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Abstract
Far-field chemical microscopy providing molecular electronic or vibrational fingerprint information opens a new
window for the study of three-dimensional biological, material, and chemical systems. Chemical microscopy provides
a nondestructive way of chemical identification without exterior labels. However, the diffraction limit of optics
hindered it from discovering more details under the resolution limit. Recent development of super-resolution
techniques gives enlightenment to open this door behind far-field chemical microscopy. Here, we review recent
advances that have pushed the boundary of far-field chemical microscopy in terms of spatial resolution. We further
highlight applications in biomedical research, material characterization, environmental study, cultural heritage
conservation, and integrated chip inspection.

Introduction
Breaking the optical diffraction limit has been a long-

standing challenge to study the cellular- and molecular-
scale activities of living systems and the nanoscale
dynamics of novel materials. The 2014 Nobel Prize in
Chemistry was awarded to Eric Betzig, Stefan W. Hell, and
Willian E. Moerner in honor of their contribution to
super-resolution fluorescence microscopy. Existing far-
field super-resolution techniques have demonstrated
remarkable success allowing for unprecedented spatial
resolution below tens of nanometers, including stimulated
emission depletion (STED)1–3, single-molecule localiza-
tion microscopy (SMLM)4,5, and nonlinear structured
illumination microscopy (Nonlinear-SIM)6,7. The working
principles of these techniques, however, rely on the
photo-physical properties of specially designed fluor-
ophores. Although fluorescence microscopy brings the
high contrast, signal-to-noise, and specificity that is useful
for the investigator, it could not be applied for imaging
objects that are neither autofluorescent nor fluorescence-
tagged. In addition, the introduction of fluorescent labels
onto the molecular structures of interest is likely to cause

both functional and structural disruption of the target
molecule, possibly leading to erroneous conclusions.
To circumvent the requirement of fluorescent labeling

for long-duration imaging of living cells, label-free super-
resolution microscopy using inherent physical properties
from the samples instead of fluorescence markers as the
contrast has been pursued, such as spatial frequency
shift8–11, microsphere lens12–14, super oscillatory len-
ses15,16, and hyper lens17–20. Different from fluorescent
super-resolution microscopy, label-free super-resolution
microscopy is suitable for observing samples that are
nonluminous and cannot be stained with fluorescent tags
as in biological systems, such as carbon tubes, graphene,
and integrated chips. However, these methods only pro-
vide morphological information, but not chemical selec-
tivity. Super-resolution chemical microscopy is a useful
tool that can provide valuable insights into the function-
ality and dynamic activities of cellular and molecular
structures. By combining chemical selectivity and dif-
fraction unlimited spatial resolution, this technique offers
several advantages that can enhance our understanding of
biological systems and functional materials.
Chemical microscopy has been extensively used in

qualitative and quantitative analysis of biological speci-
mens and novel materials by studying the interaction
between light and matter without the requirement of
fluorescent labeling. As shown in Fig. 1, the imaging
contrast can come from the electronic-state or
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vibrational-state transition of the molecules, making
chemical microscopy a non-invasive imaging technique
with high molecular specificity. Vibrational-state chemical
imaging senses either the infrared (IR) absorption or the
Raman scattering21, of which the representatives are
Fourier-transform infrared absorption (FTIR) microscopy
(together with its attenuated total reflection accessories),
mid-IR photothermal (MIP) microscopy, mid-IR

photoacoustic microscopy, spontaneous Raman micro-
scopy, stimulated Raman scattering (SRS) microscopy,
and coherent anti-Stokes Raman scattering (CARS)
microscopy. Based on electronic transitions, transient
absorption (TA) microscopy has been exploited to study
ultrafast electronic-state dynamics of materials, such as
graphene, using the mechanism of stimulated emission
(SE), ground state depletion (GSD), or excited state
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absorption (ESA). Improving the spatial resolution is an
essential step toward the ultimate goal of chemical
microscopy of single molecule or single chemical bond. It
is believed that studying the changes in chemical com-
position at the nano to meso length scales is vital for
gaining insights into the structure, function, and inter-
action with the environment. Therefore, the significance
of nanoscale chemical microscopy cannot be overstated as
it is utilized in a variety of fields such as molecular biol-
ogy, medicine, material science, and chemical science.
Compared with microscopy in the visible range, che-

mical microscopy, especially IR absorption-based CM,
usually uses longer excitation wavelengths spanning
from 0.5 μm to 10 μm, which makes it challenging to
acquire high spatial resolution in chemical microscopy.
The spatial resolution of an optical microscope can be
defined by the Abbe diffraction limit of λ/(2NA), where λ
is the wavelength of the light and NA is the numerical
aperture of the focusing objective. Besides, the NA of the
objective lens working in the IR spectrum is limited,
making the spatial resolution typically to be >3 μm (e.g.,
for λ= 5 μm and NA= 0.8). Near-field chemical imaging
techniques are developed to solve this dilemma, by
combining an atomic force microscope (AFM) with an
infrared source22–24. In scattering-scanning near-field
optical microscopy (s-SNOM), scattering from the AFM
tip is collected25. In AFM-IR, absorption of IR radiation
by the sample causes a thermal expansion, which deflects
the AFM cantilever. The collection of high-spatial-
frequency information by the near-field probe allows a
spatial resolution of ~20 nm26, which breaks the dif-
fraction limit by ~150 times. Raman scattering-based
near-field chemical microscopy was also developed. Tip-
enhanced Raman scattering (TERS) is realized by com-
bining tip-scanning imaging with Raman spectro-
scopy27–30, where the metal tip not only provides a sub-
10-nm high-resolution collection, but also enhances the
Raman scattering signal by 4 to 7 orders. In these near-
field modalities, however, the probe must be carefully
controlled to be contacted with or 5–10 nanometers
above the sample surface, which increases the complexity
of the instrument and operation.
Recently, the introduction of far-field super-resolution

techniques endows chemical microscopy with resolution
surpassing the diffraction limit, generating super-
resolution chemical microscopy (SRCM). Owing to the
chemical specificity and high sensitivity, SRCM can pro-
vide unique advantages in material science and biomedi-
cal applications, including nanomaterial inspection and
living cell imaging. Table 1 summarizes the SRCM
methods discussed in this review.
Of these modalities, Raman scattering-based far-field

