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ABSTRACT: Stimulated Raman scattering (SRS) spectromicro-
scopy is a powerful technique that enables label-free detection of
chemical bonds with high specificity. However, the low Raman
cross section due to typical far-electronic resonance excitation
seriously restricts the sensitivity and undermines its application to
bio-imaging. To address this bottleneck, the electronic prereso-
nance (EPR) SRS technique has been developed to enhance the
Raman signals by shifting the excitation frequency toward the
molecular absorption. A fundamental weakness of the previous
demonstration is the lack of dual-wavelength tunability, making
EPR-SRS only applicable to a limited number of species in the
proof-of-concept experiment. Here, we demonstrate the EPR-SRS
spectromicroscopy using a multiple-plate continuum (MPC) light source able to examine a single vibration mode with
independently adjustable pump and Stokes wavelengths. In our experiments, the C�C vibration mode of Alexa 635 is interrogated
by continuously scanning the pump-to-absorption frequency detuning throughout the entire EPR region enabled by MPC. The
results exhibit 150-fold SRS signal enhancement and good agreement with the Albrecht A-term preresonance model. Signal
enhancement is also observed in EPR-SRS images of the whole Drosophila brain stained with Alexa 635. With the improved
sensitivity and potential to implement hyperspectral measurement, we envision that MPC-EPR-SRS spectromicroscopy can bring the
Raman techniques closer to a routine in bio-imaging.

1. INTRODUCTION
Fluorescence microscopy has long been a popular modality in
biomedical applications because of its high sensitivity and low
background.1 However, the chemical specificity comes from
labeling at the cost of phototoxicity and perturbation of the
intrinsic behaviors, which are a great concern for functional
imaging. Crosstalk between different fluorescence channels
also limits the number of distinguishable molecules to 2−5.2,3

Raman scattering, on the other hand, provides label-free
chemical contrast. However, spontaneous Raman scattering is
an inherently weak process, where the cross section is typically
on the order of 10−29 cm−2.4 The low-efficiency results in a
long integration time, seriously restricting its usefulness in
imaging applications. In addition, Raman signals can be
overwhelmed by either much stronger fluorescence signals or
detector overflow near the excitation wavelength due to
insufficient filter extinction.

To overcome these problems, stimulated Raman scattering
(SRS) microscopy using two mutually coherent pump and
Stokes ultrashort pulses has been developed to amplify Raman
signals by seven orders of magnitude5,6 and is free of

fluorescence or overflow artifact.6−10 Nevertheless, typical
SRS operated at a far-EPR condition (i.e., both pump
frequency ωpump and Stokes frequency ωStokes are far away
from the molecular absorption ω0) is still much weaker than
the fluorescence, making it still a secondary modality in
bioimaging.

Simultaneous electronic and vibrational resonance is a well-
known strategy to boost the Raman signal by shifting ωpump
toward ω0.

11−14 In reality, electronic resonance (ωpump ≈ ω0)
will induce a large nonlinear background and smear out the
vibrational Raman features of interest.3,15 This motivates the
access to the electronic preresonance (EPR) region, which
seeks the balance between SRS signal enhancement and
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nonlinear background penalty. Wei et al. have reported that
EPR is most effective when ωpump is detuned from ω0 by 2−6
times the absorption bandwidth Γ.16 A series of recent works
have successfully demonstrated SRS signal enhancement by
means of either selecting a specific chemical dye whose ω0
happens to be close to the available ωpump,

3,5,16−18 or adjusting
ωpump via second harmonic generation19 or supercontinuum
generation20,21 in support of the target dyes. However, the
ability to address different molecules, Raman signatures, and
pump-to-absorption detuning (Δν = ω0 − ωpump) at will,
which is essential for real imaging applications, has not been
achieved yet.

Here, we present EPR-SRS spectromicroscopy driven by a
multiple-plate continuum (MPC) light source.22−24 A strategic
advantage of such a light source is the ability to independently
adjust ωpump and ωStokes with high spectral energy density,
which enables EPR-SRS interrogation over the entire Raman
active region (0−4000 cm−1) with variable pump-to-
absorption detuning as long as the absorption peak lies in
the visible to NIR. In the proof-of-concept experiments, we
interrogated the C�C vibration mode of Alexa 635 by
continuously scanning the pump-to-absorption frequency
detuning Δν from 2.2 to 5.6Γ, nearly covering the entire
EPR region. Up to 150-fold SRS signal enhancement was
observed when Δν = 2.2Γ, and the trend agreed well with the
Albrecht A-term preresonance theoretical model. However, a
trade-off between enhancement and fluctuation of the SRS
signal was observed, and the optimal signal-to-noise ratio
(SNR) occurred when Δν ≈ 4Γ. Finally, SRS images of the
whole Drosophila brain stained with Alexa 635 were acquired at
Δν = 2.2, 3.9, and 5.6Γ, consistent with the trends observed in
the measurements of the Alexa 635 solution.

