Energetic/Informational Masking and Listening Effort, as Measured by Electroencephalography and Pupillometry

Sarah Villard, Ayesha Alam, Tyler Perrachione, & Gerald Kidd, Jr.

Department of Speech, Language, & Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University

INTRODUCTION

- Attending to target speech in the presence of auditory maskers may result in decreased understanding of target information (lower speech intelligibility scores).
- However, intelligibility scores do not provide information about how much *listening effort* the task elicits.
- Even if a listener can understand 100% of the target speech, the task of doing so may be extremely effortful (Rennies & Kidd, 2018), which may have negative effects for the listener (Peelle, 2018).

STUDY AIMS

- To compare the amount of listening effort elicited in young, normal-hearing subjects under carefully-controlled high-informational masking (IM) versus high-energetic masking (EM) conditions, at equivalent reference points (TMRs). Hypothesis: A high-IM condition will require more effort.
- To compare listening effort data obtained by two different widely-used physiological indices: 1) pupil size, and 2) alpha power as measured by electroencephalography (EEG).
 Hypothesis: Results from the two indices will not be correlated but may reveal different insights about components of listening effort.

PARTICIPANTS

- 15 young, normal-hearing listeners 5 M, 10 F
- mean age = 20.8, range = 18-24
- normal hearing in both ears (20 dB HL or better at 250, 500, 1K, 2K, 4K, and 8K Hz)
- native English speakers
- no diagnosis of ADD/ADHD or TBI

EXPERIMENTAL STIMULI

Target speech consisted of 5-word matrix-style sentences, always beginning with the word Sue:

Masker sentences were drawn from the same matrix, as well as from a list of 2-syllable names:

Allen
Doris
Kathy
Lucy
Peter
Rachel

Thomas

William

PUPILLOMETRY RESULTS

3 Masking conditions:
IntSpeech: intelligible speech
ModNoise: speech-shaped, speech-envelope-modulated noise
StatNoise: speech-shaped, unmodulated noise
IntSpeech

Part 1: Behavioral Testing

- Participants completed three adaptive tracks in each condition using a procedure adapted from Brand & Kollmeier (2002).
- These adaptive procedures were designed to estimate the TMR at which the participant could achieve 75% correct performance.

Part 2: Pupillometry/EEG recording

- Participants completed 2 blocks (24 trials) in each condition, with stimuli presented at their individually-estimated 75% correct TMRs.
- An SR Research Eyelink 1000 was used to collect pupil diameter measurements.
- A 32-scalp-channel BioSemi ActiveTwo system was simultaneously used to collect EEG data.

 For pupil size analysis, a subtractive baseline correction was performed for each trial, with the median of the last 1000 ms of the masker-only, pre-target listening portion of each trial serving as the baseline.

• Two 1 x 3 RM-ANOVAs examining the effect of condition on (1) mean change in pupil diameter during the 0-6000 ms period after target onset, and (2) peak change in pupil diameter, were performed. The RM-ANOVA examining peak pupil diameter was found to be significant: F(2,28) = 5.26, p < 0.05

Error bars indicate standard error

 For EEG analysis, a divisive baseline correction was performed for each trial, with the last 1000 ms of the masker-only, pretarget listening portion of each trial serving as the baseline.
 Values in subsequent time-frequency bins were calculated as the percent change from the mean value during the trial's baseline.

Black rectangles indicate alpha (8-13 Hz) during listening

- A 1 x 3 RM-ANOVA examining the effect of condition on mean change in alpha (8-13 Hz) during the 0-6000 ms period after target onset was found to be non-significant, possibly due to high variability in the data or insufficient power.
- Additional analyses, possibly with a different baseline and/or time-frequency region of interest, may be performed in order to better understand these data.

Error bars indicate standard error

ASSOCIATIONS BETWEEN PUPILLOMETRY & EEG

- Three Pearson correlations were performed (one per condition) to check for associations between change in alpha power & change in pupil size from 0-6000 sec after target onset.
- Results were non-significant.

CONCLUSIONS

- Data collected on peak pupil size suggests that the intelligible speech masking condition elicited a higher degree of listening effort than a noise condition.
- This finding suggests that greater effort is involved in ignoring acoustically and linguistically similar sources than highly dissimilar, low-information value sources.
- Analysis of EEG data did not reveal a significant difference between conditions, possibly due to high variability.
- No association was seen between the pupillometry & EEG results, consistent with results of previous work suggesting that listening effort is multidimensional (Alhanbali et al., 2019).
- These results lay the groundwork for future investigations into listening effort under high-IM vs. high-EM listening conditions, in clinical populations including aphasia.

REFERENCES

Alhanbali, S., Dawes, P., Millman, R. E., & Munro, K. J. (2019). Measures of listening effort are multidimensional. *Ear and Hearing*, 40(5), 1084.

Brand, T., & Kollmeier, B. (2002). Efficient adaptive procedures for threshold and concurrent slope estimates for psychophysics and speech intelligibility tests. *The Journal of the Acoustical Society of America*, 111(6), 2801-2810.

Peelle, J. E. (2018). Listening effort: How the cognitive consequences of acoustic challenge are reflected in brain and behavior. *Ear and Hearing*, *39*(2), 204. Rennies, J., & Kidd Jr, G. (2018). Benefit of binaural listening as revealed by speech intelligibility and listening effort. *The Journal of the Acoustical Society of America*, *144*(4), 2147-2159.

FUNDING/ACKNOWLEDGMENTS

This work was supported by funding from the National Institutes of Health/National Institute for Deafness and Other Communication Disorders, grant number K99DC018829. The authors acknowledge and thank Luke Baltzell, Andy Byrne, Lorraine Delhorne, Judy Dubno, Sung-Joo Lim, Chris Mason, Jonathan Peelle, and Jan Rennies-Hochmuth for their contributions to this project.