SRCM is developed to break the resolution of Raman
microscopy. Super-resolution methods based on differentTa
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mechanisms have been applied to Raman microscopy,
such as SIM, SMLM, STED, nonlinearity, and ExM. These
methods lead to the development of SLI-Raman31, SI-
Raman32, SI-SERS33,34, SMLM-SERS35–37, STED-SRS38,
Nonlinear SI-CARS39, Saturated-SRS40, HO-CARS41, and
ExM-SRS42.
Compared with Raman scattering, IR absorption pos-

sesses a larger cross-section and is highly sensitive in the
fingerprint region. A pump-probe technique termed as
MIP43–47 (or optical photothermal IR) microscopy was
developed to break the infrared diffraction limit, where
the energy absorbed by the mid-IR excited molecules is
nonradiatively transformed into heat, which changes the
local refractive index. Then, the optical-path-length
change is measured with a visible probe light.
For electronic-state transient absorption microscopy,

the depletion effect, nonlinearity, and structured illumi-
nation are applied to realize a much higher resolution.
These methods lead to the development of STED-
TA48–51, Nonlinear differential TA52, and SI-TA53.
In this review, we summarize recent advances in far-

field super-resolution chemical microscopy and discuss
the potentials in further pushing the spatial resolution of
chemical microscopy. In the following sections, we first
discuss the principles and optical implementation of
various far-field SRCMs. Next, we summarize the appli-
cations of far-field SRCMs in biomedical study, material
study, and integrated chip inspection. Finally, we discuss
potentially progressive approaches and remaining chal-
lenges in this ever-growing and fast-developing field.

IR-absorption super-resolution chemical
microscopy
Mid-infrared (MIR) spectroscopic imaging is commonly

performed by using an FTIR spectrometer equipped with
an infrared focal-plane array detector54. However, the
spatial resolution of FTIR imaging is constrained by the
diffraction limit of IR photons. In addition, strong water
absorption restricts the application for observing sub-
cellular structures in living biological samples. Although
the resolution can be improved by using solid immersion
lenses55,56, the resolution can only reach around λ/2.6,
which is not enough to study the subcellular structures
and activities in living systems. The recent development in
photothermal IR microscopy fills this gap.
Photothermal spectroscopy was reported in the 1970s to

detect the thermal lensing effect induced by the absorp-
tion of the pump beam at focus using a probe beam57.
Photothermal microscopy showed superb detection sen-
sitivity that allows single nanoparticle (1.4 nm dia-
meter)58,59 and single molecule imaging60. Photothermal
microscope in the visible spectrum has achieved a reso-
lution of 90 nm by probing the nonlinear photothermal
lens effect61. The mid-infrared photothermal (MIP)

microscope recently developed by the Cheng group43,44

and the Hartland group62 breaks the infrared-wavelength
diffraction limit with a pump-probe configuration, that is,
using shorter-wavelength probe light to detect the tem-
perature rise induced by IR absorption.
Unlike the direct measurement of the absorption in IR

spectroscopy, a MIP microscope detects the photothermal
effect caused by a local temperature rise (ΔT) in the
sample, which leads to local refractive index change 4n

and thermal expansion 4l:

4n ¼ dn
dT

4T

4l ¼ 1
l

dl
dT

l4T

The scattered field Es from the sample under the probe field
Ei can be expressed as Es ¼ sðn; lÞj jeiφsðn;lÞEi, where sðn; lÞj j
and φsðn; lÞ are the amplitude and phase of the scattered
field. With the modification of 4n and 4l, the scattered
field experiences changes in the intensity and phase delay,
which could be detected through measurement of dark-
field scattering43,63, optical phase46,64, and interferometric
scattering65,66. Below we discuss the various MIP config-
urations (Fig. 2) and the optical resolutions achieved by
these methods.

Point scanning MIP microscope
Visible-probed MIP
With the deployment of a visible probe beam at 785 nm,

Zhang and colleagues achieved sub-micrometer (~0.6 µm)
chemical imaging of living cells or microorganisms via a
confocal mid-IR photothermal microscope with a Casse-
grain objective (0.65 NA)43. As shown in Fig. 2a, the
visible probe beam and mid-IR pump beam are collinearly
combined by a silicon dichroic mirror and directed to an
inverted microscope. The visible signal light is collected in
the transmission mode by another condenser. To increase
the imaging SNR, a resonant amplifier that selectively
probes the photothermal signal at the repetition rate of
the pulsed IR laser is exploited. Since the probe focus is
~1/10 of the size of the pump mid-IR beam, objects
outside the probe beam focus are not detected, leading to
a nine-fold improvement of the spatial resolution. The
confocal configuration also brings the advantages of
optical sectioning capabilities. 3D imaging of living cells
using infrared spectroscopy was demonstrated. For opa-
que samples, the visible signal light could also be detected
in the epi-mode by the same Cassegrain objective. With
this backward-detected MIP system67, chemical mapping
of active pharmaceutical ingredients and excipients of
drug tablets has been demonstrated.
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An alternative approach is to deploy a high NA objec-
tive for the counter-propagating probe beam. As shown in
Fig. 2b, Li et al. realized an ultimate resolution of 300 nm
using a 532 nm probe beam and a 0.9 NA objective in
their counter-propagating MIP microscope62. The main
advantage of this approach is that the visible probe beam
can go through a high-NA refractive objective instead of
low-NA reflective objectives that are typically used for IR
sources, which improves the lateral resolution to
~300 nm. The forward-detection mode in the counter-
propagation configuration is more sensitive to transparent
samples, including cells and tissues, while the epi-
detection mode in the co-propagation configuration is
more suitable for small samples, such as bacteria and
subcellular structures.