2. EXPERIMENTAL METHODS
2.1. MPC-EPR-SRS Spectromicroscope. Figure 1 illus-

trates the setup of the MPC-EPR-SRS spectromicroscope. A
Yb:KGW laser system (Carbide, Light Conversion) with 1030
nm center wavelength, 190 fs duration, 20 W average power,
and 200 kHz repetition rate served as the front-end light

source for supercontinuum generation. The beam was focused
by a concave mirror into the first MPC stage consisting of six
strategically positioned 200 μm-thick quartz plates aligned at
Brewster’s angle for spectral broadening based on the optical
Kerr effect.22−24 The pulses were temporally compressed to
∼55 fs with chirped mirrors. The second MPC stage was used
to further broaden the spectral bandwidth beyond one octave.
Figure 2 shows the supercontinuum spectrum after the second

MPC stage measured by visible to near-infrared spectrometers
(Flame, Ocean Optics, and BTC264P, B&W Tek). The
supercontinuum first passed through a 1040 nm notch dichroic
beam splitter NDBS (NFD01-1040, Semrock) to reflect the
laser wavelength near 1040 nm. A super-narrow bandpass filter
BPF (1030.7-3 OD5, Alluxa) was utilized to select a
narrowband 1030 nm beam as the long-wavelength “Stokes”
in the far-EPR SRS experiment. To prevent the optics from
damage, a 945 nm short-pass filter SPF1 (FF01-945/SP-25,
Semrock) was used to filter out the brightest spectral
components around 1030 nm. The average power was
approximately 8 W and the spectral energy density was
calculated to be around 1 nJ/cm−1, which is sufficient for
Raman imaging. The MPC supercontinuum was then split into
the pump and Stokes paths with an 800 or 830 nm dichroic
beam splitter DBS1 (FF801-Di01-25 × 36 or Di02-R830-25 ×

Figure 1. Apparatus of the MPC-EPR-SRS spectromicroscope. MPC: multiple-plate continuum; CM: chirp mirror; NDBS: notch dichroic beam
splitter; BPF: bandpass filter; SPF#: short-pass filter; DBS#: dichroic beam splitter; TCF#: tunable color filter; AOM: acousto-optic modulator;
PD: photodetector; EBF: electronic bandpass filter; LNA: low noise amplifier; LIA: lock-in amplifier.

Figure 2. Supercontinuum spectrum generated by two MPC stages.
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36, Semrock). The Stokes and pump excitation wavelengths
were adjusted by a linear variable bandpass filter TCF1
(LVFBP, Delta) and a pair of linear variable long- and short-
pass filters TCF2 (3G LVLWP and LVSWP, Delta). The
bandwidths of TCF1 (Stokes) and TCF2 (pump) are 13 (200
cm−1) and 5 nm (100 cm−1), respectively. The average powers
of both beams after TCF1 and TCF2 are in the order of tens of
mW. Thereby, we could interrogate any desired Raman shift
with a continuously tunable pump-Stokes wavelength pair. An
acousto-optic modulator (MT110-B50A1.5-IR-HK, AA Opto
Electronic) was implemented to modulate the intensity of the
Stokes or 1030 nm beamline at ∼100 kHz. In the case of far-
EPR excitation, the 1030 nm and Stokes beams were combined
with a 930 nm dichroic beam splitter DBS2 (FF930-SDi01-25
× 36, Semrock) while the pump beam was blocked. Otherwise,
the pump and Stokes beams were collinearly combined with
another identical 800 or 830 nm dichroic beam splitter DBS3
while the 1030 nm was blocked. The spatially and temporally
overlapped dual-color beams (Stokes and 1030/pump) were
directed into a commercial upright microscope (Axio
Examiner.Z1, Zeiss). A 10× objective (Plan-Apochromat
10x/0.45 M27, Zeiss) was used for optical excitation on
samples. The forward beams were collected in transmission
with an identical 10× objective lens, where a 785 or 842 nm
short-pass filter SPF2 (BSP01-785R-25 and FF01-842/SP-25,
Semrock) was placed to reject the Stokes beam. In the case of
far-EPR excitation, a 1030 nm beam was filtered out with a 945
nm short-pass filter SPF3 (FF01-945/SP-25, Semrock). The
transmitted beam was measured with a silicon photodetector
(DET100A2, Thorlabs). The output photocurrent of the
photodetector was electronically prefiltered by a 100 kHz
bandpass filter EBF (KR3317-SMA, KR Electronics) to
suppress low-frequency noise and preamplified with a low-
noise amplifier LNA (SA-230F5, NF Corporation) to improve
the SNR. It was then sent into a lock-in amplifier (SR844,
Stanford Research) phase-locked with the electric signal
driving the acousto-optic modulator to demodulate the SRS
signals. For all spectroscopic measurements, the lock-in time
constant was set to 300 ms, and 200 data points were used for
averaging. When capturing the SRS images, the lock-in time
constant was set to 100 μs to coordinate with the longest pixel
dwell time (∼180 μs) of the commercial microscope. The
lateral resolution of the system characterized by scanning an
SRS signal profile across the interface between the DMSO
solution and the air is about 1 μm. The Drosophila brain image
was obtained by averaging 40 frames to attain enough SNR.
2.2. Sample Preparation. A total of 1 mg of Alexa 635

