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ABSTRACT: Urban heat island is among the most evident aspects of
human impacts on the earth system. Here we assess the diurnal and
seasonal variation of surface urban heat island intensity (SUHII)
defined as the surface temperature difference between urban area and
suburban area measured from the MODIS. Differences in SUHII are
analyzed across 419 global big cities, and we assess several potential
biophysical and socio-economic driving factors. Across the big cities, we
show that the average annual daytime SUHII (1.5 ± 1.2 °C) is higher
than the annual nighttime SUHII (1.1 ± 0.5 °C) (P < 0.001). But no
correlation is found between daytime and nighttime SUHII across big
cities (P = 0.84), suggesting different driving mechanisms between day
and night. The distribution of nighttime SUHII correlates positively
with the difference in albedo and nighttime light between urban area
and suburban area, while the distribution of daytime SUHII correlates negatively across cities with the difference of vegetation
cover and activity between urban and suburban areas. Our results emphasize the key role of vegetation feedbacks in attenuating
SUHII of big cities during the day, in particular during the growing season, further highlighting that increasing urban vegetation
cover could be one effective way to mitigate the urban heat island effect.

1. INTRODUCTION
Urbanization is among the most evident aspects of human
impact on the earth system.1 It is well-known that urban centers
experience higher temperatures than surrounding suburban and
rural areas, a phenomenon known as the urban heat island
effect.2−8 As urbanization is accelerating across the world,9

especially in developing countries such as China and India,9−11

this urban heat island effect has gained in importance.3,4 In the
context of global warming it has been suggested that warming
trends observed at continental weather stations could be partly
influenced by local urban heat islands, thus reducing the
contribution of greenhouse gases to global warming,5 although
this has been disputed by several studies.6 On the other side,
urban heat island also has negative impacts on the quality of the
city life from the aspects of energy consumption, air and water
quality, and human health.12 Therefore, better understanding
the drivers of urban heat island intensity is of critical
importance for climate research and impacts studies, which
has strong implications for urban planning.12,13

Urban heat island intensity is often quantified by the
difference in air temperature between a weather station located

in an urban center and one in a less urbanized outskirt,7,8 which
is usually called air urban heat island.13 Because the density of
in situ weather station networks is sparse and potentially
influenced by very local conditions, it is difficult to rely on these
data alone for obtaining information about urban heat island at
the spatial scale of a city. Satellite remote sensing now offers the
opportunity to characterize spatial and temporal structures of
land surface temperature (LST),14 with sufficient resolution to
distinguish between urban centers and rural surroundings
(Figure 1).15,16 Remote sensing LST difference between urban
and suburban areas is usually defined as surface urban heat
island.13,14 Until now, there are many studies using satellite-
derived LST to study surface urban heat island focusing on
single or several big cities over a region,15,17,18 as more satellite
products are available such as MODerate-resolution Imaging
Spectroradiometer (MODIS) LST and Landsat TM/ETM+.
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For example, Hung et al. (2006)17 used MODIS LST to report
18 Asian mega cities surface urban heat island which is
correlated with city population, building up density and
vegetation cover. Imhoff et al. (2010)15 also indicated that
there is diurnal and seasonal cycle of surface urban heat island
and summer surface urban heat island (4.3 °C) is larger than
winter surface urban heat island (1.3 °C) over 38 most
populous cities across USA using MODIS LST. However, a
systematic evaluation of surface urban heat island for the global
big cities using a common method is still missing.
In this study, we use the latest Version 5 of Land Surface

Temperature (LST) data set from the EOS-Aqua-MODIS
(MODIS-Aqua) during the period 2003−2008 to determine
the intensity of the surface urban heat island over 419 big cities
(with a population of more than 1 million). The primary
objective is to quantify the diurnal, seasonal variations, and
between-city differences in surface urban heat island and to gain
insights on its linkage to biophysical drivers such as vegetation
greenness, albedo and mean climate, and to socio-economic
drivers such as nighttime lights and population density. We
separate the analysis of urban heat island mechanisms between
daytime and nighttime.