UV-localized photoacoustic-sensing MIP
The spatial resolution of MIP imaging can be further

improved by UV photoacoustic detection47. Besides the
refractive index change in photothermal effect, the
Grüneisen parameter (Γ) of the material also changes
with respect to the local temperature, leading to IR

modulation of photoacoustic signals. As shown in Fig. 2c,
the IR and UV light co-propagate through the samples
immersed in the water tank, and the photoacoustic sig-
nals are detected by an ultrasound transducer. Since the
photoacoustic signals are excited by UV light, a high
lateral spatial resolution of 260 nm is achieved. Notably,
this method lacks optical sectioning capability.

Photothermal relaxation localization (PEARL) microscopy
The resolution of the optical diffraction limit could be

further broken by temporally probing the spatially inho-
mogeneous photothermal relaxation, which is recently
presented by Fu et al.68. This method was a further
achievement in pushing the resolution of MIR photo-
thermal microscopy and it does not require special
absorbers as it relies on general absorption processes such
as electronic (E) and vibrational (V) absorption.
The photothermal process stimulated by the MIR pulse

involves a heating phase due to vibrational absorption and
an energy dissipation phase due to heat dissipation and
mechanical waves. Since more energy was converted into
acoustic waves towards the edge due to expansion, the
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resulting temperature increase is different in space and
time even for homogenous absorbers. Therefore, a higher
frequency is probed at the edge when sensed by the probe
beam focus, showing a faster depletion. The difference in
frequency of the center and edge could be detected with a
conventional lock-in amplifier. The high resolution is
closely related to the higher harmonic orders since the
center-to-edge ratio shows an increasing trend at higher
harmonic orders. By extracting high-harmonic compo-
nents from the fast Fourier transform (FFT) of the tem-
perature profile, the resulting images show a substantial
improvement in resolution. In this work, the label-free
bond-selective E- PEARL imaging of Gold nanoparticles
with a resolution of 280 nm and V-PEARL imaging of
living cells with a resolution of 120 nm (at the tenth
harmonic) have been successfully demonstrated.

Widefield MIP microscope
With the scanning MIP systems, there remain a few

restrictions. First, most IR photons do not contribute to
the signal because of the mismatch of the IR and visible
focal spot size. Second, the slow speed of sample scanning
(typically ~20 s for 200×200 pixels43) makes it challenging
to capture moving objects or for high-throughput detec-
tion. Below we discuss recent advances in improving the
imaging speed and resolution by transforming point
scanning into widefield schemes44.

Reflected interferometric scattering MIP
The first widefield MIP microscope adopts a counter-

propagation beam configuration44. As indicated in Fig. 2d,
a 4-f lens system is used to project a 450-nm LED emitter
to the objective back focal plane to create a uniform
sample illumination in epi-configuration. The modulated
IR pump beam is weakly focused on the sample plane with
a CaF2 lens, and the illuminated area is around 40 μm in
diameter. The sample is prepared on a silicon wafer
substrate to reflect the forward-scattered visible photons,
providing a reference field for interferometric scattering
measurement and good thermal conductivity for fast
imaging. The reflected and scattered visible photons are
collected with the same 0.66-NA objective and then
projected on the camera with a tube lens. A spatial
resolution of 0.51 μm has been obtained thanks to the
short wavelength probe light and high NA objective lens.
Considering the multiplex advantage in wide-field MIP,
for a 200×200 pixels image, the imaging speed is about 25
times faster than the point-scanning method.

Phase-contrast MIP
Since the MIP process involves the change of sample

refractive index and dimension, which provide optical
phase contrast, widefield phase imaging with chemical
bond information has been demonstrated. By simply

illuminating the sample with an intensity-modulated MIR
wavelength tunable laser, specific molecular distribution
can be obtained by subtracting phase maps obtained by a
phase contrast microscopy in the cases of MIR-on and
MIR-off. These phase contrast imaging methods, how-
ever, only provide qualitative phase distribution infor-
mation and have inherent disadvantages such as limited
resolution, shade-off effect, and contrast inversion, which
will bring additional errors. Quantitative phase imaging
(QPI)69, such as digital holography (DH)70,71, optical dif-
fraction tomography (ODT)72,73, intensity diffraction
tomography (IDT)74–76, yields sample-specific 2D optical-
phase delay or 3D refractive-index distribution, which are
the fundamental quantities used to visualize the mor-
phology of transparent samples as in the cases of phase
contrast methods. The combination of QPI and MIP
provides complementary information about the sample:
the chemical specificity and quantity of each molecular
constituent. Recently, DH-MIP45,46(Fig. 2e), has been
demonstrated to show these advantages in capturing the
2D distribution of protein or lipids of samples from living
cells to fixed microorganisms. The axial and lateral
bandwidths could be expanded simultaneously into a 3D
synthetic aperture, resulting in depth- and super-resolved
imaging performance. The 3D phase information could be
extracted from scattered light fields of the sample inter-
acted with the angle-varying oblique illuminations. The
scattered light fields could be acquired either in the
interferometrical or non-interferometric way, which leads
to different methods, ODT-MIP46 or IDT-MIP64(Fig. 2f).
The spatial resolution of these methods is mainly deter-
mined by the illumination NA and detection NA of the
phase contrast realization. Up to now, ODT-MIP46 can
acquire a spatial resolution of 380 nm in the lateral and
2.3 μm in the axial. The imaging speed (12.5 mins per
volume) however, is limited by the long averaging time to
achieve an adequate signal-to-noise ratio, since the phase
noise, optical misalignment, and mechanical instabilities
will reduce the detection sensitivity. The IDT-MIP64

method, recently presented by Cheng’s group, performs
with a higher throughput of ~20 s per volume, with a
lateral and axial resolution of ~350 nm and ~1.1 µm,
respectively.

