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Profiling single cancer cell metabolism via high-content
SRS imaging with chemical sparsity
Yuying Tan1†, Haonan Lin1†, Ji-Xin Cheng1,2,3*

Metabolic reprogramming in a subpopulation of cancer cells is a hallmark of tumor chemoresistance. However,
single-cell metabolic profiling is difficult because of the lack of a method that can simultaneously detect mul-
tiplemetabolites at the single-cell level. In this study, through hyperspectral stimulated Raman scattering (hSRS)
imaging in the carbon-hydrogen (C–H) window and sparsity-driven hyperspectral image decomposition, we
demonstrate a high-content hSRS (h2SRS) imaging approach that enables the simultaneous mapping of five
major biomolecules, including proteins, carbohydrates, fatty acids, cholesterol, and nucleic acids at the
single-cell level. h2SRS imaging of brain and pancreatic cancer cells under chemotherapy revealed acute and
adapted chemotherapy-induced metabolic reprogramming and the unique metabolic features of chemoresist-
ance. Our approach is expected to facilitate the discovery of therapeutic targets to combat chemoresistance.
This study illustrates a high-content, label-free chemical imaging approach that measures metabolic profiles
at the single-cell level and warrants further research on cellular metabolism.
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INTRODUCTION
Although chemotherapy remains a commonly used anticancer
treatment for various cancers (1), the development of chemoresist-
ance has become a major challenge for current cancer therapies and
contributes significantly to tumor relapses and deaths (2). Alterna-
tions in multiple metabolites have been found in several chemore-
sistant cancers that facilitate tumor cell survival under chemostress
(3, 4). In tamoxifen-resistant breast cancer, a tremendous increase
in neutral lipids in the form of droplets and the accumulation of free
cholesterol in lysosomes has been observed (5), and cholesterol and
lipid pathways are up-regulated by the oncoprotein MUC-1 (6).
Hamadneh et al. identified glucose and glutamine metabolic dys-
function in the development of tamoxifen resistance in breast
cancer (7). In lung cancer, membrane lipid composition has been
reported to be associated with cisplatin resistance in lung adenocar-
cinoma (8), whereas cholesterol has been identified to contribute to
the development of cisplatin resistance in lung adenocarcinoma
through ABCG2 up-regulation (9). A notable increase in lipid-
rich protrusions and cholesteryl ester levels has been observed in
gemcitabine-treated and gemcitabine-resistant pancreatic cancer
(10, 11). Recently, a metabolic switch from glycolysis to fatty acid
uptake and β-oxidation was identified as a hallmark of cisplatin-re-
sistant ovarian cancer, supporting a therapeutic target and detec-
tion method for cisplatin-resistant ovarian cancer (12). These
studies imply that the reprogramming of multiple metabolites is
common in the development of cancer chemoresistance, facilitating
tumor cell survival during chemotherapy.
Cell metabolic profiling is commonly performed through indi-

rect measurements of metabolite-related gene expression, enzyme
protein levels, or functional assays, such as Seahorse (12–14). Alter-
natively, mass spectroscopy can provide direct metabolic measure-
ments and hasmade prominent achievements in cancermetabolism

studies (15, 16). However, these methods involve bulk measure-
ments of millions of cells, which potentially mask themetabolic var-
iations of subpopulations in highly heterogeneous cancer cell
environments (17–19). Fluorescence-based flow cytometry and
imaging can be used to study single-cell metabolism by providing
information on fluorescently labeled organelles or metabolites
within individual cells. However, labeling probes may either
perturb or tag small metabolites such as carbohydrates (20). For
the single-cell labeling of multiple metabolites, broad fluorescence
emission spectra pose another challenge in resolving the species.
Coherent Raman scattering microscopy is a high-speed label-

free chemical imaging modality. It is capable of mapping metabo-
lites based on their intrinsic Raman spectroscopic signatures (21,
22). Coherent anti-Stokes Raman scattering (CARS) microscopy
has been used to study lipid storage in aggressive cancers (23–26).
Compared to CARS, stimulated Raman scattering (SRS) is free of
the nonresonant background and scales linearly with molecular
concentrations, providing better contrast and facilitating more
quantitative analysis (27). The integration of single-color SRS
imaging and spontaneous Raman spectroscopy revealed cholesterol
ester as an aggressiveness marker for prostate cancer (28) and pan-
creatic cancer (29). To resolve multiple metabolites with overlap-
ping Raman features, hyperspectral SRS (hSRS) has been
developed through pulse shaping (30, 31), spectral multiplexing
(32, 33), or spectral focusing (34, 35). To date, hSRS has reached
a subsecond imaging speed with spectral coverage of more than
200 cm−1 and spectral resolution of less than 10 cm−1 (36). Via
downstream spectral analysis methods such as least squares (LS)
fitting (37), principal components analysis (38), independent com-
ponent analysis (30), multivariate curve resolution (MCR) (31), and
phasor segmentation (39), hSRS can distinguish intracellular bio-
molecules including fatty acid, nucleic acid, and protein in the
signal-rich carbon-hydrogen (C–H) vibration region (10, 22, 40).
hSRS imaging in the high–wave number C–H window revealed in-
creased lipid unsaturation as a marker of cancer stem cells (41).
However, other essential metabolites such as carbohydrates and
cholesterol remain challenging to study because their SRS signals
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are either weak in the fingerprint region or concealed in the
crowded C–H region by other dominant biomolecules such as pro-
teins or lipids (36, 42). To date, newly synthesized carbohydrates
have been studied using deuterium labeling (43), whereas cholester-
ol mapping has been reported in the 1650 cm−1 fingerprint region
(44). To gain a complete picture of single-cell metabolic profiles and
study cell metabolic switches in response to treatment, high-content
imaging of multiple metabolites is highly desired.
Although fingerprint bands are informative, their cross sections

are small. This leads to noisy measurements, making it difficult to
differentiate less abundant metabolites from the noise. While
broadband CRS covering the entire fingerprint region provides
the potential for high-content imaging, the long acquisition time
for integrating weak signals over a broad spectral window makes
it challenging to perform high-content and high-throughput
mapping of the abovementioned biomolecules in single cells (45–
49). The high–wave number C–H bands can alleviate the sensitivity
issue owing to their much larger cross section than the fingerprint
bands. All major metabolic species, including proteins, nucleic
acids, lipids, and glucose, exhibited the most essential yet overlap-
ping Raman peaks. However, existing hyperspectral data analytics
approaches (30, 31, 37–39) cannot fully appreciate the rich
content of C–H vibrations owing to notable cross-talk between
the output chemical maps. An analysis that incorporates additional
constraints to suppress cross-talk is required to deliver high-content
chemical images in the C–H region.
It was observed that at an optical resolution of approximately 300

nm, within each spatial pixel, only a few metabolic species made
dominant contributions. This physical condition can be incorporat-
ed as a sparsity constraint that limits the number of nonzero com-
ponents in each pixel. The sparsity constraint can be used to
effectively suppress the spectral cross-talk by driving the inconse-
quential components to zero. Using this idea, we added the L1
norm to the component concentration vector at each pixel and in-
troduced a hyperspectral image unmixing method, termed pixel-
wise least absolute shrinkage and selection operator (LASSO) un-
mixing, to decompose hSRS into chemical concentration maps
(50). Previously, LASSO was used in Raman spectroscopy as a
feature selection tool to identify the most significant peaks that dif-
ferentiate substances (49). Here, we present different uses of the
pixel-wise LASSO for sparsity-driven linear unmixing. Using refer-
ence spectra from the components of interest, pixel-wise LASSO
unmixing can separate the components in a complex spectral
profile. Because LASSO provides soft thresholding for sparsity, it
can be adjusted to unmix biomolecular signals even if they
overlap spatially (50).
On the basis of this rationale, we describe a high-content hSRS

