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Longitudinal Single-Cell Imaging of Engineered Strains with
Stimulated Raman Scattering to Characterize Heterogeneity
in Fatty Acid Production

Nathan Tague, Haonan Lin, Jean-Baptiste Lugagne, Owen M. O’Connor, Deeya Burman,
Wilson W. Wong, Ji-Xin Cheng,* and Mary J. Dunlop*

Understanding metabolic heterogeneity is critical for optimizing microbial
production of valuable chemicals, but requires tools that can quantify
metabolites at the single-cell level over time. Here, longitudinal hyperspectral
stimulated Raman scattering (SRS) chemical imaging is developed to directly
visualize free fatty acids in engineered Escherichia coli over many cell cycles.
Compositional analysis is also developed to estimate the chain length and
unsaturation of the fatty acids in living cells. This method reveals substantial
heterogeneity in fatty acid production among and within colonies that
emerges over the course of many generations. Interestingly, the strains
display distinct types of production heterogeneity in an enzyme-dependent
manner. By pairing time-lapse and SRS imaging, the relationship between
growth and production at the single-cell level are examined. The results
demonstrate that cell-to-cell production heterogeneity is pervasive and
provides a means to link single-cell and population-level production.
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1. Introduction

Microbial production of chemicals has the
potential to provide a sustainable source
of products ranging from fuels to specialty
materials.[1–4] A major diculty holding
back the replacement of industrial chemi-
cals with bio-based alternatives is that bio-
production often falls short in terms of con-
version metrics that dictate economic feasi-
bility, such as titer, rate, and yield. Over the
past two decades, researchers have made
great strides in identifying metabolic path-
ways capable of producing a diverse array
of useful chemicals.[5] However, the reality
is that extensive engineering and optimiza-
tion are required for any given chemical to
compete as an alternative to those sourced
from petroleum.
Producing chemicals in cells oers many

advantages, but presents unique industrial
challenges. For example, cell-to-cell variation and genetic muta-
tions can result in production heterogeneity during fermenta-
tion that limits overall process eciency. Single-cell variation can
stem from a variety of causes, such as stochasticity in the under-
lying biological processes,[6,7] variations in media environments
within cultures,[8] or selection pressures against high-producing
cells causing mutational escape variants.[9,10] However, the fre-
quency and impact of production variation and how it changes
over time are largely unknown. Methods that enable quantica-
tion of heterogeneity and its emergence are a prerequisite to un-
derstanding the root cause and implementing designs that miti-
gate its eect on overall eciency.
Here, we focus on fatty acid synthesis, which is an attractive

pathway for metabolic engineering because it oers a biological
means to synthesize linear hydrocarbons. Fatty acids and their
derivatives are high-demand chemicals that can be used as fuels,
commodities, and specialty chemicals. Numerous studies have
aimed at increasing the eciency of fatty acid synthesis pathways
as well as controlling the species of fatty acid produced.[11–14] Ter-
mination enzymes that interface with this pathway can be used to
produce a wide variety of high-value fatty acids derivatives such
as alkanes, olens, and alcohols.[15]

Current methods to measure production strain performance
include mass spectrometry, uorescent biosensors, and dyes.
Mass spectrometry-based techniques provide exquisite chemical
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specicity and, with stable isotope labeling, metabolic uxes can
be inferred.[16] However, they are limited in their ability to quan-
tify single cells, which means they can overlook valuable infor-
mation about population heterogeneity that is key to predict-
ing stability during scale-up.[17–19] Further, because the measure-
ment process is destructive, it is not possible to follow produc-
tion changes within the same cells over time. Biosensor-based
uorescent assays, in contrast, can capture dynamic, single-cell
information. These systems are amenable to high throughput
screens and are non-destructive.[20] However, well-characterized
biosensors are scarce in comparison to the number of chemi-
cals metabolic engineers can produce. Additionally, signicant
optimization is often necessary to ne-tune the concentration-
responsive range of a biosensor.[21–23] In the case of fatty acid pro-
duction, lipophilic dyes such as Nile red have been used to mea-
sure production,[24] however these stains lack lipid specicity.
Further, both biosensor and dye-based measurements are indi-
rect readouts of chemical production.
Given the drawbacks of current screeningmethods, we sought

to develop a complementary approach that can capture produc-
tion and composition information in single cells over time. Stim-
ulated Raman scattering (SRS) is an ideal candidate, as it is a non-
destructive, label-free vibrational spectroscopic imaging method
that directly detects chemical compounds based on intrinsic
molecular vibrations.[25,26] The ability of SRS to probe metabolic
activities in live cells has been demonstrated on microalgae[27]

and mammalian cells[28] for short periods of time. Although
SRS imaging of industrially relevant microbes such as E. coli
has been reported,[29,30] its use has been limited to conditions
where cells were either xed or where only a single timepoint
was required. Performing longitudinal SRS for compositional
chemical imaging on live microbes remains challenging. This is
mainly attributed to their small size (e.g., E. coli are 1–2 μm in
length), which shortens the axial signal integration length, and
thus yields weaker SRS signals compared to larger cells. In the
context of metabolic engineering, where compositional informa-
tion on products is critical, one needs to perform hyperspectral
SRS to generate pixel-wise Raman spectra for molecular nger-
printing. However, due to signicant spectral overlaps between
metabolites, especially in the carbon-hydrogen (C–H) region, ex-
isting hyperspectral SRS image processingmethods only provide
unsaturation levels of fatty acids.[31] They also fail to deliver infor-
mation on chain length, which is equally important for free fatty
acid synthesis.
Here, we introduce a longitudinal hyperspectral SRS method

to study metabolically engineered E. coli, monitoring free fatty
acid production and composition in live cells. We perform SRS
in the C–H region which maximizes SRS signals. To overcome
spectral crosstalk in the region, we develop a hyperspectral im-
age analysis technique that generates chain length and unsatura-
tion level predictions, allowing for chemical readouts that com-
plement gas chromatograph-mass spectrometry (GC-MS) data.
First, we demonstrate that we can clearly distinguish fatty acid
production strains from wild-type E. coli by deconstructing im-
ages into maps of their chemical components. With the ability to
measure production at the single-cell level, we examine hetero-
geneity in fatty acid production strains and observe both colony-
level heterogeneity and substantial cell-to-cell dierences in pro-
duction. We optimize imaging parameters to enable longitudi-

nal hyperspectral SRS imaging to capture fatty acid production
over time in growing cells. Next, we use longitudinal measure-
ments to demonstrate dynamic dierences in fatty acid produc-
tion and composition within the same strain. Lastly, we pair SRS
microscopy with time-lapse phase contrast microscopy and auto-
mated segmentation analysis to examine relationships between
production and growth.
Overall, our study presents two important advances in SRSmi-

croscopy, namely fatty acid chain length estimation and longi-
tudinal imaging of proliferating cells. Upon these advances, we
characterize metabolic heterogeneity among dierent cells in a
colony and temporal heterogeneity throughout colony formation.

2. Results

2.1. Hyperspectral SRS Imaging of Fatty Acid Production Strains

Spectral signals fromRaman scattering correspond to vibrational
energies of covalent bonds. This allows for direct imaging of
chemicals without the need for labels such as uorescent re-
porters or dyes. Here, we deploy hyperspectral SRS[32–34] to obtain
chemicalmaps of protein and fatty acids. To achieve this, we chirp
two broadband femtosecond laser beams (pump and Stokes) us-
ing high-dispersion glass rods, producing linear temporal sepa-
ration of the frequency components (Figure 1a; Figure S1, Sup-
porting Information). The beating frequency of the two beams is
linearly correlated with the temporal delay between the two laser
pulses. Using a 2D Galvo scanner, the combined laser beam is
moved across the x and y dimensions of the sample to generate an
image. This process is then repeated for a range of temporal de-
lays, each of which produces a dierent wavenumber, ultimately
producing a hyperspectral SRS image generated in a frame-by-
frame manner. The spectral region surrounding the 2900 cm−1