Fluorescence-detected MIP
Although with great success, the sensitivity of label-free

MIP imaging suffers from the weak dependence of scat-
tering on the temperature, and the image quality is vul-
nerable to the speckles caused by scattering. To alleviate
these shortcomings, MIP could be combined with ther-
mosensitive fluorescent probes for the detection of pho-
tothermal effect with a much higher sensitivity77. As
indicated in Fig. 2g, an infrared pulse train heats the
surrounding of the fluorescent probe and causes a
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temperature rise, which subsequently modulates the
fluorescence emission efficiency, then the fluorescence
light instead of scattering light can be detected using a
lock-in amplifier. The temperature-dependent emission
efficiencies of common fluorophores including FITC, Cy2,
Cy3, Rhodamine, and green fluorescent proteins are
nearly 100 times compared with temperature-dependent
scattering such that the imaging speed or SNR can be
boosted by nearly 2 orders of magnitude. Taking advan-
tage of the fluorescence signals, this method is compatible
with super-resolution techniques used in fluorescence
microscopies, such as SIM, STED, and STORM, providing
future potentials in super-resolution MIP imaging
through the thermal-sensitive fluorescent dye.
Up to now, the highest spatial resolution that has been

achieved in widefield mid-IR photothermal microscopy is
0.35 µm, using 450 nm light illumination and an objective
with 0.65 NA64. Further pushing the resolution limit
could be realized by combining MIP with label-free super-
resolution methods, such as spatial frequency shift8,9,78–83.
With the illumination of a large lateral wavevector gen-
erated by high-refractive-index chips10,11, the resolution
of linear label-free microscopy can be improved to sub-
100 nm. Applying these methods to MIP microscopy
could push the spatial resolution of IR imaging to break
the visible-wavelength diffraction limit.

Transient absorption super-resolution chemical
microscopy
Pump-probe chemical microscopy is a powerful tool for

studying nonequilibrium dynamics in a variety of complex
materials systems including nanostructures, low-dimensional
semiconductors, and material interfaces. The simultaneous
sub-micrometer spatial resolution and femtosecond tem-
poral resolution enabled by the technique provides detailed,
structurally correlated insights into intraparticle hetero-
geneity, free carrier transport, surface plasmon propagation,
and unique interfacial states, which are inaccessible with
conventional spectroscopies or microscopies.
Label-free absorption spectroscopies are frontline tech-

niques to reveal the spectral fingerprint, composition, and
environment of materials and are applicable to a wide range
of samples. In an effort to improve the spatial resolution of
far-field absorption microscopy, which is limited by the
diffraction of light, an imaging technique based on transient
absorption saturation has recently been developed48.
Transient absorption microscopy is implemented by a

pump-probe system with contrast mechanisms including
stimulated emission, ground-state bleaching, and excited-
state absorption.

Depletion-based TA microscopy
Depletion-based TA microscopy48 is designed to

decrease the probe area to below the diffraction limit in a

pump-probe microscope by collinearly adding a non-
modulated saturation beam, which has the same wave-
length as the pump beam but with a much higher inten-
sity. As shown in Fig. 3a, in the doughnut-shaped region
of the focus where the intensity of the saturation beam is
high, the transmission of the probe beam remains
unchanged due to the saturation of the electronic tran-
sition. Under such conditions, the pump-to-probe mod-
ulation transfer only occurs at the very center of the focus
where the intensity of the saturation beam is close to zero.
Sub-diffraction-limited images can be obtained by raster-
scanning the three collinearly aligned beams simulta-
neously across the sample. In the first experiment by
Cheng’s group48 using the light path in Fig. 3b, the sub-
diffraction imaging capability of about 225 nm on graphite
nanoplatelets was demonstrated.
To further suppress the PSF and improve the resolution,

the Wang group50 used a frequency-doubling crystal to
generate visible spectrum light (451 nm) for saturation
excitation and demonstrated a resolution down to 36 nm.
The substitution of saturation photons from near IR to
the visible spectrum serves two functions. Firstly, the
shorter wavelength naturally forms a smaller donut-
shaped ring. Secondly, the visible spectrum can more
effectively clear the electronic population in the valence
band of graphene.

Nonlinear differential TA microscopy
It’s also possible for TA techniques to achieve sub-

wavelength resolution without the requirement of optical
transition saturation. Differential TA microscopy can
measure the difference between transient absorption sig-
nals induced by two pumps, as shown in Fig. 3. When the
pump intensity is below the nonlinear threshold p0
(Fig. 3c(I)), the differential TA is possible with the alter-
nation of Gaussian and doughnut pumps, with an
improvement in spatial resolution determined by the
doughnut pump node dimensions. Super-resolution is
further realized from the additional spatial frequencies
(with respect to those defined by optical diffraction) that
are introduced in the amplitude PSF when exploiting TA
nonlinearity, for example by using two Gaussian pumps in
alternation, one of power below the nonlinear threshold
p0 and one just above (Fig. 3c(II)), and thereby confining
the nonlinear response to dimensions less than the pump
beam diameter. Using CdSe nanobelts as samples, Liu et
al.52 demonstrated nonlinear differential TA microscopy
with a resolution of 185 nm (λ/4.1NA) in the absence of
TA saturation.