(h2SRS) imaging approach using hSRS imaging, block-matching
and 4D filtering (BM4D) denoising (51) and pixel-wise LASSO
spectral unmixing. Pixel-wise LASSO unmixing has previously
been used in the 1650 cm−1 fingerprint region to generate chemical
maps of proteins, lipids, and cholesterol (36). However, its potential
to overcome spectral cross-talk in the high–wave number C–H vi-
bration window for high-content metabolic imaging (up to five
species) was demonstrated in this study. Using h2SRS, we mapped
the major biomolecules, including proteins, carbohydrates, fatty
acids, cholesterol, and nucleic acids, within a single cancer cell
line. Next, we examined metabolic alterations in cancer cells in re-
sponse to chemotherapy. Specifically, we found increased

intracellular fatty acid and carbohydrate levels in brain cancer
cells, U-87 MG (U87), after cisplatin treatment, and in pancreatic
cancer cells, Mia Paca2, after gemcitabine treatment. In addition,
metabolism measured through high-content SRS imaging showed
that the gemcitabine-resistant pancreatic cancer cell line G3K has
higher amounts of carbohydrates, fatty acids, and cholesterol than
its parental sensitive cell line Mia Paca2. These findings provide
valuable insights into potential strategies for sensitizing drug-resis-
tant cancer cells to chemotherapy by targeting the most dramatic
metabolic alterations.

RESULTS
Chemical sparsity constraints enable h2SRS imaging in the
high–wave number C–H window
To study the metabolic profiles of the major biomolecules (proteins,
carbohydrates, fatty acids, cholesterol, and nucleic acids), we used
bovine serum albumin (BSA), glucose, triglycerides (TAG), choles-
terol, and purified RNA from cells as pure chemical spectral refer-
ences. Their Raman spectra had the most substantial peaks in the
C–H region, suggesting that it provides optimal signal fidelity for
the h2SRS imaging of metabolic profiles in cancer cells (Fig. 1A).
In the C–H region, our lab-built SRS system reached a lateral
spatial resolution of 306 nm with a 1.2–numerical aperture (NA)
water immersion objective (fig. S1, A and B). By extensively chirp-
ing the pump and Stokes beams using 75 and 90 cm SF57 glass rods,
respectively, a spectral resolution of 13.09 cm−1 was achieved in the
C–H region (fig. S1, C and D) (36). The high spatial resolution lays
the physical foundation for chemical sparsity at each pixel, and the
spectral resolution was sufficient to discriminate the overlapped
peaks in the highly congested C–H region. Sparsity-constrained hy-
perspectral image unmixing via pixel-wise LASSO unmixing lever-
ages the aforementioned instrumentation advances to
fundamentally improve chemical resolving power. To apply h2SRS
imaging, we first obtained reference spectra from pure biomolecular
samples (Fig. 1B), followed by hSRS imaging of the cells. As illus-
trated in Fig. 1C, we first unfolded a hyperspectral cell image stack
into a data matrix D, in which the ith row (Di,:) represents the raw
spectrum from pixel i. Given the spectral reference input matrix
from the pure component spectra (ST), pixel-wise LASSO solves
the regression problem of fitting the concentrations of all compo-
nents at pixel i (Ci,:) (see Materials and Methods for more details).
The L1-norm sparsity regularization on vector Ci,: promotes that
only a few components make dominant contributions at a pixel,
as highlighted by the dashed circles in each row of the data
matrix. After refolding the concentration matrix, the resulting
chemical maps provided information on the concentration and
spatial distribution of reference biomolecules (Fig. 1C). Using this
hSRS-LASSO method, we simultaneously separated five biomole-
cules in single cells, including proteins, carbohydrates, fatty acids,
cholesterol, and nucleic acids (Fig. 1D). Compared with previous
postprocessing methods, such as LS fitting and MCR, pixel-wise
LASSO unmixing showed notably improved chemical mapping
results for nucleic acids, cholesterol, and carbohydrates in brain
tumor U87 cells (Fig. 1D). The carbohydrate, cholesterol, and
nucleic acid mappings analyzed through LS fitting and MCR were
cross-talked and had noisy backgrounds probably because of the
disturbance of inconsequential components in the LS fitting and
the loss of reference spectrum accuracy for biomolecules with

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Tan et al., Sci. Adv. 9, eadg6061 (2023) 16 August 2023 2 of 16

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 10, 2023



weaker signals inMCR (fig. S1E). In contrast, pixel-wise LASSO un-
mixing can filter out most of the background signal and has less
cross-talk between channels because it uses a sparsity constraint
to prevent spectral cross-talk and retains the accuracy of the refer-
ence spectra.

h2SRS imaging accurately maps major intracellular
biomolecules, including fatty acid, nucleic acid, protein,
cholesterol, and carbohydrate
To further validate the accuracy of h2SRS imaging, we measured
changes in the cell metabolic profile in response to environmental
nutrient variation. First, we cultured brain tumor cell U87 in a
glucose-depleted medium. With pixel-wise LASSO unmixing,
there was a clear decrease in the carbohydrate and lipid signals,
whereas no obvious reduction was observed in the raw SRS
images or output cholesterol and nucleic acid maps (Fig. 2A).

Fig. 1. Sparsity constraints accompanied by improved spectral and spatial resolution enable h2SRS imaging. (A) Raman spectra of BSA, glucose, TAG, cholesterol,
and purified RNA from cells. (B) Normalized SRS spectra of BSA, glucose, TAG, cholesterol, and purified RNA from cells. (C) Schematic illustration of pixel-wise LASSO
spectral unmixing for chemical mapping generation. Nx, Ny, and Nλ represent dimensions of the hyperspectral image, and D, C, and S stand for the data matrix, concen-
tration matrix, and spectral reference matrix, respectively. The circled elements represent the dominant components in each row. (D) Representative hSRS image (sum of
all channels), mapped protein, carbohydrate, fatty acid, cholesterol, and nucleic acid images, as well as the merged image of metabolites mapping for U87 cells through
LASSO, LS fitting, or MCR separation processing. Each channel has the same contrast and shares a color bar. The ranges of color bars are 0 to 150, 0 to 8, 0 to 3, 0 to 5, 0 to 2,
and 0 to 0.6. Scale bar, 20 μm.
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Consistent with the representative images, the quantified mean in-
tensity from the carbohydrate maps significantly decreased due to
glucose depletion in the cell culture environment (Fig. 2B). Fatty
acid and protein levels also decreased, probably because fatty
acids are used as an alternative fuel for glucose (12) and protein syn-
thesis is suppressed by a lack of energy sources and precursors for
glucose metabolism (52), whereas cholesterol levels did not show
obvious changes, as expected (Fig. 2B). A similar metabolic
profile change in response to glucose depletion was also observed
in pancreatic cells Mia Paca2 (Fig. 2, C and D).

