Summary

- We investigated perceptual learning of the Korean three-way plosive contrast (lenis, aspirated, and fortis) by native English speakers.
- Unlike VOT continua in other languages, this contrast is distinguished by complex trading relations between VOT and pitch.
- Participants learned a vocabulary of 18 Korean pseudowords comprised of six minimal triplets, e.g.: 반 /pan/ 판 /pʰan/ 빤 /pan/
- Fortis stops most closely resembled listeners' existing English voiced stop categories: $p/\approx b/$ $k/\approx d/$ $k/\approx g/$
- Lenis and aspirated stops were harder to distinguish because both were encompassed by listeners' existing English voiceless stop categories.
- Low proficiency learners acquired the fortis stop, but did not differentiate the lenis and aspirated stops.
- <u>High proficiency learners</u> acquired the fortis stops, and exhibited progress at distinguishing the lenis and aspirated stops.
- Both groups acquired these contrasts most accurately for bilabial stops and least accurately for alveolar stops.

Methods

Participants

- N = 37 English monolinguals (12 M, 25 F)
- Mean age 23.1 years (18-33, sd=3.7)
- No prior experience with Korean

Stimuli

- 18 Korean pseudowords in 6 triplets
- Produced by 4 native Korean speakers (2M, 2F); (all English bilinguals from Seoul)
- Each word was associated with a distinct photograph of an object

Training Procedures

- 4 computer-based training sessions:
- Daily <u>familiarization</u> of items in minimal triplets, including <u>active practice with</u> <u>feedback</u>
- Daily <u>attainment test</u> with <u>no feedback</u> on the entire vocabulary (18 words × 4 talkers = 72 trials)
- 60 day follow-up (attainment test only)

Training Vocabulary

Hangul	Rev.Rom.	IPA	Target
반	ban	/pan/	seashell
빤	ppan	/pan/	COW
판	pan	/phan/	hammer
빔	bim	/pim/	lamp
삠	ppim	/pim/	bus
핌	pim	/phim/	desk
독	dok	/tok ⁻ /	sock
똑	ttok	/tok ⁻ /	bell
톡	tok	/thok7/	grapes
덥	deop	/tʌpˀ/	box
떱	tteop	/t̪ʌpᠯ/	brush
텁	teop	/thap7/	goldfish
갯	gaet	/ket ⁻ /	parrot
깻	kkaet	/ket7/	car
캣	kaet	/khet7/	camera
궁	gung	/kuŋ/	hat
꿍	kkung	/k̥uŋ/	chair
쿵	kung	/kʰuŋ/	fork

Familiarization

24 trials / minimal triplet (3 words × 2 repetitions × 4 talkers) Blocked by talker

Active Practice

24 trials / minimal triplet
Corrective feedback provided

Acquisition of the complex three-way Korean plosive contrast by native English speakers

<u>Tyler Perrachione</u>¹, Amy Finn², Jennifer Minas², Caitlin Tan², Brian Chan², & John Gabrieli²

- ¹Department of Speech, Language, and Hearing Sciences; Boston University
- ²Department of Brain and Cognitive Sciences; Massachusetts Institute of Technology

Acoustic Phonetics

Korean Plosive Categories

Stop consonants in Korean are distinguished by a 3-way laryngeal contrast. This contrast involves trading relations between voice-onset time (VOT) and onset F0.

- Lenis stops have a positive VOT, aspiration, and low onset F0.

 IPA: /p/ /t/ /k/ Revised Romanization: "b" "d" "g" Hangul: □ □ □
- **Aspirated** stops have a <u>long positive VOT</u>, <u>aspiration</u>, and a <u>modal onset F0</u>.

 ∘ *IPA:* /pʰ/ /tʰ/ /kʰ/ Revised Romanization: "p" "t" "k" Hangul: □□ □□

Training Vocabulary Phonetics

- The acoustic-phonetics of our training vocabulary were consistent with the ranges reported in the literature.
- Onset F0 differed across the 3 laryngeal contrasts: F_{26} = 14.8; p < 0.005, η^2 = 0.061
- VOT differed across the 3 laryngeal contrasts: $F_{2.6}$ = 62.6; p < 0.0001, η^2 = 0.83
- ∘ VOT also significantly related to place of articulation $F_{2,6}$ = 14.0; p < 0.006, η^2 = 0.46

Vocabulary Learning

Learning Outcome

All learners improved after training, but individual attainment was highly variable:

Attainment range: 22% - 69%

Mixture-model analysis of day 4 learning attainment suggests 2 learner groups:

- High proficiency learners (HPL)
- ∘ N=14, mean vocabulary acquisition: 63% ± 5%
- Low proficiency learners (LPL)
- N=23, mean vocabulary acquisition: 37% ± 7%

Patterns of Acquisition

HPL: fortis (83% ± 12%); lenis (55% ± 12%); aspirated (51% ± 11%)

LPL: fortis (50% ± 17%); lenis (32% ± 11%); aspirated (30% ± 15%)

Both groups learned <u>bilabial</u> stops best (HPL: 70%; LPL: 44%); then <u>velar</u> (HPL: 63%; LPL: 44%); and both found <u>alveolar</u> (HPL: 57%; LPL: 22%) most challenging.

Identification Matrix (onset consonant confusions)

We thank Nayeon Kim, Zhenghan Qi, Hyowon Gweon, Nathaniel Kim, Yea Jin Kaeser-Woo, Abraham Shin, and Arim Choi Perrachione.

Contact: Tyler Perrachione
Communication Neuroscience Research Laboratory @ BU
tkp@bu.edu
http://sites.bu.edu/cnrlab/