Antiphase demodulation TA microscopy
To achieve super-resolution imaging of interweaved

copper wires, Yang et al.51 impressed an additional pump
laser in a donut shape with antiphase modulation and
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thus form a modulated subdiffraction-limit focus center
in the laser focus, as shown in Fig. 3d. They have achieved
a direct optical inspection of integrated circuits (ICs) with
a lateral resolution down to 60 nm.

Structured illumination TA microscopy
The structured illumination TA microscopy employs a

modulated pump excitation field to provide ultrafast
spectroscopic measurements of sub-diffraction-limited

sample areas. A diffraction-limited probe pulse is spa-
tially overlapped with the pump field (Fig. 3e), and the
sample is raster scanned to produce a pump-probe image
at a well-defined delay time, Δt. The effective pump-probe
excitation field is spatially modulated since the induced
polarization of the sample depends on the product of the
pump intensity and the probe field. The high spatial fre-
quency information is encoded in the structured illumi-
nation images and can be recovered using a 2D coherent
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theoretical model84. A nearly two-fold reduction in 2D
spatial resolution was achieved experimentally, from
223 nm to 114 nm by imaging the silicon nanowire53. The
structured transient absorption microscopy could further
be extended to 3D super-resolution by combining 3D
coherent imaging theory with pump-probe micro-
scopy85(Fig. 3f).
In addition to transmission mode, the TA super-

resolution microscopy could be applied in reflection
mode by photo-exciting temperature and/or carrier
changes and probing of reflectance changes. The non-
linear components of reflectance with respect to photo-
excitation allow the dramatic narrowing of the effective
PSF. To extract the nonlinear components of reflection
due to photo-modulation (at ωm), Tzang et al.86,87

demodulate the reflection intensity at the corresponding
harmonic frequencies (ωm, 2ωm, 3ωm…) in a lock-in
amplifier. The nth harmonics components of the reflec-
tivity scale with the nth power of the excitation.
Accordingly, the related effective PSFpp comprises the
product of PSFprobe and that of the pump laser to the
power of the nonlinearity order n, PSFnpump. The width of
the PSFpp scales down by

ffiffiffi

n
p

for Gaussian-focused beams.
By scanning over the sample and measuring the nonlinear
photo-modulated reflectivity, spatial resolution is
enhanced beyond the diffraction limit. This methodology
has been demonstrated on Si nanostructures and phase
transition material such as vanadium oxide (VO2)

86 with a
spatial resolution down to 85 nm87.

Raman scattering super-resolution chemical
microscopy
Raman microscope is a versatile vibrational technique

that is complementary to the IR microscope. Raman
microscope detects the inelastically scattered light
(Stokes) from vibrations which involve a change in the
molecular polarizability. As water is a weak Raman scat-
terer, Raman microscopy is naturally suitable for living
specimens. Coherent Raman scattering (CRS) micro-
scopies, including SRS88 and CARS89, are emerging
techniques that improve the Raman imaging speed by
enhancing the Raman signal through matching the beat-
ing frequency between pump and Stokes beam with the
molecular vibration frequency. Achieving high-resolution
Raman imaging with rich chemical information is very
attractive in imaging live cells and even tissues. For CRS
using near-infrared (NIR) light as excitation source (λ:
0.8–1.064 μm, NA: 1.49), the lateral spatial resolution can
only reach ~300 nm90. Taking advantage of nonlinear
optics, visible SRS microscopy shows improved spatial
resolution with visible-wavelength pump and Stokes
beams. By doubling the frequencies of the pump and
Stokes beams to the wavelength around 450 nm, a spatial
resolution of ~130 nm was achieved with a high-power oil

immersion objective (NA= 1.49)91,92. Despite these
advances, the spatial resolving capability is still limited by
Abbe’s diffraction barrier. Below we broadly overview
several super-resolution Raman imaging techniques using,
structured illumination, signal blinking effect, depletion
(or saturation) effect, high-order nonlinearity, and sample
expansion.

Structured illumination Raman
Among the different super-resolution techniques, the

structured illumination method is an ideal first choice for
spatial resolution improvement in Raman microscopy as it
does not impose special optical properties, such as
switching, on the choice of samples. The principle of
structured illumination is to project a fine illumination
pattern on a sample to expand spatial frequencies resol-
vable by the optics without spoiling the analytical
advantage of Raman microscopy.
In the structured-line illumination-Raman (SLI-

Raman)31 shown in Fig. 4a, a 532 nm CW laser is split by a
phase grating to produce interference fringes along the slit
illumination. Three fringe phases are varied by moving
the position of the grating using a piezo scanner to
reconstruct super-resolution in this line direction. With
this system, Watanabe et al. achieved a 1.4-fold
improvement in resolution along the slit illumination
direction compared to the theoretical limit of a wide-field
Raman microscope. They have demonstrated this
improved resolution on polymer beads, graphene sheets,
and fixed mouse brain slices.
The structure illumination Raman32 could also be

implemented in the wide-field scheme by combining wide-
field SIM with a Raman band selecting module inserted
between the objective lens and the tube lens(Fig. 4c). The
Raman band selecting module is composed of a pair of
tunable filters, which could be mechanically rotated to
select the Raman spectrum captured by the camera. The
high spatial resolution image can be reconstructed at every
Raman band. The authors demonstrated the G-band
imaging of the single-walled carbon nanotubes and
hyperspectral imaging of graphene with SI-Raman with a
spectral resolution of 50 cm−1 and double spatial resolu-
tion improvement over the diffraction limit.
Compared with point-scanning Raman or line-scanning