wavenumber is typically referred to as the “C–H region” and has
a strong SRS signal. Biomolecules such as proteins and fatty
acids, which contain many C–H bonds, show a high Raman sig-
nal in this region. Importantly, SRS intensity scales linearly with
molecular concentrations. The strong signal in the C–H region
enables high-delity SRS imaging with low optical powers that
are compatible with live-cell imaging. Thus, this conguration
can be used to acquire longitudinal images of live cells, result-
ing in data across four dimensions: space (x and y), wavenum-
ber, and time. We set out to utilize SRS chemical imaging in the
C–H region to measure fatty acid production in metabolically en-
gineered strains of E. coli.
Previous metabolic engineering eorts have focused on pro-

ducing free fatty acids in E. coli using the native type II fatty
acid synthesis pathway.[14,21,35] Introducing a heterologously ex-
pressed acyl-acyl carrier protein (ACP) thioesterase can catalyze
the formation and pooling of free fatty acids from elongating
acyl hydrocarbon chains that would otherwise be incorporated
intomembrane phospholipids (Figure 1b).[36,37] We reasoned that
SRS imaging could eectively capture fatty acid in production
strains since carbon chains present in fatty acids provide strong
and distinctive C–H peaks. To test this hypothesis, we studied
several production strains that were previously engineered to pro-
duce high quantities of free fatty acids (Tables S1 and S2). We
rst focused on the strain AbTE*, which expresses an acyl-ACP
thioesterase from Acinetobacter baylyi, carrying G17R/A165R
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Figure 1. SRS imaging of E. coli production strains shows single-cell free fatty acid levels. a) Schematic of the optical setup for SRS imaging to produce
hyperspectral images using a Stokes and pump laser focused on a live sample. Hyperspectral SRS images contain 3D data: x and y coordinates and
wavenumber, which provide spectral information. Longitudinal SRS imaging adds a fourth dimension, time. b) Schematic of free fatty acid production
in E. coli. Expression of cytosolic thioesterase results in free fatty acid accumulation through the type II fatty acid synthesis (FAS) pathway. Free fatty
acids can vary in chain length and unsaturation, largely dictated by thioesterase specicity. c) Representative raw SRS data from wild-type E. coli and a
strain overexpressing a cytosolic thioesterase (AbTE*). The summation of Raman spectra at each pixel is shown. Representative regions are outlined
in red with the corresponding Raman spectra shown below the image. Fatty acids and proteins emit strong Raman signals in the C–H region (≈2900
cm−1). Note that the y-axis scales are dierent; Figure S3 (Supporting Information) shows them on the same scale. Scale bar, 10 μm. d) Spectra at each
pixel of the SRS image can be decomposed to generate chemical maps. Protein and fatty acid components are decomposed using spectral standards to
produce chemical maps. Spectral standards shown in schematic are Bovine serum albumin (cyan), palmitoleic acid (C16:1, orange), capric acid (C10:0,
red), and palmitic acid (C16:0, yellow). Protein and fatty acid chemical maps for both strains are shown. Scale bar, 10 μm.

mutations that improve enzymatic activity in E. coli.[38] SRS im-
ages ofAbTE* show increased fatty acid production relative to the
wild-type strain, as evidenced by dierences in both the chemical
spectra and visible fatty acid droplets around the cells (Figure 1c).
Spatially localized chemical mapping of cell mass and fatty

acids can be achieved through linear unmixing of the hyperspec-
tral SRS images. To achieve this, we used a pixel-wise least abso-
lute shrinkage and selection operator (LASSO) linear unmixing
analysis to decompose the hyperspectral image into composite
chemical maps of given pure components (Methods). Compared
with conventional least-squares tting, pixel-wise LASSO adds a
constraint that a few components have dominant contributions
at each pixel, which eectively suppresses signal crosstalk be-
tween chemical maps. We initially used standard spectra from
pure protein (Bovine serum albumin, BSA), saturated fatty acids
(C10:0 and C16:0), and unsaturated fatty acids (C16:1) (Figure S2,
Supporting Information) to decompose the hyperspectral im-
age into four chemical maps. We selected three types of fatty

acids to ensure coverage of fatty acid variation in chain length
and unsaturation levels. To visualize total concentrations, all the
fatty acid maps were combined to generate a single map. To-
gether with the protein channel, the spectral unmixing proce-
dure outputs two-channel chemical maps, revealing the distri-
butions of protein and fatty acid components at the single-cell
level (Figure 1d). Protein levels were comparable between wild-
type and AbTE* strains, with slightly elevated levels in the en-
gineered strain. In contrast, the fatty acid signal in the AbTE*
strain was signicantly stronger than in wild-type.Wild-type cells
contain membrane phospholipids, which contribute to a small
amount of background in the free fatty acid map, however, these
signals aremuch weaker than those recorded in theAbTE* strain
(Figure S3a, Supporting Information). This is further validated
in the spectral domain, where the average spectrum from wild-
type cells is primarily contributed by protein (Figure S3b, Sup-
porting Information). It should be noted that these strains were
sampled from liquid culture, where free fatty acids are secreted
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and can aggregate in the media. As a consequence, the large fatty
acid droplets are not necessarily produced by the cells within
the eld of view but could be an aggregate of fatty acid pro-
duced frommany cells in the liquid culture. In subsequent exper-
iments we address this by growing cells on agarose pads to allow
for aliation of cells and the fatty acids they produce, however,
these snapshots from liquid culture provide a view into aggregate
production.

2.2. Characterization of Enzymatic Specicity, Chain Length
Distribution, and Degree of Unsaturation

Analytical chemistry methods such as GC-MS are typically em-
ployed to measure chemical production because they oer pre-
cise chemical specicity information. For fatty acid quantica-
tion, gas chromatography eectively separates fatty acid esters
based on chain length and, along with mass/charge spectra, can
specically read out fatty acid ester chain length and unsaturated
bonds. From a metabolic engineering perspective, quantication
of a fatty acid production strain’s chain length distribution and
level of unsaturation is critical. For biofuel purposes, chain length
and termination chemistry can be tuned to mimic characteristics
of fuel sources such as gasoline, diesel, or jet fuel.[39] Alterna-
tively, medium-chain fatty acids (C8-C12) and their derivatives
can be sources of many specialty chemicals.[40] With these end
point applications in mind, we sought to extend hyperspectral
SRS imaging capabilities to capture the specic proles of free
fatty acid production strains.
In E. coli, fatty acid biosynthesis is carried out through a mul-

tistep, enzymatic Claisen reduction.[41] The enzymatic compo-
nents of type II fatty acid synthesis in E. coli are encoded as sepa-
rate proteins, creating a pathway in which two carbons are added
to an elongating acyl-ACP chain with each cycle (Figure 2a).
The number of cycles around this pathway before the elon-
gating acyl chain is cleaved by an acyl-ACP thioesterase deter-
mines the resulting fatty acid chain length. The primary factor
driving chain length is thought to be the enzymatic specicity
of the heterologously expressed thioesterase.[11,42] Researchers
have carried out numerous eorts to engineer specicity of
acyl-ACP thioesterases in order to create desired chain length
proles.[14,38,43–45] Several thioesterases have been shown previ-
ously to produce a range of free fatty acid chain length proles.
Three examples are CpFatB1*, AbTE*, and ’TesA. The CpFatB1*
and AbTE* thioesterases originate from C. palustris and A. bay-
lyi, respectively, and the “*” denotes mutants that were engi-
neered to increase activity in E. coli.[38,46] ’TesA is E. coli’s na-
tive thioesterase, where the “’” denotes deletion of the leader
sequence.[36] Endogenously, TesA contains a leader sequence that
localizes the enzyme to the periplasm; deleting the leader pep-
tide sequence allows for interaction with cytosolic acyl-ACPs,
enabling the production of free fatty acids.[36] We worked with
strains CpFatB1*, AbTE*-FV50, and ‘TesA-FV50, which each ex-
press a dierent thioesterase (Tables S1 and S2, Supporting In-
formation). Strains AbTE*-FV50 and ‘TesA-FV50 additionally ex-
press heterologous fadR and vhb50, which have been shown to
increase free fatty acid production.[12,47] FadR is a transcription
factor that regulates many genes in the fatty acid synthesis path-
way for increased free fatty acid titer when expressed alongside

