speech structure and speaker identity (Narayan

et al., 2017; Warnke and de Ruiter, 2023), it can also be

viewed as a realistic feature of lively conversations in which

multiple people contribute, interrupt, etc. Our experimental

task also allowed us to impose the realistic demands of

understanding the speech while discerning unexpected

changes in the talkers, and doing both tasks in the presence

of irrelevant competing speech. This dual-task structure may

have diluted attention to the talker change detection task

through a kind of “change deafness” (Vitevitch, 2003),

which could explain the wide variation in scores on the

change detection task we observed across listeners. In future

studies, it would be interesting to examine the extent to

which the observed pattern of results related to age and

hearing loss holds for different sentence structures, different

task structures, and different background environments.

The results suggest that age and hearing loss have inde-

pendent effects on talker change detection, a finding that

reinforces that of our previous study using a talker identifi-

cation paradigm (Best et al., 2018). We deliberately chose a

talker change detection task in the current study to focus on

the immediate perception of voices, avoiding the require-

ment for listeners to learn and remember specific voices that

limited the strength of the conclusions about age in the

previous study. On the other hand, we also introduced a

dual-task component, which may have been generally more

taxing for older adults and contributed to the detrimental

effect of age. Overall, however, we can now say that the

effects of age seem to be consistently observed across a vari-

ety of talker perception tasks with different cognitive

demands (Best et al., 2018; Xu et al., 2021; Zaltz and

Kishon-Rabin, 2022).

Interestingly, there were indications that hearing loss

and age may have different effects on two complementary

processes that are involved in talker change detection. First,

we assume that on two-talker trials, a correct response relies

on listeners distinguishing between the two presented voices

(“telling people apart”). Second, we assume that on one-

talker trials, a correct response relies on listeners maintain-

ing a consistent perception of a voice across the presented

words (“telling people together”). We found that effects of

hearing loss were stronger for two-talker than one-talker tri-

als, which provides support for the speculation made by

Best et al. (2018) that hearing loss may disrupt the fine

acoustic distinctions required for discriminating between

voices. Conversely, we found that effects of age were stron-

ger for one-talker than two-talker trials, which supports the

idea that advanced age may affect the ability to associate

FIG. 6. Mean proportion of “two talker” responses in quiet (left) and babble (right) plotted as a function of mean dissimilarity ratings for each talker pair.

Male and female talker sets are shown with filled/open symbols, respectively, and solid/dashed lines show lines of best fit.
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variable speech samples with the same talker as is required

to learn new voices (Yonan and Sommers, 2000; Best et al.,
2018). In future work, it would be interesting to examine

whether the ability to tell people apart/together improves

over time with extended testing. If telling people apart relies

primarily on fine acoustic distinctions, and the limits

imposed by hearing loss and age are peripheral in nature,

performance may be relatively stable across time. On the

other hand, if telling people together relies on building up a

detailed picture of unique voices, then we might expect

improvements in performance over time, although the learn-

ing profile may differ for younger and older listeners.

Investigations of telling people together in these populations

could also make use of highly familiar vs unfamiliar voices

(Johnsrude et al., 2013; Stevenage et al., 2023).

By combining our talker change detection task with a

word recognition task, within the same stimulus, we were

able to compare performance on these two tasks directly.

This comparison indicated that effects of age and hearing

loss on talker change detection are not simple extensions of

the well-known effects of age and hearing loss on speech

intelligibility. For example, in quiet, where word recognition

was close to ceiling performance for all groups, talker

change detection scores varied dramatically across listeners

with some performing close to chance. In the more difficult

babble conditions, where both tasks were away from ceiling,

scores were correlated across tasks, but there was again a

striking range of scores for talker change detection, even

when word recognition accuracy was high. This dissociation

may reflect differences in the acoustic features that are

important for speech intelligibility vs talker perception. For

example, while spectral characteristics (including F0) are

highly informative regarding the gender and identity of dif-

ferent talkers, temporal modulations are generally thought

to be the most essential acoustic features for speech recogni-

tion (Shannon et al., 1995; Villard and Kidd, 2021). The dis-

sociation may also reflect the amount of compensatory

support that is available to complete each task. For example,

speech intelligibility can be maintained in the face of severe

degradation by “filling in” missing information based on lin-

guistic knowledge, context, and expectations (e.g., Samuel,

1981; Sivonen et al., 2006). If equally robust support mech-

anisms are not available for talker perception, then the fidel-

ity of the peripheral representation may be more critical.

Reduced sensitivity to talker cues likely has several

consequences for social communication in real-world con-

texts. First, the ability to detect changes in the talker is criti-

cal for following the natural flow of conversations. Second,

the ability to focus on a talker of interest, based on their

voice, is important for dealing with competition between

simultaneous voices in noisy situations. Third, accurate

encoding of talker identity may be an important factor

allowing us to remember “who said what.” Disruptions to

some or all of these processes may well contribute to the

communication challenges that accompany older age and

hearing loss, compounding the effects of reduced audibility

and poor speech intelligibility.
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