2. DATA SETS AND METHODS
2.1. Data Sets. Land Surface Temperature (LST) data at a

spatial resolution of 1 km and 8-day interval was obtained from
EOS-Aqua-MODIS V5 composite products (MYD11A2). The
LST data include daytime (∼13:30) and nighttime (∼01:30)
temperature observations from 2003 to 2008. The retrieval of
surface temperature was further improved by correcting noise
due to cloud contamination, topographic differences, and
zenith angle changes.16 Data quality assessed by Wan (2008)16

indicates that the MODIS V5 LST are consistent with in situ
LST measurements, within a root mean squares difference of
less than 0.5 K across 39 tested cases. In addition, Wang et al.
(2007)18 reported high accuracy of MODIS LST products on
Beijing city based on the surface emissivity evaluations.
We selected 428 big cities with a population larger than 1

million according to population data for year 2007.19 The
location of each big city was determined from a geographical
database.20 Urban and nonurban areas over each city were
separated according to the MODIS Global Land Cover Map21

at 1 km spatial resolution, consistent with the LST data.
To explore the global drivers of surface urban heat islands,

we combine satellite observations of vegetation index, albedo,
climate, and several socio-economic indexes. The contrast of
vegetation and albedo between urban area and suburban area
are defined using the MODIS Vegetation Continuous Fields
(VCF, essentially the tree cover fraction), the Enhanced
Vegetation Index (EVI), and the Bidirectional Reflectance
Distribution Function (BRDF) albedo data, respectively. The
VCF data are available at 1 km spatial resolution for year
2004,22 and the EVI data at 1 km spatial resolution and 16-day
interval are available from 2003 to 2008.23 The MODIS albedo
products used in this study include black sky albedo (BSA) and
white sky albedo (WSA) over shortwave broadband (0.3−5.0
μm) with 1 km spatial resolution and 8-day interval for year
2005.24 The climate data including air temperature and
precipitation are derived from Climatic Research Unit (CRU)
TS3.0 data sets with 0.5° spatial resolution during the period
1971−2000.25
The population density of each city and its suburban area

were extracted from the Gridded Population of the World
Version 3 (GPWv3) provided by the Center for International

Figure 1. Beijing area maps of (A) MODIS data derived land cover/use, (B) Landsat ETM+ true color image with spatial resolution 30 m × 30 m in
August, 2005, (C) annual mean daytime land surface temperature (LST) (°C), and (D) annual mean nighttime LST (°C). The magenta, green, dark
green, and blue lines stand for the borders of Beijing urban areas, suburban with 50% of urban areas, suburban with 100% of urban areas, and
suburban with 150% of urban areas, respectively.
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Earth Science Information Network of Columbia University.26

This data set is based on UN population statistics in 2005, with
a spatial resolution of 2.5′. Finally, remotely sensed nighttime
light data, formerly recognized as a proxy of socio-economic
activities27,28 were compiled for each urban and suburban area
from the stable nighttime light Version 4 data set,29 the latest
version produced by the NOAA National Geophysical Data
Center (NGDC). This nighttime light data set spans the period
from 2003 to 2008, at a spatial resolution of 30″.
2.2. Analyses. We define the Surface Urban Heat Island

Intensity (SUHII) as the difference of land surface temperature
between urban area and suburban area. For each city, we
calculate the difference of urban LST minus suburban LST.
Urban area is determined by the City Clustering Algorithm,30

according to the MODIS land cover map (see detailed
algorithm of city clustering in the Supporting Information
(SI)). Since the City Clustering Algorithm could not be
successfully applied in 9 cities of the tropical regions (because
urban pixels are very discrete), we analyzed only 419 of 428
cities in this study (Table S1). After urban area is determined,
suburban area is defined as all of the nonurban pixels
(excluding water pixels) within the ring zone around the
urban area, which covers the same amount of land as urban
area. To test the impact of different suburban area definitions
on SUHII, we also showed similar results from a smaller
suburban area (as 50% of the urban area) and a larger suburban
area (as 150% of the urban area) (Figure 1, SI Figure S1).
Daytime and nighttime SUHII were calculated separately from
EOS-Aqua-MODIS LST in the early afternoon (∼13:30) and at
night (∼01:30), respectively.16 Both seasonal and annual
averaged daytime and nighttime SUHII were computed. The
spatial differences of SUHII among big cities are studied during
the period 2003−2008.
In parallel with daytime and nighttime SUHII, we define two