‘TesA. Vhb50 is a Vitreoscilla hemoglobin that further increases
fatty acid production by increasing oxygen uptake.
We conducted an experiment in which each of the three strains

was grown in liquid culture and thioesterase expression was in-
duced for 24 h to produce free fatty acids. Samples from each
production culture were taken in parallel for GC-MS quanti-
cation and SRS hyperspectral imaging. As expected, GC-MS re-
sults show highly variable chain length distributions depending
on the thioesterase expressed (Figure S4, Supporting Informa-
tion). CpFatB1* primarily produces octanoic acid (C8:0). AbTE*-
FV50 produces a mix of medium- and long-chain saturated fatty
acids with myristic acid (C14:0) as the largest component. Lastly,
‘TesA-FV50 produces long-chain fatty acids with large contribu-
tions from both myristic (C14:0) and palmitic acid (C16:0). Since
each production strain has a unique chain length prole, they
provide a diverse range of strains for chain length analysis with
SRS imaging.
To examine whether dierent types of fatty acids can be dier-

entiated through SRS spectral features, we acquired SRS spectra
of pure free fatty acid standards. We rst acquired SRS spectra of
various saturated fatty acids, which are inclusive of all that were
present in the GC-MS measurements (C8:0 through C18:0). Im-
portantly, when using pure samples for saturated fatty acids, we
noted signicant spectral changes with respect to chain length.
As shown in Figure 2b, saturated fatty acids in the C–H region
are composed of CH2 peaks in 2832–2888 cm

−1 and CH3 peaks in
2909–2967 cm−1 region.[48] Since a saturated fatty acid has an in-
creasing number of CH2 bonds as the chain length increases, but
the terminal CH3 bond number is constant, we reasoned that the
ratio of the CH2/CH3 spectral windows would scale with chain
length. With the pure saturated fatty acid standards of variable
chain length, we observed a nearly linear (R2 = 0.97) relationship
between chain length and the ratio of CH2/CH3 area under the
curve (Figure 2c). This suggests that given a mixture of saturated
fatty acids, we can utilize the SRS spectra to estimate an average
chain length prole.
Meanwhile, unsaturated fatty acids with dierent chain

lengths all have a dominant and broad peak at 2900 cm−1, with
only small changes in the relative intensities of the 2850 cm−1

(CH2) and 3000 cm
−1 (CH3) peaks (Figure S5, Supporting Infor-

mation). The subtle dierences between unsaturated fatty acid
chain lengths at the CH2 and CH3 peaks cannot be used to faith-
fully decompose unsaturated fatty acid chain lengths. Although
identifying individual unsaturated fatty acid chain lengths was
not possible, we noted that there was a distinct peak at 3000 cm−1

that was common to all unsaturated fatty acids (Figure S5, Sup-
porting Information), which allowed us to dierentiate whether
a fatty acid is unsaturated or saturated. Therefore, in each strain,
we used a weighted average of four unsaturated fatty acids
(C12:1, C14:1, C16:1, and C18:1) to represent the unsaturated
fatty acid channel, in which the weight is derived from relative
concentrations of the four unsaturated fatty acids measured by
GC-MS.
We used these relationships to estimate chain length and un-

saturation production proles at the single-cell level. To obtain
these proles, we selected a total of eight pure chemicals, includ-
ing protein, averaged unsaturated fatty acid, and a wide range
of saturated fatty acids (C8:0, C10:0, C12:0, C14:0, C16:0, and
C18:0). We measured spectra for each, normalized them, and
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applied pixel-wise LASSO unmixing to decompose the hyper-
spectral SRS image. We rst chose AbTE*-FV50 as a test dataset
for the 8-component spectral unmixing. However, with an in-
creased number of input references, un-biased regression be-
came unreliable because of the large number of possible spectral
combinations. The resulting signal crosstalk could not be sup-
pressed simply via the sparsity condition in LASSO. To address
this issue, we utilized bulk culture strain production data mea-
sured by GC-MS as another physical constraint to augment spec-
tral decomposition. Using strain-specic GC-MS quantication
in Figure S4 (Supporting Information), we calculated a scaling
constant for each fatty acid corresponding to its concentrations
and multiplied it with the normalized reference. All types of un-
saturated fatty acids were grouped together and yielded a com-
bined scaling constant. This allows the decomposition to start
with prior knowledge of a specic production strain to inform
the spectral combinations tested for each pixel (Figure S6a, Sup-
porting Information), such that a combination of GC-MS and
SRS measurements can be used together to estimate the average
chemical composition per pixel.
Following GC-MS augmented spectral unmixing, to predict

chain length distributions, each saturated chain length chemi-
cal map is multiplied by the corresponding spectral reference,
summed together, leaving out protein and unsaturated fatty acid
maps, to create a hyperspectral SRS image of total saturated
fatty acids, which can be used to estimate the average chain
length at each pixel using the CH2 and CH3 spectral windows
(Figure S6b,c, Supporting Information). The predicted saturated
chain length distributions from SRS samples closely match the
features of the GC-MS distributions in three separate bulk cul-
ture samples (Figure 2d,e). We used the Jensen-Shannon di-
vergence metric[49] to quantify similarity between SRS image
and GC-MS distributions, all of which fall under 0.1, represent-
ing highly similar distributions (Figure S7, Supporting Infor-
mation). Importantly, the prediction captures whether the strain
produces primarily medium- or long-chain fatty acids or a mix-
ture of both. It is important to note that chain length maps re-
port a single value per pixel even though the pixel may have
a mixture of chain lengths. For example, if a mixture of chain
lengths is not spatially separated, a non-even prediction is pos-
sible (e.g., 14.9). When comparing predictions with the original
GC-MS data, we bin this as C14 (Experimental Section), how-
ever, the complete average chain length values are present in
the images. Furthermore, at any pixel, a mixture of fatty acids
can be predicted by referencing the individual chemical map out-
puts for each saturated fatty acid channel (Figure S6b, Supporting
Information).

To gauge unsaturation levels, we utilized the presence of the
Raman peak at ≈3000 cm−1, which is unique to the C = CH2
bonds in unsaturated fatty acids (Figure 2f). This peak serves
as an identier of unsaturation level and components from this
fatty acid source can be unmixed with LASSO regression. To
demonstrate our ability to predict unsaturation levels from pro-
duction strains, we tested the same three strains, which have dif-
ferent ratios of unsaturation to saturation (Figure S4, Support-
ing Information). The ratio of unsaturation from GC-MS data
scales linearly with predicted unsaturated ratios from SRS im-
ages (Figure 2g), giving an indication of the ability of this ap-
proach to predict the ratio of unsaturation. With the ability to
calculate unsaturation levels in addition to chain length distribu-
tions of saturated fatty acids in SRS images, we cover many as-
pects of free fatty acid production that are important formetabolic
engineers.
We next applied our compositional analysis to AbTE*-FV50

seeded and grown on agarose pads (Figure 2h). Highly produc-
tive strains will secrete end-products, making it dicult to track
the source of produced chemicals back to the cells that gener-
ated them. Therefore, sampling from liquid culture for imag-
ing may not accurately provide production heterogeneity infor-
mation. To increase the likelihood that free fatty acid production
is tracked to the cells responsible for production, we rst grew
cells on agarose pads such that production could be localized
to the region containing the cells. We observed a large aggre-
gate of fatty acids outside the cells that are primarily composed
of saturated, long-chain fatty acids. This diers from interpre-
tations of GC-MS quantication where it is assumed that long-
chain fatty acids remain within the cell.[38] Importantly, chain
length calculations vary spatially, meaning the analytical aug-
mentation with GC-MS data is not over-powering the regression
algorithm to produce overly biased predictions. Thus, our results
mitigate a potential concern about GC-MS augmented spectral
unmixing, which is that the process will simply output predic-
tions that match the input weights, giving no additional infor-
mation beyondGC-MS. Instead, we nd chain length predictions
from each pixel vary spatially, meaning spectral unmixing is out-
putting information not solely based on GC-MS input. Addition-
ally, single-cell chain length maps display a relatively homoge-
nous makeup of chain lengths between individual cells, which
is consistent with current understanding of the fatty acid syn-
thesis pathway and thioesterase specicity.[15] However, without
single-cell resolution, it would not be possible to distinguish be-
tween this scenario and one where chain-length mixtures pro-
duced from bulk culture originate from distinct subpopulations
that produce primarily one chain length each.