Raman(Fig. 4b), of which every pixel or column of pixels
contains the full spectrum of the sample with a high
spectral resolution, SI-Raman(Fig. 4d) is more time effi-
cient but sacrifices the spectral resolution. Therefore, it’s
quite difficult to maintain both high acquisition speed and
high spectral resolution at the same time. Besides, the
spatial resolution of the conventional SIM method is
limited to half of the diffraction limit because the illu-
mination optics are also diffraction-limited, which
restricts the finest period of the illumination pattern.
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Utilizing an objective lens with a higher NA combined
with a shorter wavelength excitation source is one way of
solving this. For example, an ultrahigh 1.7-NA objective
and 266 nm ultraviolet light can bring the lateral resolu-
tion down to 40 nm. However, the increase of NA and
magnification also bring disadvantages of smaller field-of-
view, lower imaging depth, as well as high costs.
One way of solving this problem is to detach the illu-

mination path from the imaging path and replace the
illumination module with photonic chips. The idea has
been demonstrated in fluorescent microscopy, which is
termed chip-based SIM (cSIM)10,11,93. The photonic chip
is designed to generate evanescent patterned illumination
with a much higher lateral wavevector than that by a
conventional objective lens and thus can deliver a high
resolution down to 65 nm10 in fluorescent microscopy.

The plasmonic nanostructures also support an enhanced
near-field structured illumination and could be combined
with Raman microscopy to improve both spatial resolu-
tion and signal sensitivity, termed SI-SERS33,34. Lee et al.
used gold nanopost arrays with a diameter of 100 nm and
period of 500 nm as the substrate for Raman imaging, as
indicated in Fig. 4e. The gold nanopost arrays can gen-
erate localized surface plasmons serving as the periodi-
cally structured light illumination. Common to the SIM
method, the resolution enhancement arises from the
subwavelength-period illumination, which provides a
spatial-frequency-shift magnitude inversely proportional
to the period. Therefore, the resolution can be enhanced
by fabricating smaller period plasmonic arrays. Besides,
the localized surface plasmons also have an enhanced field
intensity, which bears a similar function as SERS.
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However, both the photonic chips and the plasmonic
substrate have a limited illumination depth, which hinders
the application in chemical imaging of biological
specimens.
A computational scheme39 was derived for recon-

structing super-resolution CARS images combined with
nonlinear coherent. The results demonstrate the method
promises a benefit on CARS microscopy by adding the
super-resolution capability to improve its 2D spatial
resolution by a factor of ~3.

Nonlinear Raman
Another way of further improving the resolution is to

exploit non-linear properties of the material, such as the
saturable absorption94 and photoswitching95. Super-
resolution SRS imaging in biological samples based on a
saturated SRS technique has recently been demonstrated
by combing with the virtual sinusoidal modulation (VSM)
method40. The nonlinear signal can also be detected by
point-scanning process with a result of squeezed PSF. The
higher-order nonlinear process (χ(5), χ(7)) was demon-
strated to dominate over the cascaded lower-order non-
linear process under a tight focusing, which brings a much
smaller excitation volume, giving rise to a significantly
improved spatial resolution in the so-called HO-CARS
microscopy41. The spatial resolution of ~190 nm has been
realized by HO-CARS microscopy on unlabeled biological
samples with 10 times decreased excitation power com-
pared with saturated SRS technique40,96,97.

Single-molecule localization microscopy (SMLM)-based
Raman
SMLM was proposed to overcome light’s diffraction

barrier using photoactivated or photo-switchable mole-
cules to resolve the high density of molecules with super-
resolution. This approach employs stochastic activation of
fluorescence to switch on individual molecules and then
images and bleaches them, temporally separating mole-
cules that would otherwise be spatially indistinguishable.
Merging all the single-molecule positions obtained by the
photoactivation and imaging/bleaching cycles yields a
final super-resolution image. The essential part of SMLM
lies in the fluorophores that could be photoactivated or
reversibly photo-switched by irradiation with light, such
as photoactivatable or photoconvertible fluorescent pro-
teins (PALM and FPALM)4,98, pairs of organic fluor-
ophores as activator and reporter (STORM)5, or
conventional fluorescent probes (dSTORM)99,100.
The application of the SMLM principle in label-free

microscopy is quite restricted to the scarcity of blinking
behavior. However, one exception is in SERS, which
experimentally shows a rapid blinking behavior in the
Raman spectral signal enhancement instead of signal
emission (Fig. 5f). With this similar behavior of the

fluorescent blinking in SMLM, one can use the time-
dependent SERS signal for reconstructing chemically
resolved, label-free super-resolution stochastic imaging
(Fig. 5a). The possible mechanism of the blinking beha-
vior in the SERS signal is assigned to be nanoscale local
heating and thermal activation.
The localization precision of point-like objects in two

dimensions can be described as101:

σ2
x ¼

r20 þ q2=12
N

þ 8πr40b
2

q2N2

where r0 is the standard deviation of the point spread
function, N is the total number of photons collected, q is
the size of an image pixel, and b is the background noise
per pixel. For single blinking events resulting in ~105

visible photons, the position localization is expected to be
on the order of a few nanometers.
In 2013, Ayas and Cinar et al.35 reported the first