In addition to evaluating intracellular carbohydrate alterations in
response to environmental carbohydrate source variations, periodic
acid–Schiff (PAS) staining, a widely used polysaccharide labeling
method, was used to validate the carbohydrate maps of h2SRS
imaging. As shown in Fig. 2, E and F, the h2SRS mapped carbohy-
drate was highly consistent with PAS polysaccharides in multiple
cell lines, including the pancreatic cancer cell Mia Paca2 (Fig. 2E)
and the ovarian cancer cell line SKOV3 (Fig. 2F). In addition to the
overall carbohydrate distribution overlapping with PAS staining,
suspected carbohydrate-related subcellular structures, such as

Fig. 2. h2SRS imaging can precisely map intracellular carbohydrates in cancer cells. (A) Representative hSRS image, h2SRS mapped protein, carbohydrate, fatty acid,
cholesterol, and nucleic acid images, as well as the merged image of metabolites mapping for U87 cultured in a control or glucose depletion medium. The ranges of color
bars are 0 to 400, 0 to 2, 0 to 1.2, 0 to 2, 0 to 2.4, and 0 to 0.5. Scale bar, 20 μm. (B) Quantitative analysis of h2SRS-mapped signal of protein, carbohydrate, fatty acid, or
cholesterol for U87 cultured in a control or glucose depletion medium. n = 13 to 35. (C) Representative hSRS image (sum of all channels), h2SRS mapped protein, car-
bohydrate, fatty acid, cholesterol, and nucleic acid images, as well as the merged image of metabolites mapping for Mia Paca2 cultured in a control or glucose depletion
medium. The ranges of color bars are 0 to 300, 0 to 3, 0 to 0.4, 0 to 0.5, 0 to 1, and 0 to 0.1. Scale bar, 20 μm. (D) Quantitative analysis of h2SRS-mapped signal of protein,
carbohydrate, fatty acid, or cholesterol for Mia Paca2 cultured in a control or glucose depletionmedium. n = 36 to 43. The box in the violin plot indicatesmeans ± SD. **P <
0.01 and ***P < 0.001. (E and F) Representative h2SRS-mapped carbohydrate and periodic acid–Schiff (PAS) staining images of U87 (E) and SKOV3 (F). Carbohydrate-rich
droplets are highlighted in (E) with yellow arrows in original images and zoomed-in regions [(E), second column]. Each compared channel (A and C) has the same contrast
and shares a color bar. Scale bars, 20 μm.
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glycogen, were observed in the h2SRS carbohydrate map, as high-
lighted with yellow arrows in Fig. 2E. The h2SRS mappings for
other components, including proteins, fatty acids, cholesterol, and
nucleic acids, were quite different from those of PAS staining, sug-
gesting that there was no obvious cross-talk between the carbohy-
drate separation and other biomolecules (fig. S2A). The h2SRS
mapped TAG signal was very low in these PAS-stained cells, prob-
ably because the PAS staining solution contained charcoal, which is
widely used to remove nonpolar materials such as fatty acids. The
fatty acid concentrations in both Mia Paca2 and SKOV3 cells de-
creased markedly after PAS staining (fig. S2, B and C), suggesting
that h2SRS can accurately detect intracellular fatty acid levels.
In addition to monitoring the fatty acid removal by charcoal, the

metabolic profiles of cells cultured at various lipid concentrations
were measured to further validate the h2SRS map of fatty acids.
Cells were cultured in delipidated (charcoal-striped) serum, in
which most of the hydrophobic lipid species were removed. A
rescue experiment using a 1% lipid mixture was also performed.
The h2SRS signal for fatty acids in U87 cells decreased in a lipid-de-
pleted culture environment and was rescued by a 1% lipid mixture
(Fig. 3, A and B). Quantification analysis showed that the rescue
group had the highest cholesterol level, and there was no significant
difference between the other two groups (Fig. 3B) because the lipid
mixture containing cholesterol and cholesterol in this delipidated
serum was removed. Similar validation measurements were per-
formed in Mia Paca2 cells, and similar results were obtained (fig.
S3, A and B). These results indicate that fatty acid and cholesterol
levels measured by h2SRS are positively related to the source con-
centration in the culture environment, suggesting the accuracy of
h2SRS in mapping these lipid species.
To validate the ability of h2SRS to distinguish cholesterol from

other biomolecules, h2SRS imaging was performed onU87 cells cul-
tured in a cholesterol-rich medium in both the C–H and 1600 cm−1

regions (Fig. 3C). Because TAG and cholesterol have clearly distin-
guishable C═C trans and cis peaks at 1655 and 1672 cm−1, respec-
tively, they can be used to cross-validate corresponding h2SRS
output maps in the C–H region (44). Our SRS system in the 1600
cm−1 region has a comparable spectral resolution (12.66 cm−1) as
the C–H region (fig. S3, C and D) and could thus detect the peak
shifts of TAG and cholesterol (Fig. 3C). Through h2SRS imaging in
the C–H region, protein-rich, fatty acid–rich, and cholesterol-rich
droplets were found in their respective mappings (Fig. 3C). The
SRS spectra of these single-component–rich droplets in the C–H
region are difficult to distinguish without further data processing
but have cognizable spectral differences in the 1600 cm−1 region
that agree with their reference chemicals (Fig. 3, D and E). In this
cholesterol-rich culture environment, both U87 (Fig. 4, A and B)
and Mia Paca2 cells (fig. S4, A and B) exhibited a marked increase
in the mapped cholesterol signals, whereas the signals from other
channels remained at similar levels. These results indicate that
h2SRS imaging in the C–H region can map cholesterol levels with
minimal cross-talk with other biomolecules.
Except for detecting intracellular cholesterol level rise in a cho-

lesterol-rich culture environment, we also validated cholesterol con-
centration maps by evaluating the intracellular cholesterol level
variation in response to a cholesterol-removing agent methyl-β-cy-
clodextrin (MβCD). After MβCD treatment, U87 cells had visibly
weaker h2SRS signal of cholesterol while the signals for other chan-
nels remained unchanged (Fig. 4C), consistent with the

quantification analysis (Fig. 4D). Metabolic profile changes in
Mia Paca2 in response to MβCD showed a similar phenomenon
(fig. S4, C and D). These data support the idea that h2SRS
imaging can accurately measure intracellular carbohydrates, fatty
acids, cholesterol, and protein levels without observable cross-talk
between different biomolecules.

h2SRS imaging discloses metabolic profile reprogramming
in cisplatin treated brain cancer cells
By simultaneously mapping multiple metabolites through h2SRS,
we can uncover alterations in the cancer metabolic network
during chemotherapy. We first measured the U87 cell’s metabolic
profile change in response to cisplatin treatment, a common chemo-
therapeutic agent for brain cancer. U87 cells treated with cisplatin
exhibited a considerable increase in carbohydrate and fatty acid
content and similar protein and cholesterol levels (Fig. 5, A and
B), implying that carbohydrate and fatty acid metabolic alterations
may play an important role in brain cancer survival under cisplatin-
induced stress. On the basis of the shape of the violin plot, which
illustrates the probability density of the data, subpopulations can be
observed within each group, particularly in terms of fatty acid
content (Fig. 5B). This suggests that certain cells exhibit a more pro-
nounced metabolic response to chemotherapy and may be more re-
silient to chemotherapeutic stress, ultimately leading to the
development of chemoresistance.
To study the mechanism underlying cisplatin-induced metabol-

ic profile reprogramming in U87 cells, we first investigated the
sources of metabolites using hSRS imaging in the C–D bond
region (2050 to 2350 cm−1) for cells cultured with nutrients and
stable isotope probes.We examined glucose uptake and derivedme-
tabolism by feeding U87 cells deuterated glucose-D7. SRS images
showed a stronger C–D signal in the cisplatin-treated U87 cells
(Fig. 5C), which was confirmed by a significant increase in the in-
tegral C–D signal per cell in quantitative analysis (Fig. 5D). This
result implies that the increase in carbohydrate content in cisplat-
in-treated U87 cells may be due to glucose uptake. To test this hy-
pothesis, we measured the mRNA expression level in U87 cells
using the glucose transporter GLUT1 (53). The results indicated
that cisplatin treatment enhanced GLUT1 expression in U87 cells,
which was positively correlated with the cisplatin concentration
(Fig. 5E). This increased C–D signal from glucose-D7 and glucose
transporter up-regulation indicated that glucose uptake contributed
to cisplatin-induced carbohydrate content enrichment in U87 cells,
which could be a therapeutic target for sensitizing breast cancer cells
to cisplatin treatment. Thus, we performed a viability test on U87
cells treated with cisplatin in a glucose-depleted medium. The
result shows that glucose depletion rendered U87 cells more vulner-
able to cisplatin (Fig. 5F). To identify the therapeutic target at the
molecular level, we used the GLUT1 inhibitor BAY-876 (BAY) to
inhibit glucose uptake, with the aim of sensitizing U87 cells to cis-
platin treatment, because BAY is not toxic to U87 cells at high con-
centrations (fig. S5A). The combination treatment of cisplatin and
BAY on U87 cells had a crucial synergistic effect in suppressing cell
growth, reducing the half-maximal inhibitory concentration (IC50)
values by 51% (Fig. 5G). These data suggest that targeting the
altered metabolism following cisplatin treatment can sensitize
brain cancer U87 cells to cisplatin.
Subsequently, we studied another metabolite, fatty acid, an in-