Figure 2. Chain length distribution prediction from dierent thioesterase enzymes. a) Schematic of the type II fatty acid synthesis pathway in E. coli. In-
troduction of an acyl-ACP thioesterase pulls out elongating acyl-ACPs to form free fatty acids. Enzymatic specicity of the thioesterase largely determines
the distribution of the fatty acid chain length prole. b) The ratio of internal CH2 and terminal CH3 bonds within a saturated fatty acid is a function of
chain length. Raman spectra of pure saturated fatty acid standards are shown for dierent chain lengths. Specic spectral windows correspond to each
bond. c) The ratio of area under the curve (AUC) of CH2/CH3 bonds scales approximately linearly with chain length. Error bars show a standard deviation
of n = 6 replicates. d) Saturated fatty acid chain length distribution prediction with GC-MS compared to e) SRS using CH2/CH3 ratio analysis (n = 3 bi-
ological replicates, error bars show standard deviation). Strains shown are: CpFatB1*, AbTE*-FV50, and ‘TesA-FV50 (Table S2, Supporting Information).
f) SRS spectra of saturated and unsaturated fatty acid standards (C16:0, C16:1). The unique peak at ≈3000 cm−1 allows for spectral decomposition of
unsaturation content. g) Comparing GC-MS unsaturation ratio of produced free fatty acids to SRS production based on spectral analysis. Error bars
show standard deviation from n = 5 elds of view for each strain. h) Spectral decomposition and saturated chain length prediction of AbTE*-FV50 grown
on an agarose pad. Scale bars, 10 μm.
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Figure 3. Inter- and intra-colony heterogeneity proles of production strains. a) Production from replicate ‘TesA-FV50 microcolonies (n = 105) are
compared to wild-type microcolonies (n = 56), revealing inter-colony production heterogeneity. Each data point represents fatty acid production from
a single microcolony. Protein and fatty acid chemical maps are shown for representative high and low-producing microcolonies. Scale bar, 10 μm. b)
Representative protein and fatty acid chemical maps are shown for a microcolony of the production strain AbTE*-FV50. c) Intra-colony production is
quantied for single cells within the microcolony (n = 213) (Figure S8, Supporting Information). Each data point represents a single cells’ production.
Scale bar, 10 μm. Box plot overlays contain median (white circle), rst and third quartiles (gray box), and 1.5× interquartile range (thin gray line) for each
distribution.

2.3. Quantication of Heterogeneity in Fatty Acid Production
Strains

Given our ability to image production at the single-cell level, we
asked whether our strains displayed production heterogeneity in
the overall levels of fatty acid produced. Previous studies have re-
ported sub-populations within production cultures that are less
productive and lead to decreased overall performance of the pop-
ulation in a scaled-up bioprocess.[24,50] Single-cell chemical imag-
ing with SRS is uniquely suited to quantifying this phenomenon.
We focused on strains AbTE*-FV50 and ‘TesA-FV50 for agarose
pad experiments because CpFatB1* displayed poor growth in the
agarose pad conditions.
We rst quantied fatty acid production from E. coli mi-

crocolonies of the wild-type and ‘TesA-FV50 production strain
(Figure 3a). Interestingly, ‘TesA-FV50 microcolonies exhibit a
high level of colony-to-colony production variation. This inter-
colony heterogeneity is visible in the fatty acid chemical maps,
with strains from the same original source exhibiting high and
low-producingmicrocolonies. One possible explanation for these
dierences in production is variable transcriptional regulation
of key enzymes that are maintained through replication, lead-
ing tometabolic bottlenecks.[7,51] Alternatively, the ability toman-
age toxicity associated with production in the time frame fol-
lowing thioesterase induction may lead to divergent production
outcomes.[52]

We also examined production heterogeneity in the fatty acid
production strain AbTE*-FV50. Strikingly, we observed a very
dierent type of production variation in this strain (Figure 3b).
Unlike the intercolony heterogeneity in ‘TesA-FV50, the AbTE*-

FV50 strain has high heterogeneity between cells in a single mi-
crocolony. We used the protein channel to segment the image
into single cells for analysis (Figure S8, Supporting Information)
and quantied single-cell production (Figure 3c). Our quanti-
cation indicates that in this strain a small percentage of cells
produce the vast majority of fatty acids. This result is consis-
tent across many elds of view within the microscopy images,
suggesting that it is a general feature of this production strain
(Figure S9, Supporting Information).

2.4. Longitudinal SRS Imaging of Fatty Acid Production During
Growth of Colonies

Understanding the dynamics of chemical productionwith single-
cell resolution can provide key insights into the emergence of
heterogeneity, production bottlenecks, and can guide engineer-
ing strategies to maximize metabolic ux. To that end, we sought
to adapt the SRS system for longitudinal imaging. While SRS
imaging of living cells has been reported,[27,53,54] its application
to chemical production over long periods of growth has not
been demonstrated. Previouswork fromWakisaka, et al. achieved
video rate SRS for short periods of time by reducing spectral ac-
quisitions to four points in the C–H region.[27] For metabolic en-
gineering applications, however, spectral delity and time scales
on the order of bioprocesses would provide a more useful form
of longitudinal imaging. Therefore, we sought to develop param-
eters amenable to longitudinal imaging without loss of spectral
information. We installed an incubator on the microscope stage
and grew live cells on agarose pads for at least 16 h at 31 °C. First,

Adv. Sci. 2023, 2206519 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2206519 (7 of 15)
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we tested whether the routine laser powers we used for endpoint
SRS imaging were damaging to live cells (75 mW for 1040 nm
Stokes and 15 mW for 800 nm pump on sample). At the begin-
ning of longitudinal imaging, we captured a bright eld trans-
mission image and measured a hyperspectral SRS image in one
eld of view (Figure S10a,b, Supporting Information). After 16 h
of incubation, cells that were previously exposed to SRS imaging
did not duplicate, nor did they produce signicant levels of fatty
acids. In contrast, cells in a region in the immediate vicinity that
had not been exposed to imaging grew into a dense microcolony
and produced fatty acid droplets (Figure S10c,d, Supporting In-
formation). Although the laser exposure did not induce visually
discernable cell damage, the photodamage altered cell growth,
indicating that these laser powers were too high.
To optimize the imaging conditions to reduce phototoxicity, we

performed the same live-cell experiment with lower laser powers.
We reduced the Stokes power from 75 to 25 mW, while the pump
laser at 800 nmwas kept at 15mW. Interestingly, at the same laser
scanning conditions as previous experiments, namely 150 nm
pixel step size and 10 μs pixel dwell time (Figure S11a, Support-
ing Information), cells were alive and maintained metabolic ac-
tivities, as fatty acid content showed up inside cells. However,
fatty acids did not form droplets as shown in single-shot SRS
experiments (e.g., blue box region in Figure S10, Supporting
Information), indicating cell function perturbation can occur at
lower powers than those altering cell growth. To lower laser ex-
posure further, we increased the step size of each laser scan from
150 nm to 230 nm at a xed dwell time of 10 μs, corresponding
to a shorter laser exposure per unit area (Figure S11b, Support-
ing Information). Cells under this condition showed no obvious
metabolic activity perturbation, as they continued to grow, pro-
duced fatty acids, and formed droplets. As an additional check
that these imaging conditions did not have a deleterious impact
on cells, we utilized a stress-responsive promoter, PibpAB, to con-
trol expression of the uorescent reporter mRFP1 (Figure S11c,
Supporting Information). PibpAB is driven by the heat shock 휎-
factor (휎32) and is upregulated in response to stress.[55] We ex-
posed cells to the 25 mW/15 mW laser intensities at 150 nm and
230 nm step sizes, respectively, obtained co-registered wide-eld
uorescence images (Figure S11c, Supporting Information), and
compared promoter activity to cells that received no SRS expo-
sure. In the 150 nm condition, mRFP1 expression indicates that
intracellular stress was signicantly upregulated in response to
SRS exposure. With the increased step size of 230 nm, mRFP1
expression was equivalent to that from the cells that received no
laser exposure (Figure S11d, Supporting Information). To rule
out the possibility that a few cells were growing well while oth-
ers died which could be obscured in dense cultures, we sparsely
seeded cells and imaged growth. With the optimized conditions
of 25 mW/15 mW laser intensities and 230 nm step size, we
measured transmission and SRS images for the same eld of
view of sparsely seeded cells after 3 and 5 h of incubation, see-
ing clear evidence of normal growth even after SRS imaging in
all single cells (Figure S12, Supporting Information). We took
a nal wide-eld image at 6 h, which showed that cells con-
tinued to replicate normally. Therefore, we concluded that by
both reducing laser powers and increasing step size, we estab-
lished a condition that allows for longitudinal SRS imaging of
E. coli.