SMLM-SERS by using metal-insulator-metal sponta-
neously organized metasurfaces for a substrate (Fig. 5b).
The Ag film forms nano-islands with a mean particle
diameter of 32 nm, which is designed to match the plas-
mon resonance wavelength close to the working laser
wavelength of 532 nm. They exploited the SMLM-SERS
to image self-assembled peptide networks and demon-
strated Raman imaging with both high resolution (30 nm)
and high sensitivity. The SERS substrate can also be single
layer Ag (deposited on the sample)35, a hexagonal array of
nanoholes36,37(Fig. 5c), or plasmonic nanopost arrays33.
To alleviate the sampling imperfection caused by non-
uniform static hotspot illumination, further improve-
ments were obtained with dynamic illumination
technique--by randomly altering the phase profile of the
incident beam with a spatial light modulator (SLM)36 or
simple optical diffuser37, with which the hotspots can be
dynamically shifted (Fig. 5d, e). The SERS-STORM ima-
ging method has been applied to collagen fibrils and has
shown sufficiently accurate correlation with the results
obtained from SEM (Fig. 5g, h).
SMLM-SERS can provide subdiffraction resolution but

have difficulty providing quantitative information, and the
plasmonic materials needed may affect reaction dynamics
or cause sample degradation. Although the signal collec-
tion of SERS is in the far-field, another problem of the
method is the plasmonics enhancement locates in the
near-field (a few nanometers) of the substrate, which
limits the application to only samples directly in contact
with the plasmonic surface, such as cell membranes.
Besides, the large number of raw images (a few thousand)
required for reconstructing a high-resolution image also
imposes limitations on the imaging speed.
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Depletion-based Raman
As a fluorescence-based nanoscopy102,103, STED can

achieve sub-50 nm resolution by shrinking the PSF of the
imaging system using the nonlinear stimulated emission
response of fluorophores. In the fluorescence-based
STED, double beams of laser are used, one is a Gaus-
sian beam for exciting the fluorophores, and the other is a
doughnut-shaped ‘STED’ beam tuned in wavelength for
silencing (depleting) the peripheral fluorophores in the
diffraction-limited excitation regions via stimulated
emission. The emission wavelength of the STED beam is
red-shifted compared to that of the excitation laser and
spontaneous emission fluorescence, thus only excited

fluorophores located at the very center are selectively
allowed to spontaneously emit fluorescence photons, the
intensity distribution of which determines the PSF and
spatial resolution of the system. As a result, by scanning
the coaligned beams, a high-resolution image can be
formed by stacking together fluorescent signals emitted
from the very central region, of which the spatial resolu-
tion can be increased with higher saturation intensity.
For STED imaging, the critical technique is the way to

switch off the signal light, which for a long time wasn’t
found in Raman imaging. In 2015, Silva et al.38 proposed a
similar way in STED to realize the depletion-based Raman
based on femtosecond stimulated Raman spectroscopy
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(FSRS)104, which is a nonlinear four-wave mixing tech-
nique utilizing vibrational coherences to generate stimu-
lated Raman signals. The proposed method uses a
broadband probe beam (830− 1000 nm) and a picose-
cond pump beam (centered at 800 nm) to generate the
Gaussian-shaped SRS signal along with a femtosecond
doughnut-shaped depletion beam at the pump wave-
length for turning off the outer edges of the Gaussian-
shaped SRS signal. The detected Raman signal has a dif-
ferent wavelength from the probe light and could be fil-
tered out and sent into a spectrograph for detection. The
depletion of Raman signal from this method is nonlinear
with increased depletion power, resulting in significant
resolution enhancement of up to 47% when scanning the
edge of a Raman-active diamond. The actual suppression
mechanism was stated to be an “alternative four-wave
mixing” pathway. The suppression of CARS signal can
also be realized by using a three-beam double SRS
scheme105,106, in which two different SRS processes by
pump-Stokes and pump-depletion beam pairs are
involved to competitively consume a limited number of
common pump photons.

Sample-expansion Raman
While most optical super-resolution microscopies

focused on manipulating illumination laser or fluor-
ophores to bypass the diffraction limitation, expansion
microscopy (ExM) physically expands the specimens by
embedding them in a swellable polymer network107.
Anchored to the gel, fluorescent probes107, proteins108,109,
RNA110, DNA111, and lipids112,113 can be isotropically
separated in space to greater distances, and therefore can
be effortlessly revolved even by conventional diffraction-

limited microscopes. For example, a resolution of
25–70 nm can be achieved with a conventional confocal
microscope114, according to the expansion factors of
4–10×.
Since the rise of sample expansion, ExM has been con-

stantly iterating with many variations (MAP115, proExM108,
iExM116, click-ExM117, U-ExM118, pan-ExM119, Cryo-
ExM120,121). Meanwhile, the combination of expansion
microscopy with other super-resolution microscopies
(SIM122, STED123,124, STORM125, FED126) and SRS42,127

have been demonstrated. The combination of ExM with
SRS, which is termed vibrational imaging of swelled tissues
and analysis (VISTA), achieves a decent three-dimensional
SRS imaging with a resolution down to 78 nm through
optimal retention of endogenous proteins, isotropic sample
expansion, and deprivation of scattering lipids42(Fig. 6b).
The VISTA imaging mainly targets the methyl group (i.e.,
CH3) vibrations from endogenous proteins at 2940 cm−1

for visualizing protein-rich structures (Fig. 6a). Another
example127 uses methacrolein and heat denaturation,
instead of 6-((acryloyl)amine) hexanoic acid (AcX) and
strong protease digestion, to achieve ~ 100% protein
retention rate during the sample expansion. With this
method, up to 10× expansion and sub-50 nm resolution,
SRS nanoscopy can be realized with multiple Raman and
fluorescent probes tagged.