(Streptavidin, Alexa Fluor 635 conjugate, Thermo Fisher
Scientific) powder was dissolved in 1 mL of phosphate-
buffered saline (PBS, Thermo Fisher Scientific). The solution
was then sealed with coverslips with two 80 μm ring spacers in
between before conducting the spectroscopic measurement.
Dye labeling Drosophila was anesthetized on ice for 20 min and
dissected in phosphate-buffered saline (PBS, pH 7.2). After the
brain was dissected and all the surrounding trachea had been
removed, the fly brain was transferred to a 24-well plate
containing 4% paraformaldehyde in PBS for 30 min
immediately, put in a vacuum for 10 min, and left in a vacuum
for 3 min to expel air from the internal tracheal system; this
process was repeated for 4 times. Fixed tissues were then
permeabilized and blocked in PBS containing 2% Triton X-100
and 10% normal goat serum (NGS; Vector Laboratories, CA)
at 4 °C overnight. Dye labeling was carried out in PBS

containing 1% Triton X-100, 0.25% NGS, and Alexa Fluor
streptavidin 635 (1:500 dilution) (Invitrogen) for 1 day at
room temperature.

3. RESULTS AND DISCUSSION
3.1. MPC-EPR-SRS Theoretical Consideration. To

examine the EPR effects of a specific vibration mode in SRS
measurement, both pump and Stokes frequencies need to be
adjusted so that they fulfill the two conditions of EPR-SRS.
First, the pump-to-Stokes frequency difference (ωpump −
ωStokes) must match the desired Raman shift Ω. Second, the
pump-to-absorption frequency detuning (Δν = ω0 − ωpump)
has to be 2−6 times the absorption bandwidth Γ to achieve
noticeable Raman signal enhancement by EPR and adequate
signal-to-background ratio (S/B > 5).16 The octave-spanning
MPC spectrum is a promising light source to meet these
requirements since it supports dual-wavelength tunability as
depicted in Figure 3.

Figure 3a shows the energy diagram of the SRS process with
different combinations of ωpump and ωStokes. An overwhelming
majority of SRS experiments is performed by utilizing a fixed
Stokes wavelength (e.g., 1030 nm) and tunable pump
frequencies well below the molecular absorption peak (Δν
≫ Γ, refer to left panel, Figure 3a).3,9,19,25 These traditional
light sources with single wavelength tunability can only operate
in the less sensitive far-EPR mode. In contrast, the MPC light
source covering from the visible to near-infrared enables
independent adjustment of both ωpump and ωStokes through
tunable color filters and thus can flexibly manipulate the
frequency detuning Δν while interrogating a specific Raman
shift Ω (right panel, Figure 3a; Figure 3b). By properly
positioning the pump frequency ωpump below the molecular
absorption peak (purple curve in Figure 3b) by 2−6 times the

Figure 3. Schematic of dual-wavelength tunability of MPC-EPR-SRS
spectroscopy. (a) Energy diagram of (left panel) far-EPR and (right
panel) electronic preresonance stimulated Raman scattering probing
via MPC. ωpump and ωStokes: the frequencies of pump and Stokes
beams; Ω: Raman shift. (b) Dual-wavelength tunability of MPC
enables flexible control of the frequency detuning Δν defined by the
energy difference between the molecular absorption peak and the
pump excitation. The EPR region lies during 2−6 times the
absorption bandwidth Γ.
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absorption bandwidth Γ, highly sensitive EPR detection can be
achieved.