With these optimized imaging conditions, we rst tracked
fatty acid production within the strain ‘TesA-FV50. In line
with theheterogeneity patterns we originally observed in this
strain (Figure 3a), the production trajectories varied across mi-
crocolonies (Figure 4a,b). In one example, fatty acid signals
increased in cells starting ≈12 h after thioesterase induction
(Figure 4a). After the microcolony reached a high cell density
on the agarose pad, we observed a signicant accumulation of
fatty acids. In contrast, a second microcolony of the same strain
produced only low levels of fatty acid (Figure 4b). For compar-
ison, we also tracked the growth and fatty acid production of
wild-type cells under the same conditions, observing only low
levels of fatty acid production (Figure S13, Supporting Informa-
tion). Time-lapse wide-eld transmission images for the wild-
type strain show that cells under SRS laser exposure grew well
during the entire experiment period and at levels comparable
to those regions not exposed to imaging, rearming that these
conditions are non-toxic (Movie S1, Supporting Information).We
quantied fatty acid and protein levels of each microcolony and
the wild-type strain. Protein levels in each strain increased at
comparable rates (Figure 4c). Fatty acid levels in the wild-type
colony increased modestly while the high-producing ‘TesA-FV50
microcolony fatty acid levels increased dramatically (Figure 4d).
The low-producing ‘TesA-FV50 microcolony produced fatty acids
at levels comparable to wild-type.
The activity in the high-producing ‘TesA-FV50 microcolony is

in line with known regulation patterns in E. coli fatty acid syn-
thesis. When high cell density is reached in wild-type E. coli,
the pathway is inhibited by a buildup of acyl-ACPs. This mech-
anism is reported to act through direct inhibitory interactions
with key enzymes within the pathway, such as acetyl-CoA car-
boxylase, FabH, and FabI.[56,57] Additionally, acyl-ACP or acyl-CoA
responsive transcription factors, FadR and FabR, respectively,
act to regulate transcriptional responses that control fatty acid
synthesis.[58,59] In the presence of a cytosolic thioesterase, as in
the ‘TesA-FV50 strain, this inhibition is released through the con-
version of accumulated acyl-ACPs to free fatty acids. However,
thioesterase expression is induced starting at t = 0 h, and signi-
cant accumulation of fatty acid does not happen until the micro-
colony is well established. Evenwith the ‘TesA thioesterase highly
expressed, phospholipid metabolism may dominate metabolic
ux through the fatty acid synthesis pathway until sucient den-
sity is reached to suppress incorporation of acyl-ACPs into phos-
pholipids. A recent study from Noga et al. uncovered a post-
translational mechanism that modulates phospholipid biosyn-
thesis through PlsB acyltransferase and ppGpp, which may ex-
plain the delay in free fatty acid accumulation.[60] This regulation,
along with upstream feedback regulation of fatty acid synthesis,
may be involved in the microcolony production phenotypes.[57]

However, we note that only free fatty acids are included in our
GC-MS fatty acid measurements.
Additionally, we measured the dynamics of the AbTE*-FV50

fatty acid production strain, which produces a variety of medium-
and long-chain fatty acids (Figure S4, Supporting Informa-
tion), with signicant heterogeneity in production among cells
(Figure 3b,c). We again observed fatty acid production over time,
with similar delays in fatty acid accumulation despite thioesterase
induction at t = 0 h (Figure S14a, Supporting Information). In
this strain, a few cells within the microcolony produce large
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Figure 4. Longitudinal SRS imaging of production dynamics. Time-lapse images of a) a ‘TesA-FV50 high-producing microcolony and b) a ‘TesA-FV50
low-producing microcolony under the same conditions, shown with the raw SRS images (spectral summation of the SRS image stack) and chemical
maps corresponding to protein and fatty acid content. Scale bars, 10 μm. Quantication of c) protein and d) fatty acid over time from the microcolonies
in (a,b) and Figure S13, Supporting Information). e) Saturated and f) unsaturation content of individual droplets from the ‘TesA-FV50 high microcolony
shown in (a). Locations for all numbered droplets are shown in Movie S5 (Supporting Information).

amounts of fatty acid. The production dynamics for these few
cells are similar to fatty acid production within the ‘TesA-FV50
strain, but the remainder of cells exhibit low levels of production
for the duration of imaging.
To further understand the dynamics of fatty acid production,

we tracked the composition of individual droplets from the high-
producing ‘TesA-FV50 microcolony and high-producing cells
from the AbTE*-FV50 microcolony. Both saturated and unsatu-
rated fatty acid levels increase similarly within the droplets of the
‘TesA-FV50 strain (Figure 4e,f). Interestingly, the high-producing
cells from the AbTE*-FV50 strain initially produce saturated fatty
acids, but saturated fatty acid levels plateau in a subset of cells
as the incubation continues (Figure S14b,c, Supporting Informa-
tion). In contrast, unsaturated fatty acid production continues to

increase for the duration of the experiment (Figure S14d,e, Sup-
porting Information). Additionally, we analyzed the chain length
composition for both strains longitudinally (Figure S15a,b, Sup-
porting Information). Droplets from ‘TesA-FV50 were primarily
C14 on average. Chain lengths for AbTE*-FV50 high producer
cells displayed high uctuations at earlier time points but grad-
ually converged to the range of C12 – C14. We believe the early
uctuations stem from a decreased signal-to-noise ratio at low
fatty acid concentrations, especially under the low power condi-
tions needed for longitudinal imaging. When the signal-to-noise
ratio is increased for stronger SRS signals, such as for the large
extracellular droplets at later time points, the chain length pre-
diction becomes more reliable and stabilizes to a range between
C12 – C14.

Adv. Sci. 2023, 2206519 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2206519 (9 of 15)
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Figure 5. Single-cell growth-production relationship. a) Time-lapse phase contrast imaging of an AbTE*-FV50 microcolony followed by b) endpoint
SRS imaging and spectral decomposition. Scale bars, 10 μm. c) Single-cell lengths as a function of time within the microcolony shown in (a,b), with
high producer trajectories highlighted in red (n = 68 cells total). Sharp decreases in length correspond to cell division events. High producers are
dened as the top 15% of producer cells (Figure S18, Supporting Information). d) Growth rate comparisons of high and low producer trajectories at
8 and 16 h (p = 0.0507 and p = 0.714, respectively; two-tailed unpaired t-test). Growth rate is calculated from cell length data in (c) (Experimental
Section). e) Average saturated chain length prediction of high producer cells. Total saturated fatty acid amount is normalized to 1. f) Unsaturation ratio
(unsaturated/saturated) of high producer cells. Error bars show standard deviation.

2.5. Single Cell Growth-Production Relationship

Next, we asked whether cell-to-cell dierences in fatty acid pro-
duction correlate with dierences in growth rates between cells.
Production of a heterologous product is often associated with
changes in cell physiology due to the consumption of resources
and intermediate or end-product-associated toxicities.[61–63] Con-
sequently, we asked whether growth rate is inversely correlated
with fatty acid production. For this analysis, we focused on the
AbTE*-FV50 strain because it exhibits signicant intracolony het-
erogeneity. At the bulk culture level, we do not observe a decrease
in growth when production is induced through AbTE*-FV50 ex-
pression (Figure S16, Supporting Information). However, bulk
culture measurements do not rule out slow growth of a high-
producing subpopulation. To understand whether there exists
a growth tradeo in the high-producer subpopulation, we mea-
sured growth at the single-cell level. Although we can resolve
single cells using the longitudinal SRS conditions, the lowered
resolution needed to avoid phototoxicity hinders single-cell seg-
mentation to quantitatively probe growth at many time points.