vegetation parameters, two albedo parameters, three climate
parameters, and two density parameters for each big city. The
greening parameters are calculated as the VCF difference
(δVCF) and the EVI difference (δEVI) between urban and
suburban pixels. The albedo parameters are estimated by the
difference between urban and suburban pixels in (1) the black
sky albedo (δBSA) and (2) the white sky albedo (δWSA) (BSA
is linear with WSA and shows similar results to WSA, so only
WSA is shown here). The climate parameters for each big city
including mean annual air temperature (MAT), mean annual
precipitation (MAP), and mean air temperature for the months
when air temperature exceeds 0 °C (MT0) were extracted from
CRU TS3.0 data sets. Note that such climate parameters may
indirectly explain the spatial patterns of SUHII through
explaining the conditions of variable intensities of SUHII.
The density parameters are estimated by the difference between
urban and suburban pixels in (1) the nighttime light intensity
difference (δNL) and (2) the population density difference
(δPD) between urban and suburban pixels. In order to identify
the drivers of daytime and nighttime SUHII, the six predictor
variables, δVCF, δEVI, δBSA, δWSA, δNL, and δPD, were
regressed against SUHII using the major axis Model II
regressions.31 Across the Northern Hemisphere, summer is
defined as the period from June to August (JJA), while winter is
defined as the period from December to February (DJF). In the
Southern Hemisphere, summer is defined as the period from
December to February (DJF), while winter is defined as the
hperiod from June to August (JJA).

3. RESULTS AND DISCUSSION

Figure 2 shows that the annual mean daytime SUHII is positive
over most cities (92%). The city of Medelliń (Colombia) has a

record positive daytime SUHII of 7.0 °C, followed by Tokyo
(Japan), Nagoya (Japan), Saõ Paulo (Brazil), and Bogota ́
(Columbia) (>5 °C). Only a few cities surrounded by desert,
such as Jeddah in Saudi-Arabia and Mosul in Iraq, show a
negative daytime SUHII. In these places, the inner-city daytime
temperature is lower than the surrounding desert (Figure 2A).
This feature could be due to evaporative cooling by the
vegetation of urban area.32 The annual nighttime SUHIIs over
most (95%) of the 419 big cities are between 0 and 2 °C
(Figure 2B), and Mexico City has the record high nighttime
SUHII of 3.4 °C.
Table 1 summarizes the average annual, summer and winter

SUHII across six continents. The average annual daytime and
nighttime SUHII is largest in South America and then North
America, while Africa shows the lowest annual daytime and
nighttime SUHII (Table 1; Figure 2). If the 419 big cities were
divided into developed and developing countries based on the
United Nations Framework Convention on Climate Change
Annex I and II, we found that the annual daytime SUHII over
developed countries (2.1 ± 1.1 °C, n = 116) is significantly
higher than that over developing countries (1.3 ± 1.1 °C, n =
303) (P < 0.001), but the annual nighttime SUHII over
developed countries (1.0 ± 0.4 °C) is close to annual nighttime
SUHII over developing countries (1.1 ± 0.6 °C) (P = 0.014).
The annual SUHII during nighttime (1.1 ± 0.5 °C, n = 419), as
displayed in Figure 2B and Table 1, is on average lower than
that during daytime (1.5 ± 1.2 °C, n = 419) (P < 0.001). Yet,

Figure 2. Spatial distribution of (A) annual mean daytime SUHII (°C)
and (B) annual mean nighttime SUHII (°C) averaged over the period
2003−2008 across 419 global big cities.
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36% of the cities have a more intense heat island during the
night, specifically in western and southern Asia and northern
Africa (Figure 2B).
There is no correlation between daytime and nighttime

annual SUHII across cities (Figure 3; R2 = 0.00, P = 0.84). This

suggests that the factors driving heat islands during the day are
different than those at night, and that there is little inertia of
daytime processes into the following night. Oke (1988),2

followed by Arnfield (2003),13 analyzed the drivers of urban
heat island by the contrast of surface energy exchange between
urban and suburban areas. Downward net solar radiation and
anthropogenic heat flux produced by appliances, building
heating and light, humans, combustion engines, and trans-
portation constitute the two major sources of energy available
to cause urban heat island. These sources of energy are
converted into sensible heat fluxes, latent heat fluxes, surface
heat storage, and net heat advection.2,13