Theoretically, the Albrecht A-term expression describes the
approximated frequency-dependent Raman cross section for
EPR mode:12,16,26,27

=
+

K( ) ( )
( )R pump pump pump

3 0
2

pump
2

0
2

pump
2 2

2Ä
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ÅÅÅÅÅÅÅÅÅÅÅ
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(1)

where K is the frequency-independent factor, Ω is the
vibrational frequency (Raman shift), and ω0 refers to the
frequency of molecular absorption peak.
3.2. Experiment Demonstration of MPC-EPR-SRS

Signal Enhancement. In the following, we present a proof-
of-concept demonstration of MPC-EPR-SRS spectroscopy,
which was carried out in a continuous frequency detuning
mode via MPC by interrogating the C�C vibration mode
(Ω= 1600 cm−1) on a commercial Alexa 635 fluorescent dye
with continuously adjustable pump/Stokes wavelength combi-
nations arising from an MPC light source. To determine the
frequency detuning range, we first measured the absorption

spectrum of Alexa 635 with a halogen lamp. Using pseudo-
Voigt function fitting gives the peak absorption wavelength of
λpeak= 633 nm (ω0= 15,798 cm−1) and the absorption
bandwidth of Γ= 794 cm−1 (Figure 4a).28 Next, we performed
MPC-EPR-SRS measurements with pump wavelength varying
from 713 to 884 nm, while the Stokes wavelength was adjusted
accordingly to match the 1600 cm−1 Raman shift of C�C
vibration mode. In these conditions, the pump-to-absorption
detuning ranges from 2.2 to 5.6Γ, nearly covering the entire
EPR region. Taking the long-wavelength excitation (884/1030
nm) as the far-EPR reference (Δν = 5.6Γ), more than 150-fold
SRS signal enhancement (after normalization with respect to
power, bandwidth, responsivity curve of the photodetector,
and objective transmission of excitation pulses) is observed
when operating in the deep-EPR region (Δν = 2.2Γ). The
measured data points (filled squares, Figure 4b) are well-fitted
by eq 1, confirming the integrity of the EPR operation.
However, the signal enhancement is accompanied by the
increased fluctuation due to the energy transfer to the
molecules. SNR, defined by the ratio of mean to standard
deviation of 200 data points, is optimal in the moderate EPR
region (Δν ≈ 4Γ, open circles, Figure 4b).

Figure 4. MPC-EPR-SRS spectroscopy of Alexa 635. (a) Absorption spectrum of Alexa 635 obtained by experimental measurement (black solid)
and pseudo-Voigt fitting (red dashed), from which the absorption bandwidth Γ is determined as 794 cm−1. (b) SRS intensities (filled squares) of
the C�C bond (Ω = 1600 cm−1) relative to the far-EPR condition when the frequency detuning (Δν = ω0 − ωpump) varies between 2.2 and 5.6Γ.
The red dashed curve represents the Albert A-term preresonance fitting. SNR spectral response (open circles) is maximal when Δν ≈ 4Γ. The
spectral region denoted by a blue (green) background indicates the measurements where the cutoff wavelength of DBS1 was chosen as 800 nm
(830-nm). The far-EPR condition is denoted by a red background.

Figure 5. MPC-EPR-SRS images of the Alexa-staining Drosophila brain measured at (a) far-EPR (Δν = 5.6Γ), (b) moderate EPR (Δν = 3.9Γ), and
deep-EPR (Δν = 2.2Γ) regions, respectively. The pump and Stokes powers at the sample are {0.68 mW, 0.83 mW}, {0.56 mW, 1.22 mW}, and
{0.71 mW, 1.72 mW} in the three cases, respectively.
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3.3. MPC-EPR-SRS Bioimaging. To demonstrate the
potential of MPC-EPR-SRS microscopy, we acquired images of
Drosophila brain samples stained with Alexa 635 dye under far-
EPR and EPR modes. Figure 5a displays the result when
pump/Stokes wavelengths are 884/1030 nm, corresponding to
Ω = 1600 cm−1 (C�C vibration mode) and Δν = 5.6Γ (far-
EPR). By blue-shifting the excitation wavelengths to 790/904
(Δν = 3.9Γ) and 713/805 nm (Δν = 2.2Γ), the Raman signal
level in the brain region is enhanced by 4.2 and 7.3 times (after
the same normalization conducted in the solution measure-
ment) [Figure 5b,c]. The corresponding enhancement factors
are substantially lower than those (14.2 and 151) obtained in
the Alexa 635 solution measurements [filled squares, Figure
4b]. The reduced Raman signal enhancement in the biological
samples mainly originates from the fact that both Alexa dyes
and intrinsic biological molecules (e.g., DNA or proteins) in
the Drosophila brain contribute to SRS signals but in different
ways. In our experiment, only Alexa dyes exhibited EPR
enhancement, while the near-infrared pump remained largely
detuned from the ultraviolet absorption of the intrinsic
biological molecules. The overall EPR enhancement in a
biological sample could be significantly “diluted” as long as the
concentration of Alexa dyes is relatively lower than that of the
intrinsic biological molecules. In contrast, the brain images and
Alexa 635 solution exhibited similar SNR values, which are
{13,42,20} (brain images) and {19,42,8} (solution) at Δν =
{5.6Γ, 3.9Γ, 2.2Γ}, respectively.