To avoid these limitations, we used a combination of time-lapse,
phase contrast microscopy followed by endpoint SRS imaging
(Figure 5a). Using the high-resolution phase contrast images, we
then segmented and quantied single-cell growth rates using an
automated segmentation pipeline for microcolonies.[64] Pairing
growth quantication with endpoint SRS, we tracked the growth
trajectories and lineages of single cells within the microcolony
to their fatty acid production. Spectral decomposition of the end-
point SRS image allows the high fatty acid cells to be identied,
along with other chemical composition information (Figure 5b).
In addition, because we use a single endpoint measurement,
we returned to the original imaging conditions (15 mW pump,
75 mW Stokes, 150 nm step size), allowing us to increase the
spectral signal-to-noise ratio. Growth of the high-producer cells
in the microcolony, measured as cell length over time, did not
vary substantially from low-producer cells (Figure 5c, Figure S17,
Movies S2–S4, Supporting Information). We binned cells into
two groups, low and high fatty acid producers, where we dened
high producers as those with production in the top 15% of single
cells in the distribution (Figure S18, Supporting Information).
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Examining the growth rates of each cell near the endpoint (16
h) and earlier in the time course (8 h) shows that, in both cases,
growth rate is not signicantly dierent between the high and
low producers.
Given our ability to decompose the fatty acid signal into un-

saturated and chain-length components, we also analyzed the
top producer cells’ composition to gain further insight into the
high fatty acid phenotype in this strain. We found that high-
producer cells have similar chain length distributions between
cells. In line with GC-MSmeasurements sampled from bulk cul-
ture (Figure 2d), each cell contains a wide distribution of chain
lengths with C14:0 being the most dominant (Figure 5e). How-
ever, single-cell distributions are enriched in medium-chain fatty
acids, especially C8:0 and C10:0, and have comparably low levels
of C16:0 relative to GC-MS measurements of bulk culture. The
single-cell chain length predictions result from saturated fatty
acid map outputs (Figure S6b, Supporting Information), which
are able to predict mixtures of fatty acids at each pixel. Addi-
tionally, relative to bulk culture sampling, the unsaturation ratio
of the top producers is signicantly increased in high-producer
cells (Figures 5f and 2g). The chain length trend remains con-
sistent when the threshold for high-producer cells is decreased
(Figure S19, Supporting Information). The decreased levels of
C16 present in the high fatty acid cells relative to bulk culture
may be related to unsaturated fatty acid biosynthesis. In E. coli
fatty acid synthesis, double bonds in the carbon tail of elongat-
ing fatty acids are formed specically when the carbon chain has
reached decanoyl-ACP (C10), followed by further elongation to
C12:1, C14:1, or C16:1.[65] It is possible that chain lengths that
would have otherwise reached C14:0 and C16:0 are instead un-
saturated and result in the shorter-than-expected average chain
length predictions. These dierences may be the result of longer-
chain fatty acids being produced in the numerous low-producer
cells at comparatively low levels, dierences in culturing condi-
tions, or other factors.

3. Discussion

Chemical imaging can play a key role in the strain engineering
process. Current quantication techniques rely either on meth-
ods like GC-MS, which are chemically-specic but where infor-
mation about individual cells and their dynamics are lost, or on
uorescent reporters or dyes, which are indirect readouts and can
be dicult to engineer or limited in their specicity. SRS imag-
ing has the potential to dramatically improve this process by pro-
viding key insights into chemical production at the single-cell
level. Thus, methods that were previously only accessible with
single-cell readouts, such as directed evolution or cell-sorting ap-
proaches are in principle possible with SRS imaging. Further, the
ability to track production changes over time can provide insight
into the emergence of production heterogeneity and, ultimately,
guide strategies to avoid low producers in the population. The
landscape for strain engineering is expanding rapidly, with sys-
tems biology approaches to enzyme engineering and novel tech-
nologies for quantifying production oering great promise for
improving designs. In this study, we focus on fatty acid synthesis,
which is an important pathway that can be engineered to produce
a diversity of valuable chemicals. Development of this pathway

toward near theoretical yields will be important to replace many
industrial chemicals with sustainable bio-based alternatives.[5]

Here, we examined free fatty acid production strains of E. coli
using SRS and demonstrated that hyperspectral imaging allows
for image decomposition into major chemical components, with
the ability to distinguish cells from their chemical product. By
incorporating additional analysis, we also introduce an approach
that can estimate chain length distribution and unsaturation de-
gree, increasing the amount of information that can be extracted
from SRS hyperspectral images. These advances can enable a
metabolic engineer to examine fatty acid production strains us-
ing SRS imaging while maintaining chemical specicity data.
Visualizing chemical production at the single-cell level re-

veals important information that would otherwise be obscured by
bulk culture quantication methods. We demonstrate this by ex-
amining production heterogeneity among dierent engineered
strains, observing both intra- and inter-colony dierences in pro-
duction within microcolonies. These results provoke fundamen-
tal questions about the mechanisms leading to cellular hetero-
geneity and also suggest that engineering strategies that elim-
inate low-producers could improve yields. For example, it may
be possible to gradually enhance the overall production levels of
a strain of engineered E. coli through multiple cycles of growth
and dilution, with a step that removes low-producers at the end
of each cycle.
Furthermore, we established parameters that allow us to ex-

tend SRS imaging for longitudinal studies in live cells. Un-
like previous phototoxicity studies focusing on acute responses
like membrane blebbing,[66,67] we directly observe long-term cell
functions including cell replication, free fatty acid synthesis, and
the absence of induction of stress response. SRS imaging has
been used to probe metabolism in live cells previously, such as in
studies byWakisaka et al.[27] andOta et al.,[68] andwe extend these
results in several critical ways. In our experiments, we track the
same cells over multiple hours, rather than sampling new cells
from liquid culture at each timepoint as in Wakisaka et al. In Ota
et al., the authors study the same cell over time using Raman and
SRS, however only at two timepoints, instead of multiple time-
points throughout. In addition, we use E. coli for our study while
Wakisaka et al. and Ota et al. use the alga Euglena gracilis. E. coli
are highly amenable to metabolic engineering, but their small
size makes both imaging and analysis more challenging (E. coli
are 1–2 μm in length while E. gracillis are 35–50 μm[69]). Thus,
our results signicantly extend prior ndings, oering longitu-
dinal imaging of a highly relevant engineered species. We envi-
sion production tracking at the single-cell level will be valuable
for metabolic engineering studies by establishing how and when
heterogeneity emerges. To quantify single-cell properties such as
growth rate, however, higher resolution longitudinal imaging is
needed to achieve time-lapse data that can be processed with seg-
mentation algorithms. Further development focused on mitigat-
ing phototoxicity without decreasing resolution may be able to
overcome this challenge in the future.
As we demonstrate, a hybrid approach using phase contrast

imaging and endpoint SRS microscopy allows for fundamental
questions to be examined, such as the growth-production trade-
o. Interestingly, in theAbTE*-FV50 strain that we studied using
this hybrid approach, we observed no tradeo between growth
and production. This information, along with insights into the
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composition of the high fatty acid cells, can lead to novel hy-
potheses of the underlying cause of intracolony heterogeneity in
this strain. It should be noted that, given the overlap between
cell body and fatty acid signal, we interpret some cells to be high
producers, however, there is a possibility that these fatty acids
originate from other cells and aggregate, and increased tempo-
ral resolution of imaging could help to clarify this in future ex-
periments. Nevertheless, our results underpin the utility of ex-
amining single-cell characteristics to increase performance of a
given strain. For example, recent approaches to increase biopro-
duction involving dynamic regulation, either through transcrip-
tional feedback circuits or optogenetic regulation, show promise
to increase strain eciency.[70,71] Imaging single-cell production
dynamics in these strains could increase our understanding of
how feedback systems can be used in the context of metabolic en-
gineering. Together with synthetic biology methods, our system
has the potential to answer fundamental questions relating to the
production of biosynthetic targets at the single-cell level. Further,
because SRS imaging does not require engineered biosensors, it
has the potential to serve as a widely useful platform to boost the
pace of strain engineering for a broad range of metabolites.
Moving forward, it will be important to understand the con-