During the day, generally, sensible heat fluxes and latent heat
fluxes mainly derived from net solar radiation are the largest
upward heat fluxes.2,14,33 The incoming solar energy partition-
ing between latent heat flux and sensible heat flux is modulated
by vegetation fractional coverage and its ability to transpire
soil−water per unit of vegetated area. Therefore, vegetation
transpiration is expected to produce a cooling effect on surface
temperature (Figure 1C). The data presented in Figure 4A lend
support to this mechanism, because the difference of vegetation
fractional cover (δVCF) and of vegetation activity (δEVI) in
urban areas compared to suburban areas is negatively correlated
with the daytime heat island across cities, for a wide range of
climate zones and environments (δVCF, R2 = 0.51, P < 0.001;

δEVI, R2 = 0.38, P < 0.001; SI Figure S2). More detailed local
studies in Beijing, Tokyo, Seoul, and Indianapolis17,34 also
found negative correlations between the Normalized Difference
Vegetation Index (NDVI) and urban surface temperatures,
suggesting the role of urban vegetation in lowering temper-
atures over urban areas. In addition, it is also reported that a
decrease in urban vegetation fraction by 16% could increase
urban land surface temperature by 2.5 °C in Guangzhou, China
from 1990 to 2007.35

On the other hand, the distribution of nighttime SUHII
among cities does not seem to be related to vegetation (Figure
4A and B), which is logical given the absence of vegetation
evaporative cooling during the night. During the night, the
energy flux from the surface to the atmosphere is the sum of
heat stored during the previous day and released at night and of
anthropogenic heat produced during the night by the city. The
anthropogenic heat flux is related to the energy efficiency of
appliances, transportation systems and infrastructures, and to
human population density as well.33,36,37

The surface heat storage is related to solar energy absorption
(albedo) and thermal properties (heat capacity and thermal
conductivity) of the urban surfaces (building density, height,
materials, and pavement materials) during the day. It is emitted
upward to the atmosphere during the night, contributing to
maintain elevated temperatures over urban areas. We found a
negative correlation between nighttime SUHII and the albedo
difference between urban and suburban areas (δWSA) as
displayed by Figure 4A (R2 = 0.17, P < 0.001, SI Figure S3)
which tentatively suggests a role of surface heat storage in
controlling nighttime SUHII. Further in Figure 4A, the spatial
correlation between nighttime SUHII and albedo contrast
(δWSA) is mainly due to cities whose urban area has a smaller
EVI and smaller albedo than the suburban area, i.e. which can
potentially absorb solar light and release it subsequently as
surface heat storage and sensible heat flux (61% cities in 419
cities). We also found that the albedo contrast δWSA is
positively correlated with daytime SUHII (R2 = 0.10, P <
0.001) (Figure 4A; SI Figure S2). However, a stepwise multiple
linear regression analysis using daytime SUHII as the
dependent variable and all independent variables in Figure 4
suggests that daytime SUHII is weakly explained by δWSA
(Figure 4B, R2 is only enhanced by 0.02).
Because direct anthropogenic heat flux by the city during the

night should also contribute to maintain nighttime SUHII,37,38

we formulated the hypothesis that a proxy for energy
emission,27,28 namely nighttime light (NL) measured from
space, can explain the differences in nighttime SUHII
differences between cities. About 13% of the between-city
variance of nighttime SUHII is explained by the NL contrast
between urban areas and suburban areas (δNL) (Figure 4B).

Table 1. Annual, Summer, and Winter Daytime and Nighttime Surface Urban Heat Island Intensity (SUHII, °C, Mean ± SD)
across Six Continents (Africa, Asia, Europe, North America, South America, Oceania) Continents and the Worlda

Africa Asia Europe North America South America Oceania World

N 47 209 56 37 65 5 419
annual daytime SUHII (°C) 0.9 ± 1.1 1.2 ± 1.0 2.0 ± 0.9 2.3 ± 1.6 2.4 ± 1.0 1.5 ± 0.7 1.5 ± 1.2
annual nighttime SUHII (°C) 0.9 ± 0.5 1.1 ± 0.5 0.8 ± 0.4 0.9 ± 0.7 1.1 ± 0.5 1.0 ± 0.4 1.1 ± 0.5
summer daytime SUHII (°C) 1.0 ± 1.3 1.5 ± 1.3 2.1 ± 1.5 2.5 ± 1.6 3.0 ± 1.4 2.3 ± 1.2 1.9 ± 1.5
summer nighttime SUHII (°C) 0.7 ± 0.5 1.0 ± 0.5 1.0 ± 0.4 1.0 ± 0.7 1.3 ± 0.4 1.3 ± 0.4 1.0 ± 0.5
winter daytime SUHII (°C) 0.8 ± 1.2 0.9 ± 1.0 1.7 ± 0.4 2.2 ± 1.8 1.7 ± 1.1 0.8 ± 0.5 1.1 ± 1.2
winter nighttime SUHII (°C) 1.1 ± 0.5 1.2 ± 0.7 0.4 ± 0.4 0.9 ± 0.8 0.9 ± 0.7 0.8 ± 0.4 1.0 ± 0.7

aN is the number of big cities in each continent and the world included in the study.