creased level of which was detected by h2SRS (Fig. 5, A and B).
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We first measured fatty acid uptake by hSRS imaging in the C–D
region of U87 cells separately fed with the deuterium-labeled satu-
rated fatty acid palmitic acid-D31 (PA-D31) or the unsaturated fatty
acid oleic acid-D34 (OA-D34) (Fig. 5, H and I, and fig. S6, A and B).
Representative SRS images and quantitative analysis revealed a re-
duction in the C–D signal in PA-D31–treated U87 cells (fig. S6, A
and B). However, the C–D signal in U87 cells from OA-D34 mark-
edly increased after cisplatin treatment (Fig. 5, H and I), suggesting
that U87 cells preferentially took up unsaturated fatty acids instead
of saturated fatty acids under cisplatin treatment stress. In agree-
ment with the metabolic profile measurements obtained through
h2SRS, it is evident from the representative image and violin plot
that certain treated cells exhibited substantially higher levels of
fatty acid uptake than the remaining population, suggesting the
presence of a subpopulation within cisplatin-treated brain cancer
cells (Fig. 5, H and I). To further confirm that the increased fatty

acid content in cisplatin-treated U87 cells was due to exogenous
fatty acid uptake, the mRNA expression level of the common fatty
acid transporter CD36 was evaluated and showed a positive rela-
tionship with cisplatin treatment (Fig. 5J). These results imply
that modulating fatty acid availability may boost U87 sensitivity
to cisplatin, and the decreased IC50 value of U87 cells in a fatty
acid–deficient environment supports this hypothesis (Fig. 5K). In
addition, reducing fatty acid availability by blocking fatty acid
uptake through the fatty acid transporter CD36 inhibitor sulfosuc-
cinimidyl oleate (SSO) significantly sensitized U87 cells to cisplatin
with an approximate reduction of 45% in the value of IC50 (Fig. 5L),
whereas SSO treatment alone was not lethal to U87 cells unless the
concentration was extremely high (fig. S6C). Therefore, SSO is a po-
tential candidate for combination therapy with cisplatin to achieve
better anticancer outcomes. Furthermore, we assessed the uptake of
cholesterol by measuring the C≡C signal in cells fed with

Fig. 3. h2SRS imaging can precisely separate fatty acids from other biomolecules in cancer cells. (A) Representative hSRS image, h2SRS mapped protein, carbo-
hydrate, fatty acid, cholesterol, and nucleic acid images, as well as the merged image of metabolites mapping for U87 cultured in a control (with fetal bovine serum), lipid
depletion (with delipid serum), or lipid depletion medium supplementary with 1% lipid mixture. Each channel has the same contrast and shares a color bar. The ranges of
color bars are 0 to 250, 0 to 3, 0 to 0.9, 0 to 0.8, 0 to 1.2, and 0 to 0.1. (B) Quantitative analysis of h2SRS-mapped signal of protein, carbohydrate, fatty acid, or cholesterol for
U87 cultured in control, lipid depletion medium, or lipid depletion medium supplementary with 1% lipid mixture. n = 10 to 15. *P < 0.05, **P < 0.01, and ***P < 0.001. (C)
Representative hSRS image, h2SRS mapped protein, carbohydrate, fatty acid, cholesterol, and nucleic acid images, as well as the merged image of metabolites mapping
for U87 cultured in medium with excess cholesterol with protein, fatty acid, and cholesterol-rich droplets highlighted. The ranges of color bars are 0 to 300, 0 to 1.1, 0 to
0.4, 0 to 1.8, and 0 to 2. (D) SRS spectra of BSA, TAG, and cholesterol in 1600 cm−1 and C–H regions. (E) SRS spectra of protein, fatty acid, and cholesterol-rich droplets are
highlighted in (C) in 1600 cm−1 and C–H regions. The cholesterol peak at 1674 cm−1 and the TAG peak at 1655 cm−1 are highlighted with green and red dash lines in (D)
and (E), respectively. Scale bars, 20 μm.
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Fig. 4. h2SRS imaging reveals cholesterol content change in response to culture environment alternation and drug treatment in brain cancer cells. (A) Repre-
sentative hSRS image, h2SRSmapped protein, carbohydrate, fatty acid, cholesterol, and nucleic acid images, as well as themerged image of metabolites mapping for U87
cultured in a control medium ormediumwith excess cholesterol. The ranges of color bars are 0 to 400, 0 to 2, 0 to 0.4, 0 to 0.6, 0 to 2, and 0 to 0.7. (B) Quantitative analysis
of h2SRS mapped signal of protein, carbohydrate, fatty acid, or cholesterol for U87 cultured in a control medium or medium with excess cholesterol. n = 14 to 19. (C)
Representative hSRS image, h2SRS mapped protein, carbohydrate, fatty acid, cholesterol, and nucleic acid images, as well as the merged image of metabolites mapping
for U87 with or without cholesterol remover methyl-β-cyclodextrin (MβCD) treatment. The ranges of color bars are 0 to 300, 0 to 2, 0 to 0.8, 0 to 1.5, 0 to 1, and 0 to 0.4. (D)
Quantitative analysis of h2SRS mapped signal of protein, carbohydrate, fatty acid, or cholesterol for U87 treated with or without MβCD. n = 14 to 20. Each channel has the
same contrast and shares a color bar. Scale bars, 20 μm. The box in the violin plot indicates means ± SD. *P < 0.05 and ***P < 0.001.
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cholesterol labeled with an alkyne tag, phenyl-diyne cholesterol
(PhDY-Chol) (fig. S7). The observed reduction in cholesterol
uptake suggests that other metabolic activities related to cholesterol,
such as cholesterol synthesis and utilization, were also altered, re-
sulting in similar intracellular cholesterol content in treated U87
cells (Fig. 5, A and B). Our findings indicate that changes in the me-
tabolite content induced by cisplatin treatment in U87 cells can be

detected using isotope hSRS imaging. Targeting these chemothera-
py-induced metabolic alterations can potentially enhance current
therapeutic outcomes in the treatment of brain cancer (Fig. 5, G
and L).