nection between production at the single-cell level and bulk cul-
ture output. Imaging elds of view sampled from bulk culture
can potentially lead to biased overall titer prediction, especially
if the product is not soluble in water. Alternatively, studying mi-
crocolonies grown on agarose pads is ideal for imaging but not
necessarily predictive of bulk culture behaviors. For example, nu-
trient mixing, population selection, and secretion may dier be-
tween the 2D growth conditions and a well-stirred liquid culture.
Additionally, SRS has sensitivity limits signicantly higher than
mass spectrometry[72] and thus requires a product to be produced
in sucient quantities before SRS can be used to guide further
engineering. Given these limitations, we envision that SRS stud-
ies will bemost useful for strain optimization rather than enzyme
or pathway discovery.
SRS imaging in dierent spectral regions, such as the nger-

print region (400–1800 cm−1), can be adapted to study strains
producing non-fatty acid-derived chemicals of interest, such as
terpenes, to expand the scope of SRS imaging in metabolic
engineering.[30] In addition, because the approach is label-free it
does not require biosensors with uorescent reporter readouts,
making it amenable to quantication of production in organisms
that are recalcitrant to genetic modication. Moreover, instru-
mentation advances can enable SRS-guided single-cell screening,
such as SRS-based cell sorting, which has been demonstrated
recently for cell phenotyping.[73] The throughput we achieve in
this study is limited by spectral tuning of the motorized delay
stage and time spent manually focusing on samples. In future
work, applying the ultrafast spectral tuning SRS system from
Lin et al.,[30] along with integrated autofocusing could drasti-
cally increase throughput. Much like the utility of uorescence-
activated cell sorting in synthetic biology applications, we envi-
sion that SRS-based cell sorting could increase the throughput of
strain screening and enable directed evolution based on chem-
ical production in the future. This work acts as a jumping-o
point for SRS imaging in metabolic engineering to aid in the
development of more ecient strains for renewable chemical
production.

4. Experimental Section
Bacterial Strains and Plasmids: Plasmid and strain information are

listed in Tables S1 and S2 (Supporting Information). The pBbA5c-‘tesA-
vhb50-8fadR plasmid was a gift from Dr. Fuzhong Zhang. The BW25113
ΔfadE strain was from the Keio collection,[74] and the FLP recombina-
tion protocol from Datsenko and Wanner was used to cure the kanR cas-
sette from the genome.[75] Golden gate cloning was used[76] to create
the pBbA5c-vhb50-8fadR plasmid by deleting the coding sequence of ‘tesA
from pBbA5c-‘tesA-vhb50-8fadR. The pBbA5c-CpFatB1.2-M4-287 plasmid
was also constructed using golden gate cloning, with the pBbA5c back-
bone amplied from the BglBrick plasmid library[77] and the coding se-
quence ofCpFatB1.2-M4-287 derived fromHernández Lozada et al.[46] and
synthetized by Twist Biosciences (South San Francisco, CA). pSS200 was
a gift from Dr. Pamela Peralta-Yahya. pBbE-ibpAB-mRFP1 was constructed
using the pBbE5k BglBrick backbone[77] with the promoter region of the
genomic ibpAB operon as in Ceroni et al.[55] pBbA5c-‘tesA-sfGFP-vhb50-
8fadR and pSS200-sfGFP were constructed using golden gate cloning with
pBbA5c-‘tesA-vhb50-8fadR and pSS200 as backbones, respectively, along
with an sfGFP coding sequence containing a exible GS linker to insert in
frame with each thioesterase.

Growth and Induction of Fatty Acid Production Strains: For fatty acid
production experiments, pre-cultures were grown overnight in LB media
and used to inoculate 3 mL M9 minimal media (M9 salts, 2 mM MgSO4,
100 μM CaCl2) with 2% glucose and grown at 37 °C with 200 rpm shak-
ing. Antibiotics were added to the media where necessary for plasmid
maintenance according to resistances in Table S1 (Supporting Informa-
tion) (100 μg mL−1 for carbenicillin and 25 μg mL−1 for chloramphenicol).
The cultures were allowed to grow until approximately OD600 = 0.6 before
thioesterase expression was induced with IPTG. Induction levels were 500
μM for ‘TesA-FV50 and 50 μM for AbTE*, AbTE*-FV50, and CpFatB1*. For
imaging from liquid cultures, cells were grown for 24 h after IPTG induc-
tion and then 3 μL of sample was taken for imaging. Samples from liq-
uid culture were placed on 3% agarose pads (Promega) containing M9
minimal media and sandwiched between glass coverslips to immobilize
the cells for imaging. Samples from liquid culture were allowed to dry on
the agarose pads for ≈15 min prior to imaging. For longitudinal imag-
ing, production heterogeneity experiments, and phase contrast imaging,
once cells reached OD600 = 0.6 in liquid culture, the sample was placed
on a 3% low melting point agarose pad containing M9 minimal media
with 2% glucose, IPTG as specied above, and appropriate antibiotics for
plasmid maintenance, as detailed in Table S1 (Supporting Information).
Microcolonies were imaged after 18 h of growth on the agarose pads at
31 °C.

For the chain length distribution prediction, cultures were induced with
IPTG in liquid cultures for 24 h. At the 24 h timepoint, 3 μL of sample was
taken for imaging, and another sample of the culture was taken for GC-
MS analysis to allow a direct comparison of the same culture. Five elds
of view were imaged for each culture.

Fatty Acid Derivatization and Quantication with GC-MS: Samples for
GC-MS quantication were taken 24 h post-IPTG induction. 400 μL of vor-
texed culture was taken for fatty acid extraction and derivatization into fatty
acid methyl esters as described by Sarria et al.[38] with the following mi-
nor modications: Internal standards of nonanoic acid (C9) and pentade-
canoic acid (C15) were added to the 400 μL sample at nal concentrations
of 88.8 mg L−1 each and vortexed for 5 s. The following was then added
to the sample for fatty acid extraction and vortexed for 30 s: 50 μL 10%
NaCl, 50 μL glacial acetic acid, and 200 μL ethyl acetate. The sample was
then centrifuged at 12 000 g for 10mins. After centrifugation, 100 μL of the
ethyl acetate layer wasmixedwith 900 μL of a 30:1mixture ofmethanol:HCl
(12N) in a 2 mL microcentrifuge tube. The solution was vortexed for 30 s
followed by incubation at 50 °C for 60 min for methyl ester derivatization.
Once cooled to room temperature, 500 μL hexanes, and 500 μL water were
added to the 2 mL microcentrifuge tube, vortexed for 10 s, and allowed to
settle. 250 μL of the hexane layer was mixed with 250 μL ethyl acetate in a
GC-MS vial for quantication.

The samples were analyzed with an Agilent 6890N/Agilent 5973MS de-
tector using a DB-5MS column. The inlet temperature was set to 300 °C
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with ow at 4 mL min−1. The oven heating program was initially set to
70 °C for 1 min, followed by a ramp to 290 °C at 30 °C min−1, and a -
nal hold at 290 °C for 1 min. GLC-20 and GLC-30 FAME standard mixes
(Sigma) were tested using this protocol to ensure proper capture of all
chain lengths and to gauge retention times. Internal standards were used
for quantication, with chain lengths C8-C12 quantied with the nonanoic
acid internal standard and C14-C18 quantied with the pentadecanoic in-
ternal standard.