Figure 3. Relationship between annual mean daytime SUHII (°C) and
annual mean nighttime SUHII (°C) averaged over the period 2003−
2008 across 419 global big cities.
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δNL, however, does not explain daytime SUHII differences
between cities (Figure 4A; R2 = 0.01), most likely because the
anthropogenic heat flux is dwarfed during daytime by sensible
heat and latent heat emissions.2,12,37

We also tested whether the heat islands of cities are related to
their population density and their size. Figure 4 shows that
SUHII difference between cities is not explained by the
difference in population density (δPD) between urban areas
and suburban areas. This indicates that metabolic heating,
about 100 W per person,37 accounts for only a very small
fraction of the urban anthropogenic heat flux.37 Finally, there is
no obvious effect of city size: the urban area of each city
obtained from MODIS land cover21 explains less than 3% of
heat island differences between cities on global scale (Figure
4B). Previous studies found larger urban heat island intensity in
bigger cities2,15 in one country or region. In our study, because
the 419 big cities are from different countries, different climatic
zones, and different economic development, the effects of city
size on SUHII could be masked by these factors. If the 56
European cities are extracted to test the relationship between

city size and SUHII, city size shows a significant and positive
correlation with annual daytime SUHII (R2 = 0.16, P = 0.003).
Except for albedo and nighttime light, city structure such as

building density, height, and surface materials could also affect
the nighttime surface energy exchange, thus impact the
nighttime SUHII.14,17 This is the possible reason why albedo
and nighttime light could only explain part of the spatial
variation of nighttime SUHII (R2 = 0.17 for albedo, R2 = 0.12
for nighttime light) across 419 big cities in our study. During
the daytime, evaportranspiration depends on both vegetation
and soil moisture, hence, soil moisture could also be related to
SUHII. Unfortunately, there are no global uniform and high
resolution data sets to test the impacts of these physical
variables on nighttime SUHII. Future studies need to focus on
the most important physical variables related to surface energy
exchange and study the processes and mechanisms of urban
heat islands using detailed observations and models for a single
or several typical cities.
The heat island intensity also varies seasonally.15,18 The

summer to winter amplitude of SUHII is shown in Figure 5.
Daytime SUHII has larger summer to winter amplitude than

Figure 4. (A) The square of linear correlation coefficients (R2 ) of annual daytime and nighttime SUHII and its seasonal amplitude with each
variable and (B) stepwise multiple linear regression derived explanation of each variable on the spatial gradient of annual, summer (June-August
(JJA) in Northern Hemisphere and December-February (DJF) in Southern Hemisphere), and winter (DJF in Northern Hemisphere and JJA in
Southern Hemisphere) daytime and nighttime SUHII as well as its seasonal amplitude (the difference between summer and winter) across 419 cities.
The independent variables are as follows: MAT, MAP, MT0, and Pcity stand for mean annual air temperature, mean annual precipitation, mean
temperature for the months when air temperature exceeds 0 °C, and area of the urban area; δVCF, δEVI, δWSA, δNL, and δPD stand for the
difference between urban area and suburban area for VCF (δVCF), EVI (δEVI), white sky albedo (δWSA), nighttime light (δNL), and population
density (δPD); AδEVI, AδWSA, and AT stand for the average difference between summer and winter for δEVI, δWSA, and air temperature, respectively.
Square and circle backgrounds indicate that positive and negative correlation, respectively. A diamond background indicates the total explanation (R2