Fig. 5. h2SRS imaging discloses
metabolic profile reprogramming
in brain cancer cells after cisplatin
treatment. (A) Representative images
of hSRS, h2SRS mapped protein, car-
bohydrate, fatty acid, cholesterol, and
nucleic acid, as well as merged
mapping for U87 cells treated with or
without cisplatin. Each channel has
the same contrast and shares a color
bar. The ranges of color bars are 0 to
150, 0 to 1.5, 0 to 0.3, 0 to 0.5, 0 to 0.5,
and 0 to 0.05. (B) Quantitative analysis
for (A). The box indicates means ± SD.
n = 59 to 62. (C and D) Representative
SRS images and quantitative C–D
signal of U87 cells cultured with 25
mM glucose-D7, with or without 3.3
μM cisplatin treatment for 72 hours. n
= 112 to 139. (E) Relative mRNA ex-
pression of GLUT1 in U87 cells treated
with cisplatin for 48 hours. (F and G)
Dose-response curve to cisplatin for
U87 cultured with control or no
glucose medium and with or without
supplemental 1 μM BAY-876. (H and I)
Representative SRS images and
quantitative C–D signal of U87 cells
cultured with 20 μM OA-D34 with or
without 1.65 μM cisplatin treatment
for 48 hours. n = 111 to 146. (J) Rela-
tive mRNA expression of CD36 in U87
cells treated with cisplatin for 48
hours. (K and L) Dose-response curve
to cisplatin for U87 cultured in
medium with control or delipid serum
and with or without supplemental
200 μM sulfosuccinimidyl oleate
(SSO). n = 3 to 7 for (F), (G), (K), and (L).
Scale bars, 20 μm (A) and 50 μm (C
and H). In (D) and (I), the box indicates
means ± SE; the whisker represents 5
to 95% of the data. Data in (E) and (J)
are shown as means + SD. *P < 0.05.
DMSO, dimethyl sulfoxide.
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h2SRS imaging unveils metabolic profile reprogramming in
gemcitabine-treated and -resistant pancreatic cancer cells
To demonstrate the general applicability of h2SRS, we further mon-
itored the metabolic profile changes in pancreatic cancer cells that
responded to gemcitabine, the most commonly used chemotherapy
for pancreatic cancer. In addition to understanding the acute met-
abolic profile changes under chemotherapy, we studied the adapted
metabolic profile reprogramming in drug-resistant cells to help
identify a therapeutic target to fight gemcitabine resistance, a
major challenge in current pancreatic cancer treatment (54–57). Ac-
cordingly, both the gemcitabine-resistant cell line G3K and its pa-
rental sensitive cell line Mia Paca2 were used to study gemcitabine-
induced acute and adapted metabolic profile reprogramming in
pancreatic cancer. h2SRS imaging revealed that acute gemcitabine
treatment resulted in distinct increases in carbohydrate and fatty
acid concentrations in Mia Paca2 cells; however, no changes were
observed for these two channels in G3K. Compared with sensitive
Mia Paca2 cells, resistant G3K cells showed stronger signals in car-
bohydrate and fatty acid mapping (Fig. 6A). Notably, h2SRS
imaging enabled the visualization of elongated cell morphology in
both gemcitabine-treated and gemcitabine-resistant cells, as well as
the spatial distribution of each metabolite. For instance, fatty acid–
dominant droplets are predominantly located at the periphery of the
cells, as indicated by the arrows in the fatty acid channel. Further-
more, cholesterol-rich components near the nucleus were observed
in G3K cells, as indicated by the arrows in the cholesterol maps
(Fig. 6A). Quantitative analysis corresponded with the observation
from the h2SRS images and revealed an increase in cholesterol in-
tensity in both gemcitabine-treated Mia Paca2 and resistant G3K
cells compared to untreated Mia Paca2 cells (Fig. 6B). These
results suggest that gemcitabine causes acute and adaptive enhance-
ment of intracellular fatty acids, carbohydrates, and cholesterol
levels in pancreatic cancer cells. The violin plot of fatty acids
shows a distinct subpopulation of cells with a high fatty acid
content, which is consistent with the representative images present-
ed in Fig. 6A. These metabolic profile changes may be part of the
self-defense strategies of pancreatic cancer cells to facilitate survival
under gemcitabine stress.
To further study the mechanism underlying the observed meta-

bolic alterations, we first examined the source of enhanced carbo-
hydrate signals in these pancreatic cells by hSRS imaging in the C–D
region of pancreatic cells fed with glucose-D7. The hSRS images in-
dicated that the C–D signals from glucose-D7 in gemcitabine-
treated Mia Paca2 cells and resistant G3K cells were significantly
higher than those in wild-type Mia Paca2 cells, which is in agree-
ment with the quantitative analysis (fig. S8, A and B). This
boosted glucose-D7–derived signal implies that gemcitabine drives
pancreatic cancer cells to uptake more glucose instantly and perma-
nently, resulting in increased intracellular carbohydrate content in
gemcitabine-treated and gemcitabine-resistant pancreatic cancer
cells. This hypothesis was validated by the up-regulation of
GLUT1 mRNA expression in the up-regulation in gemcitabine-
treated and gemcitabine-resistant PC cells (Fig. 6, C to E). On the
basis of the increased demand for glucose in gemcitabine-treated
pancreatic cancer cells, Mia Paca2 and G3K cells were found to be
more vulnerable to gemcitabine in glucose-depleted environments,
as expected (fig. S8, C and D). To specifically interfere with glucose
uptake, BAY, an inhibitor of the glucose transporter GLUT1, was
used, which is not toxic at low concentrations (fig. S8E). The

toxicity of high concentrations of BAY implies that its target trans-
porter, GLUT1, is a major glucose transporter in the pancreas and
essential for its survival. The viability assay of BAY also indicated
that the resistant G3K was more sensitive to BAY than the sensitive
Mia Paca2 cell, in compliance with the increased carbohydrate level
in G3K. Combined with low concentrations of BAY, gemcitabine
toxicity obviously increased in G3K cells but did not improve sig-
nificantly inMia Paca2 cells probably because this cell line is already
extremely sensitive to gemcitabine (Fig. 6, F and G). These data sug-
gested that GLUT1-mediated glucose uptakewas critical for the sur-
vival of G3K cells under gemcitabine stress.
In addition to carbohydrate metabolism, we studied fatty acid

metabolism according to gemcitabine-inducedmetabolic profile re-
programming in pancreatic cells using h2SRS imaging. hSRS
imaging in the C–D region showed enhanced C–D signal intensity
in gemcitabine-treated Mia Paca2 and resistant G3K cells with PA-
D31, indicating that PA is one of the major sources of the acute and
adapted fatty acid increase in pancreatic cancer cells under gemci-
tabine stress (fig. S9, A and B). In contrast, the C–D signal fromOA-
D34 increased in Mia Paca2 cells treated with gemcitabine but de-
creased in resistant G3K cells, implying that OA uptake contributes
to the acute but not adapted gemcitabine-induced fatty acid increase
in pancreatic cells (fig. S9, C and D). This increase in fatty acid
uptake was supported by the up-regulation of mRNA expression
of the fatty acid transporter CD36 in gemcitabine-treated and gem-
citabine-resistant pancreatic cancer cells (Fig. 6, H to J). According
to this growing demand for fatty acid sources, interferencewith fatty
acid availability by removing fatty acid sources in the culture
medium makes Mia Paca2 and G3K cells more vulnerable to gem-
citabine treatment, as expected (fig. S9, E and F). To narrow down
the therapeutic target to themolecular level, SSO, an inhibitor of the
fatty acid transporter CD36, was used to improve the therapeutic
outcome of gemcitabine. Solely, SSO was not toxic to pancreatic
cancer cells (fig. S9G), but it could sensitize pancreatic cancer
cells to gemcitabine treatment, especially G3K, with an IC50 value
reduction of approximately 41% (Fig. 6, K and L). These results
imply that CD36-mediated fatty acid uptake contributes to the gem-
citabine-induced fatty acid content increase in pancreatic cancer
cells and that the CD36 inhibitor SSO combined with gemcitabine
yields a synergetic effect on suppressing pancreatic cancer
cell growth.
Via h2SRS, we also observed an increase in cholesterol levels in