Optical Setup: The SRS setup was driven by an 80 MHz femtosec-
ond laser (Insight Deepsee+, Spectra-Physics, USA) with two synchro-
nized outputs. One output was xed at 1040 nm with a pulse duration
of ≈150 fs, while the other was tunable from 680 – 1300 nm with ≈120 fs
pulse width. The 1040 nm beam was used as the Stokes and was modu-
lated by an acousto-optical modulator (522c, Isomet, USA) at 2.5 MHz.
The tunable output was set to 798 nm to excite the C–H region and spa-
tially combined with the Stokes by a dichroic mirror. Six 15 cm SF-57 glass
rods were used to linearly chirp the femtosecond pulses to ≈2 ps. Five
of the rods were placed on the common path while one was placed on
the Stokes path to parallelize the degree of chirping considering its longer
wavelength. A motorized delay stage was used to scan the temporal delay
between two pulses to tune the excitation frequency. The combined beams
were sent to a pair of 2D Galvo scanners (GVSM002, Thorlabs, USA) to
perform laser scanning imaging. A 40× oil-immersion objective was used
(RMS40X-PFO, Olympus, Japan) to focus the laser onto the sample. Pow-
ers on the sample were 15 mW for pump and 75 mW for Stokes, with a
pixel step size of 150 nm and 10 μs pixel dwell time. For longitudinal imag-
ing experiments, the Stokes power was reduced to 25mW, with a pixel step
size of 230 nm and 10 μs pixel dwell time. A home-built resonant ampli-
er photodiode collects and amplies the stimulated Raman loss signal
at the modulation frequency. A lock-in amplier was used (UHFLI, Zurich
Instruments, Switzerland) to extract the signal and send it to a data col-
lection card (PCIe-6363, National Instruments, USA). It was noted that all
elements described here were commercially available with the exception of
the photodiode, which had been previously reported.[78] Custom LabView
(National Instruments, USA) software was used to synchronize the Galvo
scan with the delay line scan to obtain a hyperspectral SRS image stack in
a frame-by-frame manner.

Pixel-Wise LASSO for Hyperspectral Image Unmixing: To obtain concen-
tration maps for chemicals, linear unmixing was performed on the raw hy-
perspectral image stack. Assuming the number of pure components as K
and the dimensions of a hyperspectral image as Nx, Ny,N휆, the unmixing
model can be written as:

D = CS + E (1)

where D ∈ ℝNxNy×N휆 is the raw data reshaped as a 2D matrix in raster or-
der, C ∈ ℝNxNy×K is the collection of concentration maps, S ∈ ℝK×N휆 con-
tains SRS spectra of all the components, while E is the residual term with
error and noise. Given the prior knowledge of spectra for all the pure com-
ponents, the task was reduced to generating chemical maps C via least
square tting. To avoid crosstalk between spectrally overlapped compo-
nents, a L1 norm sparsity constraint was added by observing that at each
spatial position, a few components dominate the contribution. The solu-
tion for C was found in a pixel-by-pixel manner by solving for the following
optimization problem known as the least absolute shrinkage and selection
operator (LASSO):

Ĉi = arg min
Ci

{ 1
2
‖‖D (i, :) − CiS‖‖2 + 훽‖‖Ci‖‖1

}
(2)

where i represents a specic pixel in the hyperspectral image, Ĉi stands
for the estimated concentrations for all components at pixel i, and 훽 is
a hyperparameter controlling the level of L1 norm regularization at each
pixel.

GC-MS Augmented Single-Cell Fatty Acid Composition Analysis: To ob-
tain the compositional information of fatty acids, pure fatty acid references
weremeasured rst based on strain-specicGC-MSmeasurements of fatty

acid composition. Specically, bovine serum albumin (BSA) was used as
the protein standard; C8:0, C10:0, C12:0, C14:0, C16:0, and C18:0 as the
saturated fatty acids standards; and C12:1, C14:1, C16:1, and C18:1 as the
unsaturated fatty acids standards. All standards were sourced from Sigma
Aldrich, USA. Due to the spectral similarities between unsaturated fatty
acids, unsaturated fatty acid chain length could not be dierentiated, and
thus used a single unsaturated fatty acid derived from a weighted aver-
age of normalized spectra of all four unsaturated fatty acids. The weights
were derived from GC-MS measurements to reect relative percentage of
each component. For saturated fatty acids, the same approach to rescale
normalized spectra to reect relative abundance was used. With a total
of eight input references, pixel-wise LASSO unmixing was run to generate
eight chemical concentration maps.

To obtain average chain length information for the saturated fatty acids,
a hyperspectral, saturated fatty acid image was created by summing over
the product of concentration and reference for all the saturated fatty acids
(Figure S6b, Supporting Information). The area under the curve ratio of
CH2 to CH3 was then calculated for each pixel, using 2832 to 2888 cm

−1 for
CH2 and 2909 to 2967 cm

−1 for CH3 (Figure S6c, Supporting Information).
The linear relationship of ratio to chain length produced from standards
was used (C6:0 – C20:0, Sigma Aldrich, USA) to calculate a predicted av-
erage chain length for each pixel. For single-cell chain length distributions
(Figure 5e; Figure S19, Supporting Information), the saturated fatty acid
chemicalmaps outputted fromLASSOunmixingwere utilized (Figure S6b,
Supporting Information), which could predict mixtures of fatty acids at
each pixel. To calculate the unsaturation ratio, the sum of the unsaturated
chemical map, generated through linear unmixing using a C12:1-C18:1
weighted average unsaturated standard spectra, was divided by the sum
of the hyperspectral saturated chemical map. For the tracking of fatty acid
production and composition dynamics (Figure 4e,f; Figures S14 and S15,
Supporting Information), signicant fatty acid droplets weremanually seg-
mented using the fatty acid concentrationmap in the last time stamp. Each
droplet was manually traced and segmented frame-by-frame in all earlier
time stamps until no fatty acid was found (Movies S5 and S6, Supporting
Information).

Single-Cell Segmentation: Segmentation of single cells within SRS im-
ages were implemented in two steps. The protein segmentation map was
rst sent to CellProler to generate an initial segmentation.[79] A cus-
tomized pipeline was used for the analysis, including illumination cor-
rection, background subtraction, and edge enhancements based on the
Laplacian of the Gaussian. Then a custom Matlab program was used to
manually correct errors in the automated segmentation analysis using the
raw SRS and protein chemical maps as a guide. When SRS images were
segmented, the fatty acid channel was normalized by cell area instead
of the protein channel. This normalization more accurately represented
single-cell production, whereas the protein channel normalization at the
microcolony level accounted for cells growing on top of each other. Since
the primary source of heterogeneity in the AbTE*-FV50 strain was at the
single-cell level, the fatty acid intensity normalized to cell area metric was
utilized. Alternatively, heterogeneity seen in the ‘TesA-FV50 strain was at
the microcolony level and the fatty acid intensity normalized to protein
intensity was used to represent microcolony level production.

Segmentation and tracking of phase contrast images were performed
using the DeLTA 2.0 pipeline.[64] Segmentation errors were correctedman-
ually prior to downstream analysis. Growth rate of single cells was cal-
culated using the logarithmic derivative of cell length with the following
formula:

휇k =
1
2Δt

ln
Lk+1
Lk−1

(3)

Where 휇 is growth rate, k is the current frame, Δt is the time between
frames, and L is cell length.

Phase Contrast Imaging: Cells were imaged with a Nikon Ti-E micro-
scope using a 100× objective with phase contrast imaging. Images were
collected every 20min with themicroscopy chamber held at 31 °C. Produc-
tion strains were grown on agarose pads containing M9 minimal media
as described above for SRS imaging. After 18 h of growth, the position of
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the tracked microcolony was recorded and the slide was moved to the SRS
microscope for endpoint hyperspectral imaging.

Stress Responsive Reporter Strain: Cells containing the stress reporter
plasmid pBbE-ibpAB-mRFP1 were grown on agarose pads. The cells were
allowed to recover on the agarose pads for 3 h at 31 °C prior to SRS ex-
posure. After recovery, a eld of view on the pad containing several mi-
crocolonies was subject to SRS scanning at various step sizes (150 nm
or 230 nm) with power held at 25 mW for the Stokes laser and 15 mW
for the pump laser. Red uorescent protein (RFP) images were taken of
the scanned eld of view and a nearby, un-scanned eld of view every 30
min. Since the RFP was photobleached from the SRS scan, the change in
RFP of each microcolony was calculated for each condition. To account for
focus dierences between uorescent images at dierent time points, the
scanned eld of view was normalized to the RFP of the nearby, un-scanned
microcolonies.

Statistical Analysis: Hyperspectral SRS images were analyzed in MAT-
LAB (MathWorks) using custom scripts as described in analysis method
sections. Non-image results were expressed as mean plus standard devi-
ation unless otherwise noted in the gure caption. Sample sizes (n) could
be found in relevant gure captions. p-Values were generated by two-tailed
unpaired t-tests using GraphPad PRISM software.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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