Both results endorse that the trade-off between signal and
noise is best achieved in the moderate EPR region (Δν ≈ 4Γ).
Given that the SRS signal reduction is irrelevant to the
biological sample (but some technical issues of the micro-
scope), EPR-SRS is promising in high-sensitivity bio-imaging.

4. DISCUSSION AND CONCLUSIONS
In addition to the ability to address the entire Raman active
region reported in our previous literature,21 this study
highlights another unique advantage of intense supercontin-
uum light source like MPC in implementing high-sensitivity
EPR-SRS spectromicroscopy. By deploying tunable color filters
in both pump and Stokes beam paths, the two excitation pulses
can be independently selected from the octave-spanning
spectrum (600−1300 nm) to meet the requirements of EPR
detection (Ω = ωpump − ωStokes and ω0 − ωpump ∈ [2Γ,6Γ]). In
the spectroscopy experiment, we measured the SRS signal of
C�C (Ω = 1600 cm−1) of a commercial fluorescent dye Alexa
635 by continuously changing the pump-to-absorption
frequency detuning Δν from 5.6 (4486 cm−1) to 2.2Γ (1773
cm−1), nearly covering the entire EPR range. The result shows
not only the qualitative trend but also good agreement with the
phenomenological model. There is a remarkable 150-fold
signal enhancement compared with using a traditional light
source whose Stokes wavelength is fixed at 1030 nm (Δν =
5.6Γ). To the best of our knowledge, this is the first
quantitative verification of the EPR-SRS model. In the
microscopy experiment, we demonstrated EPR-SRS bioimag-
ing of a Drosophila brain stained with Alexa 635 dye. The SRS
signal enhancement is larger than 7-fold when operated at
deep-EPR region (Δν = 2.2Γ). These results suggest the
potential of MPC-EPR-SRS microscopy in enhancing the
sensitivity of biomedical imaging.

Several technical improvements could be made to enhance
the performance of the MPC-EPR-SRS system. First, the
spectral resolution in the current system is estimated to be 200

cm−1, primarily limited by the bandwidths of tunable color
filters. As demonstrated in our previous report, etalon can be
utilized to narrow down the pass bandwidth to ∼35 cm−1.21

Other schemes, such as spectral focusing, could be employed
to approach the typical Raman linewidths (∼10 cm−1).29−31

Improved spectral resolution in collaboration with hyper-
spectral SRS measurement, linear decomposition algorithms,
and deep-learning methods would facilitate the deconvolution
of complex molecular images in the C-H stretching or
fingerprint region.32−34 Next, the acquisition speed and
sensitivity of the current apparatus are limited by the hundreds
of kHz laser repetition rate. A promising remedy is to employ
high-power thin-disk lasers35 with both a high repetition rate
(∼10 MHz) and sufficient pulsed energy (∼10 μJ) for
supercontinuum generation. Existing techniques, such as
nonlinear background removal methods (stimulated Raman
gain and loss detection,25,36 spectral modulation,37,38 dual-
vibrational excitation,39 and deep learning40) and noise
cancellation methods (denoising algorithm,41 balance detec-
tion,42,43 and boxcar detection44,45) can further enhance the
system sensitivity. In conclusion, intense supercontinuum light
source like MPC has great potential in SRS spectromicroscopy.
In particular, the high spectral energy density and enormous
spectral diversity enable interrogation of multiple Raman
signatures of low-concentration, versatile molecules via
spectrally multiplexed EPR-SRS3 or stimulated Raman excited
fluorescence techniques.46
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