gemcitabine-resistant G3K cells compared to Mia paca2 cells
(Fig. 6B). To monitor cholesterol uptake, we performed hSRS
imaging of cells treated with the cholesterol analog PhDY-Chol.
Images and quantitative analysis showed a significant increase in
cholesterol uptake in resistant G3K cells and a modest increase in
treated Mia Paca2 cells compared to untreated Mia Paca2 cells
(fig. S10, A and B). This enhanced cholesterol uptake in G3K cells
agrees with the metabolic profile measurement of intracellular cho-
lesterol levels, suggesting that exogenous uptake is the primary
source of cholesterol in G3K cells. The limited increase in cholester-
ol uptake observed in the treated Mia Paca2 cells implies that cho-
lesterol synthesis may also contribute to the acute elevation of
cholesterol levels following gemcitabine treatment. Using a
similar strategy, the cholesterol removal agent 2-hydroxypropyl-β-
cyclodextrin (HPβCD) was used to sensitize pancreatic cancer cells
to gemcitabine because HPβCD is not toxic to Mia Paca2 and G3K
cells (fig. S10C). However, the synergistic effect of this combination
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Fig. 6. h2SRS imaging unveils metabolic profile reprogramming in gemcitabine-treated or -resistant pancreatic cancer cells. (A) Representative hSRS image, h2SRS
mapped protein, carbohydrate, fatty acid, cholesterol, and nucleic acid images, as well as the merged image of metabolites mapping for gemcitabine-sensitive Mia Paca2
and resistant G3K cells treated with or without gemcitabine. Scale bar, 20 μm. Each channel has the same contrast and shares a color bar. The ranges of color bars are 0 to
250, 0 to 1.8, 0 to 0.4, 0 to 1.2, 0 to 6, and 0 to 0.05. (B) Quantitative analysis of h2SRS mapped signal of protein, carbohydrate, fatty acid, or cholesterol for Mia Paca2 and
G3K with or without gemcitabine treatment. n = 83 to 105. The box in the violin plot indicates means ± SD. (C to E) Relative mRNA expression level of GLUT1 in Mia Paca2
and G3K cells treated with (D and E) or without (C) gemcitabine for 72 hours. (F andG) Dose-response curve to gemcitabinewith or without supplemental 50 nM BAY-876
treatment for Mia Paca2 (F) and G3K (G) cells. (H to J) Relative mRNA expression level of GLUT1 in Mia Paca2 and G3K cells treated with (I and J) or without (H) gemcitabine
for 72 hours. Data in all the bar charts (C to E and H to J) are shown as means + SD. (K and L) Dose-response curve to gemcitabine with or without supplemental 200 μM
SSO treatment for Mia Paca2 (K) and G3K (L) cells. n = 3 for dose-response viability assay (F, G, K, and L). *P < 0.05, **P < 0.01, and ***P < 0.001.
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treatment was inconspicuous in both Mia Paca2 and G3K cells (fig.
S10, D and E). The various synergistic outcomes of combinational
treatments targeting different metabolites demonstrate the signifi-
cance of high-content metabolic imaging and subsequent analysis
of the same cells.

DISCUSSION
h2SRS imaging provides insights into cancer metabolic
response to chemotherapy
Several studies have indicated that chemotherapy can trigger the re-
programming of multiple metabolites simultaneously (5–7, 12),
similar to our observations in this study. However, simultaneous
mapping of multiple chemical species inside a single cell using ex-
isting analytical approaches is challenging. Although mass spec-
trometry approaches, including cytometry by time of flight,
matrix-assisted laser desorption/ionization, desorption electrospray
ionization, and SpaceM, can provide a wealth of molecular informa-
tion, they have insufficient resolution for intracellular measure-
ments and/or require the introduction of labels that may interfere
with cell metabolism (58, 59). Some mass spectrometry imaging
techniques, such as nano–secondary ion mass spectrometry
(nano-SIMS), have high resolution. However, nano-SIMS has low
throughput, making it impractical for studying heterogeneous
samples (60). Raman spectroscopy allows label-free, high-resolu-
tion, and high-throughput imaging but can only distinguish a few
metabolites inside a cell (12) because the major metabolites have
limited spectral features in certain vibration regions and signifi-
cantly overlap spatially, leading to signal cross-talk. To address
these difficulties, we improved the spatial and spectral resolutions
of our SRS setup to collect more spectral information from biolog-
ical samples (36). To extract the desired information from the hSRS
images with packed spectral information, we introduced a sparsity
constraint to restrain cross-talk from inconsequential components
at each pixel. The integration of these instrumental advantages and
data processing by pixel-wise LASSO enables the mapping of major
biomolecules, specifically proteins, carbohydrates, fatty acids, cho-
lesterol, and nucleic acids, thereby revealing the metabolic profiles
of cancer cells.
Taking advantage of this metabolic profile measurement at the

single-cell level using h2SRS imaging, we clustered three important
metabolites, carbohydrates, fatty acids, and cholesterol, in a single-
cell–based three-dimensional (3D) scatterplot for a more compre-
hensive understanding of metabolic reprogramming in cancer cells.
After clustering these three important metabolites, the difference
between gemcitabine-sensitive Mia Paca2 and resistant G3K cells
in the 3D scatterplot was muchmore evident than the measurement
of a single metabolite because G3K cells tend to have higher con-
tents of all three metabolites simultaneously (Fig. 7A). In addition,
acute metabolic profile reprogramming induced by gemcitabine in
Mia Paca2 cells clearly showed that gemcitabine-treated Mia Paca2
cells with higher carbohydrate signals tended to have higher fatty
acid and cholesterol contents (Fig. 7B). Similarly, the difference in
metabolic profile between cisplatin-treated and untreated U87 cells
was more obvious in the 3D scatterplot than in the single metabolite
measurements (Fig. 7C). This metabolic profile measurement pro-
vides an approach for studying any potential positive or negative
correlation betweenmetabolites that have been observed in previous
cancer studies (5, 6, 12). In addition to measuring the metabolite

content within a cell, h2SRS imaging revealed subpopulations in
heterogeneous cell samples, as illustrated in Figs. 5B and 6B, as
well as the spatial distribution of certain metabolites, such as lipid
droplets at the cell periphery and cholesterol accumulation near the
nucleus in pancreatic cancer cells (Fig. 6A). Moreover, our previous
study established a relationship between the spatial distribution of
lipid droplets and alterations in the morphology of pancreatic
cancer cells subjected to stress (10). Expanding upon this study,
the inclusion of h2SRS would enable the exploration of additional
metabolites and the investigation of more intricate correlations
between cell morphology and metabolic profiles.

h2SRS mapping of metabolic profile facilitates discovery of
most effective therapeutic targets
In this study, h2SRS was used to map multiple metabolites at the
single-cell level. To quantitatively compare their significance in im-
proving the outcome of chemotherapy, we characterized the meta-
bolic profile in terms of the intensity of h2SRS mapped
carbohydrate, fatty acids, and cholesterol at the single-cell level
and performed discriminant analysis to classify different cell lines
or cells with various treatments. Using the intensity of these three
metabolites, the discriminant analysis yielded a relatively high orig-
inal (62.6%) and cross-validated (61.6%) accuracy in distinguishing
gemcitabine-sensitive Mia Paca2 and resistant G3K cells. Further-
more, the standardized canonical discriminant function coefficient
from the discriminant analysis was positively related to the syner-
getic effect of the combined treatment targeting the respective me-
tabolites (table S1A). The synergetic effect of the combinational
treatment was evaluated by the IC50 fold-change between the com-
binational treatment and the original chemotherapy. BAY, SSO, and
HPβCD have been used to perform combinational treatment target-
ing carbohydrate, fatty acid, and cholesterol-derived metabolism,
respectively. The standardized canonical discriminant function co-
efficient represents the correlation of specific variables to distin-
guish the two groups in the discernment analysis. Ranking the
discriminant function coefficients in table S1A, fatty acids contrib-
uted most to the adapted metabolic profile reprogramming in gem-
citabine-resistant G3K cells, followed by carbohydrates and
cholesterol. Accordingly, the combination treatment targeting
fatty acid uptake resulted in the greatest reduction in the IC50
value for gemcitabine treatment in G3K cells, followed by carbohy-
drate and cholesterol. These discriminant function coefficients and
the synergetic effect of the combination treatment were also posi-
tively related to the fold change in h2SRS mapped intensity for
the respective metabolites (table S1A). These results imply that
h2SRS imaging metabolic profile measurement can not only identi-
fy potential metabolic targets for better anti-cancer outcomes but
also predict the most effective target metabolites to improve
cancer therapy.
In addition to adapting metabolic profile reprogramming in