) of stepwise regression. An asterisk (*) indicates statistically nonsignificant (P > 0.05).
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nighttime SUHII in the temperate regions over the Northern
Hemisphere, and there are remarkable latitudinal variations in
daytime SUHII (Figure 5). Mid-to-high latitude cities (e.g.,
Beijing, Vancouver) have larger seasonal amplitude of daytime
SUHII than their low latitude sisters (Figure 5A). The
evaporative cooling effects of the vegetation during the growing
season may partly explain why the seasonal amplitude of heat
islands differs between cities. For instance, the spatial
distribution of the daytime SUHII seasonal amplitude is
significantly correlated with the δEVI seasonal amplitude
(Figure 4; SI Figure S4); cities with a more seasonal greening
contrast between urban area and suburban area also have a
more seasonal urban heat island. As shown in SI Figure S6,
tropical cities where vegetation is active all year round, show a
flat seasonal profile of daytime SUHII throughout the year.
The nighttime SUHII exhibits a small summer to winter

amplitude of less than 1 °C for more than 86% of the big cities
(Figure 5B). The seasonal amplitude of nighttime SUHII is also
more pronounced in cold regions (high latitudes) compared to
warm regions (low latitudes). This variation is not explained by
vegetation differences across cities (R2 = 0.02 with δVCF or R2

= 0.01 with δEVI; Figure 4B and Figure S5). However, the
seasonal amplitude of nighttime SUHII negatively correlates
with both the mean temperature for the months when air
temperature exceeds 0 °C (MT0) and mean annual temper-
ature (R2 = 0.26, P < 0.001, and R2 = 0.15, P < 0.001,
respectively; Figure S5). This result is consistent with the larger
solar radiation energy transformed into SUHII in summer over
high latitude regions (Figure 4).39

Although LST has different physical meanings from surface
air temperature,40 they have close and complex relation.

Generally under clear sky conditions, larger LST means larger
sensible heat flux which could result in larger surface air
temperature and higher urban boundary layer,13,14 while LST
has larger diurnal amplitude than surface air temperature, and
there is a time lag effect between them.40 Likewise, surface
urban heat island magnitude and diurnal amplitude is larger
than that of air urban heat island.12 In addition, it should be
noted that although Wang et al. (2007)18 verified the accuracy
of emissivities in MODIS LST products over Beijing city and
Wan et al. (2008)16 tested MODIS LST products with ground
LST measurement over lakes, grasslands, and agriculture fields,
there is no comparison between direct ground urban LST
measurements with MODIS LST products over urban regions
yet. Future evaluation of MODIS LST products over urban
regions is needed by urban heat island and other disciplinary
studies.
Note that the 419 big cities with a population larger than 1

million19 include some large urban agglomerations (e.g., West
Yorkshire) consisting of several smaller cities,20 where the City
Clustering Algorithm30 defining urban area may have cause
uncertainties of SUHII derived in this study. In addition, recent
study has highlighted the importance of effects of climate
conditions such as wind speed and cloud cover on the
magnitude of the heat island effect at high spatiotemporal
resolution.41 Such effects should be addressed in future studies
when high spatiotemporal resolution data set on those climate
variables become available.
In recent years, rapid global warming and extreme climate

events have become one of the most urgent, yet complicated,
issues facing both scientists and politicians. According to the
recent report of IPCC,42 since the industrial revolution, global

Figure 5. Spatial distribution of (A) average daytime SUHII difference between summer and winter (°C) and (B) average nighttime SUHII
difference between summer and winter (°C) averaged over the period 2003−2008 across 419 global big cities. The two right plots beside (A) and
(B) map are the latitudinal average of daytime and nighttime SUHII difference between summer and winter (°C), respectively. The black line
indicates the average value, and the gray shaded areas are the uncertainty range indicated by mean ± SD.
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land mean temperature increased by 0.84 ± 0.37 °C, and warm
night frequency also increased. The large SUHII in summer not
only undoubtedly increases the cooling power consumption in
urban areas12 but also could increase the risk of heatwave
extreme events over urban areas, as urban areas are affected by
both global and local climate forcing.43 A big challenge
presented to the scientists now is to separate the contribution
of urbanization and global climate forcing (greenhouse gases
increase, pollutants and aerosol concentration changes) to the
urban temperature trends as well as urban extreme climate
events and figure out how to adapt and mitigate serious
heatwave events induced by climate change and urban heat
island. At regional scale, fine-scale modeling studies44,45 will be
necessary to understand the effects of urbanization on regional
climate by accounting for urban-specific energy exchange
properties, urban vegetation distribution, and ability to partition
net radiation into latent or sensible heat.13,33,43 In addition, the
magnitude of the daytime heat island seems to be significantly
controlled by vegetation evaporative cooling. This adds another
advantage to greener cities − better adaptation to climate
change.
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