drug-resistant cells, we applied the abovementioned analytical
method to study metabolic profile reprogramming by comparing
gemcitabine-treated and untreated Mia Paca2 cells. The discrimi-
nant analysis had high original (80.1%) and cross-validated
(77.3%) accuracy when classifying Mia Paca2 cells with and
without gemcitabine treatment. On the basis of discriminant anal-
ysis, fatty acids had the highest discriminant function coefficient,
accompanied by the greatest growth of h2SRS mapped intensity
and the best synergetic effect in suppressing Mia Paca2 cell
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growth, followed by carbohydrates (table S1B). Cholesterol with a
small increase in h2SRS mapped intensity was least positively
related to the differentiation between gemcitabine-treated versus
untreated Mia Paca2 cells and thus could barely improve gemcita-
bine therapeutic outcome on Mia Paca2 as expected.
A similar phenomenon was observed in the brain cancer U87

cells. The accuracy of the discriminant analysis distinguishing
U87 cells with and without cisplatin treatment was relatively high
for both the original (62.8%) and cross-validated (60.3%) analyses.
Comparing the metabolites with a significant change in h2SRS
mapped intensity in cisplatin-treated U87 cells, fatty acids had a
higher discriminant function coefficient and h2SRS mapped inten-
sity fold change than carbohydrates did, and thus the synergetic
effect of combinational treatment blocking fatty acid uptake was
greater than that blocking glucose uptake, as expected (table S1C).
All these data support that h2SRS-measured metabolic profile re-
programming can successfully predict which metabolites could be
the most effective targets for improving the current therapy.

h2SRS enables label-fee imaging of carbohydrate
inside cells
Currently, technologies for detecting intracellular carbohydrates are
limited. Widely used methods include glucose uptake measurement
by detecting fluorescent or isotopic labeling of glucose analogs, such
as 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino]-2-Deoxyglu-
cose (2-NBDG)and [3H]-2-deoxyglucose, and indirect measure-
ment of glucose-related proteins, such as the glucose transporter
GLUT1 (20, 61). However, these approaches cannot directly
measure the endogenous glucose content of a cell, which is critical
for studying carbohydrate metabolism, one of the most common
fuels in mammalian cells. A recent study also showed that a
glucose analog with a bulky fluorescent label enters the cell via a
transporter-independent mechanism and thus lacks accuracy in
studies of glucose transporters (20). This result is convincing
when considering the comparable sizes of the fluorescent group
and glucose, suggesting that only small labeling tags and label-
free methods are suitable for carbohydrate measurement.

Accordingly, SRS imaging is a powerful approach for carbohydrate
metabolism studies that measures glucose uptake in the CD region
via glucose-D7 (12, 62) and evaluates endogenous carbohydrate
content in the C–H region through h2SRS. This is the first reported
imaging approach to evaluating relative endogenous carbohydrate
content at the single-cell level in a label-free manner. This approach
can greatly benefit not only research on overall intracellular carbo-
hydrate levels but also studies of carbohydrate-rich cellular compo-
nents, such as glycogen and the cell wall. Combined with a recently
developed method established by Oh et al. (63), h2SRS can measure
the absolute concentration of carbohydrates as well as other metab-
olites in a cell, enabling metabolic profiling with absolute concen-
tration measurements. This combination further enhances the
benefits of h2SRS imaging for studying cell metabolism.

Broader applications of h2SRS imaging
Compared tometabolic profile measurements in fixed cells, as dem-
onstrated in this study, living cell imaging is more attractive for cell
metabolic studies, although fixation has shown no effect on spectral
unmixing in a previous study (36). Living cell imaging can facilitate
a more comprehensive metabolic study by tracking metabolic
profile dynamics and interactions between metabolites but requires
a higher imaging acquisition speed. In this study, we used 100
frames of SRS images to cover the spectral region of interest with
an even step size to obtain sufficient spectral information.
However, the number of frames can be considerably reduced to
less than 10 by subsampling, which can significantly shorten the
imaging acquisition time but retain the spectral signature of the
molecule of interest by capturing images only at the Raman shift
with essential spectral features of the molecule of interest (47, 49).
Improvement of imaging acquisition speed not only allows the im-
plementation of metabolic profile monitoring in a living cell but
also benefits time-consuming tissue imaging, which is also impor-
tant for various biomedical fields. Leveraging the high depth reso-
lution and penetration depth of SRS imaging (64), h2SRS can also be
used for the more intricate task of volumetric imaging of tissues and
3D cultures.

Fig. 7. Single-cell–based 3D scatterplot reveals cancer cell metabolic profile reprogramming induced by chemotherapy. (A) Three-dimensional scatterplots of
h2SRSmapped carbohydrate, fatty acid, and cholesterol intensity for Mia Paca2 andG3K cell based on single-cell analysis. n= 94 to 106. (B) Three-dimensional scatterplots
of h2SRSmapped carbohydrate, fatty acid, and cholesterol intensity for Mia Paca2 with or without gemcitabine treatment. n = 84 to 94. (C) Three-dimensional scatterplots
of h2SRS mapped carbohydrate, fatty acid, and cholesterol intensity for U87 treated with or without cisplatin. n = 59 to 62. Each point represents a single cell, and the
ellipsoids represent 80% of data coverage.
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In this study, we distinguished five major components covering
the most abundant Raman signals within a cell. Several improve-
ments can be made to scale separable channels beyond current
channels. On the instrumentation side, we can further optimize
the pulse chirping condition of the SRS system to reach sub–10
cm−1 spectral resolution, making subtle peaks more differentiable.
From an algorithm perspective, spectral unmixing is highly depen-
dent on the signal fidelity of the data, and we can deploy more ad-
vanced deep learning–based denoisers to enhance the robustness of
weaker channels versus noise. Last, because the unmixing algorithm
is a supervised approach that requires prior knowledge of the chem-
ical composition, more detailed prior information (metabolite com-
position and abundance) obtained through mass spectroscopy can
effectively guide the selection and scaling of input references
beyond the current five components.
In addition to investigating metabolic features related to chemo-

resistance, this approach could also be applied to study cancer pro-
gression, differentiation, and metastasis, which have been reported
to involve cellular metabolic preprogramming (65–68). In addition
to cancer studies, this method has broader applications in other
disease models that are closely correlated with cellular metabolic re-
programming, such as obesity, diabetes, and metabolic disorders
(69–72). Fundamental biological studies correlating metabolic re-
programming, such as immunological reactions, may benefit from
this approach (73). In conclusion, our approach opens the door to a
plethora of cancer cell metabolic features and reprogramming
studies but is not limited to cancer cell research.

MATERIALS AND METHODS
Cell lines
Mia Paca2 (catalog no. CRL-1420), U-87MG (catalog no. HTB-14),
and SKOV3 (catalog no. HTB-77) cells were purchased from the
American Type Culture Collection. Gemcitabine-resistant G3K
cells were generated from parental Mia Paca2 cells by repeated gem-
citabine treatments (11). All cell lines were authenticated and tested
negative for mycoplasma. SKOV3, Mia Paca2, and G3K cells were
cultured in high-glucose Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal bovine serum (FBS) and
penicillin/streptomycin (P/S; 100 U/ml). U-87 MG cells were cul-
tured in Eagle’s minimum essential medium supplemented with
10% FBS and P/S (100 U/ml). All cells were maintained in a humid-
ified incubator with a 5% CO2 supply at 37°C. Cells were seeded in
35 mm glass-bottom dishes for imaging experiments.

Materials
Glucose-D7, PA-D31, and OA-D34 were purchased from Cambridge
Isotope Laboratory. BAY, SSO, cisplatin, and gemcitabine were pur-
chased from Cayman Chemical Co. Delipidated serum (charcoal-
stripped FBS) and glucose-free DMEM were obtained from
Thermo Fisher Scientific.

hSRS imaging
A lab-built SRS system developed according to a previously pub-
lished method was used to perform hSRS imaging (36). The
system had a femtosecond laser source (InSight DeepSee+,
Spectra-Physics) operating at 80 MHz with two synchronized
output beams, a tunable pump beam ranging from 680 to 1300
nm, and a fixed Stokes beam at 1040 nm. The pump beam is

tuned to 799 nm for imaging at the C–H vibration region (2800
to 3050 cm−1), to 852 nm for imaging at the C–D vibration
region (2100 to 2300 cm−1), and to 890 nm for imaging at the fin-
gerprint vibration region (1530 to 1780 cm−1). The Stokes beamwas
modulated at 2.3 MHz by an acousto-optic modulator (1205-C,
Isomet) and chirped by a 15 cm glass rod (SF57, Schott) before
being combined with the pump beam. The combined beam was
subsequently chirped by five 15 cm glass rods before being sent to
a laser-scanning microscope. The combined beam was focused on
the sample using a 60× water immersion objective (NA = 1.2, UP-
lanApo/IR, Olympus), and the signal from the sample was collected
using an oil condenser (NA = 1.4, U-AAC, Olympus). The powers
of the pump and Stokes beam before the microscope were 30 and
200 mW, respectively. To obtain hSRS images, a motorized linear
stage was used to tune the optical path length of the Stokes beam,
generating a pump-Stokes temporal delay that corresponds to dif-
ferent Raman bands under the spectral focusing scheme. The pixel
dwell time was set to 10 μs. The size of each image was set to 400 ×
400 pixels. A 100-frame image stack was acquired at different
pump-Stokes temporal delays for hSRS imaging.
Large-area mapping was achieved by moving the samples fixed

on a motorized stage (PH117, Prior Scientific) controlled by a lab-
written LabView program. The program directs the stage to move to
an adjacent location with partial overlap for stitching after hSRS
imaging stack acquisition. A 3 × 3 montage image was acquired
for each area of interest. At least three montage images were ob-
tained from different areas of interest in each sample. Montage
images were stitched using ImageJ.

Pixel-wise LASSO for hyperspectral image unmixing
After processing by the BM4D denoising method following a pre-
viously published method (36, 51), the acquired hSRS images were
decomposed into pure chemical maps by pixel-wise LASSO unmix-
ing, as described below.
Given a 3D hyperspectral image stack with spatial dimensions of

Nx, Ny, and spectral dimension of Nλ, we first unfold the image into
a 2D data matrix D ∈ RNxNy×Nλ in raster order. Assuming a total of k
components, we subsequently construct a spectral reference matrix
S ∈ RNλ×k in which each column represents a spectrum from a pure
component. Assuming a concentration matrix C ∈ RNxNy×k, a linear
mixing forward model equation can be formulated as follows

D ¼ CST þ E ð1Þ

where ST is the transpose of S, and E ∈ RNxNy×Nλ represents the error
introduced by noise or fitting. The goal of hyperspectral image un-
mixing is to solve for C as the inverse of Eq. 1. To leverage chemical
sparsity as a priori model, we introduced L1-norm regularization to
each row of the concentration matrix and solved the original inverse
problem in a row-by-row (i.e., pixel-by-pixel) manner through
LASSO regression

Ĉi;: ¼ argmin
Ci;:�0

1
2
kDi;: � Ci;:STk

2
2 þ λkCi;:k1

� �

ð2Þ

whereCi,: is a k-element nonnegative vector representing the ith row
of the concentration matrix C, Ĉi;: is the LASSO regression output,
Di,: is the ith row in the data matrix D, and λ is the hyperparameter
that tunes the level of sparsity.
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For label-free high-content hSRS imaging, to form matrix S,
spectra of pure biomolecule samples, including glucose, Bovine
serum albumin (BSA), glyceryl trioleate, cholesterol, and cell ex-
tracted RNA, were obtained from individual experiments. For iso-
topic labeling imaging, reference spectral profiles were acquired
from isotopic analog stock solutions. Measurements of the cell
samples and references were performed on the same day to elimi-
nate system variation. We fixed all imaging conditions and unmix-
ing parameters (S and λ) when measuring different cell samples;
therefore, the output concentrations of a certain metabolite
channel could be compared across different groups to study meta-
bolic profile changes.
To quantify the metabolic profile and isotopic signal at the

single-cell level, single-cell unmixing and mapping were performed
using Ilastik pixel classification software (74). Representative areas
of the nuclei, cytoplasm, and background were selected for Ilastik
training and initial pixel unmixing generation. The final single-
cell map was generated via morphological fine-tuning using
MATLAB software (MathWorks).

Isotope labeling and SRS imaging
After seeding the cells in a 35 mm glass-bottom dish overnight, the
original medium was replaced with media containing isotope label-
ing (glucose-D7, PA-D31, OA-D34, or PhDY-Chol). For glucose-D7
labeling, glucose-free DMEM medium supplemented with 10%
FBS, P/S (100 U/ml), and 25 mM glucose-D7 was used to culture
cells for 72 hours. For fatty acid and cholesterol analogs labeling,
cells were incubated within a medium containing analogs at a
final concentration of 20 μM for 48 hours. Cells were then fixed
with 10% neutral buffered formalin for 30 min and washed with
phosphate-buffered saline (PBS) three times, before hSRS imaging
at Raman spectral region from 2100 to 2300 cm−1.

Spontaneous Raman spectroscopy
The spontaneous Raman spectra of the pure chemical samples were
acquired using Raman spectroscopy (inVia Raman microscope, Re-
nishaw) with a 532 nm laser source and a 20× air objective. The
grating was set to 2600 cm−1 and acquisition time was between 2
and 60 s.

PAS staining
Cells seeding in 35 mm glass-bottom dishes were fixed with 10%
neutral-buffered formalin for 15 min, followed by three washes
with PBS. The cells were then incubated in 1% periodic acid
(Sigma-Aldrich, 3951) for 30 min at 20°C and washed three times
with deionized water. The cells were incubated with Schiff’s reagent
(Sigma-Aldrich, 3952016) for 30 min. After washing three times
with deionized water, the cells were imaged under a microscope
(BX 51, Olympus) equipped with a color complementary metal-
oxide semiconductor camera (Thorlabs, CS165CU).

Cell viability assay
The MTS assay (Abcam, #ab197010) was used to measure cell via-
bility. After overnight seeding of cells in 96-well plates at a density of
1500 to 2000 cells per well, chemotherapy was added to the cell
culture at the indicated concentrations for 72 hours. After incubat-
ing with MTS reagent for 1 hour, cell viability was evaluated by
measuring the absorbance at 490 nm using a plate reader.

RNA extraction and reverse transcription PCR
Total RNA was extracted from cells using the RNeasy Mini Kit
(Qiagen Inc.). RNA was reverse-transcribed using the iScript
cDNA Synthesis Kit (Bio-Rad). Reverse transcription polymerase
chain reaction (RT-PCR) was performed using StepOne Plus RT-
PCR (Applied Biosystems) with Power SYBR Green Master Mix
(Thermo Fisher Scientific) following the manufacturer’s protocol.
The melting curve and cycle threshold (Ct) of the gene of interest
and the housekeeping gene (RPLP0) were recorded. The relative
mRNA expression level (ΔCt) was calculated by subtracting the
housekeeping gene Ct value from the target gene Ct value. Results
are presented as means ± SD. The primer sequences are listed in
table S2.

Quantification and statistical analysis
All the data are presented as means ± SD unless otherwise specified.
Two-tailed Student’s t test and Mann-Whitney U test were used to
analyze statistical significance. N represents the sample size used in
each experiment. P < 0.05 was considered statistically significant.
Sample size, n, and statistical parameters are shown in the figure
legends. The discrimination accuracy and standardized canonical
discriminant function coefficients were calculated using the Statis-
tical Package for the Social Sciences (SPSS)linear discriminant func-
tion analysis. ImageJ, MATLAB, Ilastik, and Microsoft Excel were
used for data processing and analysis. Figures were generated and
organized using Origin and Microsoft PowerPoint software.

Supplementary Materials
This PDF file includes:
Figs. S1 to S10
Tables S1 and S2
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