Applications of far-field super-resolution chemical
microscopy
Since the absorption-based and Raman scattering-based

super-resolution chemical microscope can provide
subdiffraction-limit chemical information encoded in
intrinsic chemical bond vibrations, they can be easily
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Fig. 6 The principle of sample-expansion Raman microscope. a Energy scheme for SRS probing of vibrational motion (taking CH3 channel at
2940 cm−1 as an example). Reproduced with permission42. Copyright 2021 Nature Publishing Group. b General sample treatment process of
expansion microscopy, including fixation, gelation, and expansion
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applied—either individually or in combination—to broad
applications ranging from biology, pharmaceutics, histo-
pathology, material science, environmental contamination
detection, cultural heritage conservation, and industrial
application such as ICs inspection, as indicated in Fig. 7
and Fig. 8.

Biological and medical applications
SRCM has found broad applications in label-free ima-

ging of intrinsic molecules, such as DNA, RNA, protein,
lipid, and glucose, in biomedical samples, from viruses
and cells to tissues, as highlighted below.

Microorganism detection and classification
Virus is a kind of microorganism consisting of a nucleic

acid molecule (DNA or RNA) and a protective coat (pro-
tein) in sub-micrometer size. The detection of the virus,
such as SARS-CoV-2128, represents both a worrisome
public health problem and an increasingly common source
of therapeutics and vaccines. Taking advantage of the high
sensitivity and high specificity, vibrational spectroscopies
like Raman spectroscopy have been applied for dis-
criminating current or past infection by SARS-CoV-2 in
molecular diagnostics129. As another vibrational spectro-
scopy, interferometric scattering-MIP can achieve chemical
imaging of single viruses with the size of 80 nm, thanks to
the high sensitivity and high resolution. The 1650 cm−1 for
the amide I band and 1550 cm−1 for the amide II band of
viral proteins were used for mapping poxvirus and vesicular
stomatitis virus (VSV). The intensity ratio between the
amide I band and amide II band was studied to discriminate
different virus types66, as shown in Fig. 7a. This study
experimentally demonstrates the label-free imaging of sin-
gle viruses with fingerprint spectral information.
Besides, the rapid and accurate classification and dis-

crimination of bacteria, especially at the single-cell level, is
an important task130 in microorganism. SRCM is an
attractive technique for meeting this requirement bene-
fitting from the advantages of high resolution, high speed,
high reliability, and low cost. The MIP imaging of various
bacteria, such as S. aureus (Fig. 7b) and E. coli has been
obtained at both fingerprint region and high wave number
region62,63,131–133. The different spectral features across
the amide I and II bands in varying bacteria were also
demonstrated, potentially applicable in high-throughput
single bacteria characterization and classification.

Cell biology
The cellular compositions and metabolism of living

cells134,135 were mapped with SRCM. Lipid metabolism is
closely associated with many metabolic diseases, such as
atherosclerosis, cancer, obesity, and diabetes. Lipid dro-
plets stored PC-3 prostate cancer cells43 (Fig. 7c), bladder
cancer T24 cells64 (Fig. 7d), S. cerevisiae yeast

cells(Fig. 7f), and SKOV3 human ovarian cancer cells44

were mapped around the frequency of 1750 cm−1 corre-
sponding to the vibrational peak of the C=O bond by
MIP. The fatty acid uptake of A549 lung cancer cells was
imaged at high-wavenumber using MIP136. While for
Raman imaging, bonds of C=C, CH2 in lipid (2845 cm−1)
are usually used as the imaging target for higher signals
(Fig. 7e). Also, SRS can differentiate C=C in lipid
(1650 cm−1) and cholesterol (1669 cm−1).
For proteins, another key player in cellular activity, the

frequency of protein amide I band at 1656 cm−1 was typi-
cally chosen to map the protein contents44,64 (Fig. 7d, f).

Digital histopathology and pathologies
SRCMs have also drawn great interest in digital histo-

pathology137,138 based on the inherent signature of the
tissue samples. With SLI-Raman, the 1D super-resolution
spontaneous Raman map of the mouse brain slice has
been obtained (Fig. 7g). The 1682 cm−1 (red) and
2848 cm−1 (green) correspond to amide-I and CH2

stretching vibrational modes in the brain slice. MIP-based
histopathology has the potential to provide real hema-
toxylin and eosin (H&E) results with similar visible
wavelength spatial resolutions. Schnell et al. demonstrated
the whole breast tissue microarray slide with MIP imaging
at discrete IR wavelengths and developed the classification
algorithm to differentiate cell subtypes137, as shown in Fig. 7i.
SRCM shows the potential for studying brain patholo-

gies, such as amyloid plaques in Alzheimer’s disease. MIP
was demonstrated to characterize amyloid structures
present inside neurons at sub-micrometer resolution.
Evidence of localized β-sheet elevations and the poly-
morphic nature of β-sheet structures at the subcellular
level in AD transgenic neurons were provided139,140 by
mapping protein distribution inside a primary neuron at
1650 cm−1, as shown in Fig. 7h. By combining MIP with
synchrotron-based X-ray fluorescence (S-XRF), iron
clusters were found to co-localize with elevated amyloid
β-sheet structures and oxidized lipids, which motivates
the application of high-resolution multimodal micro-
spectroscopic approaches in the study of pathologies140.

Drug mapping
Visualizing pharmaceutical compounds in the regula-

tion of cellular activity in living systems is important to
understand their mechanism of action. SRCM can be
applied for mapping drug molecules distribution in living
cells43 (Fig. 7j) and testing the distribution of active
pharmaceutical ingredients in tablets67,141 (Fig. 7k).

Material science, environmental study, cultural heritage
conservation, and chip inspection
SRCM has also found applications in material science,

environmental contamination detection, cultural heritage
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conservation, and ICs inspection, where labeling methods
are difficult to apply.

Material science
SRCM has widely been applied in the characterization of

submicrometer materials such as graphene48–51,142(Fig. 8a),

nanotubes51(Fig. 8c), nanowires37,53 (Fig. 8d), and nano-
belts52. For typical artifacts like nanowrinkles in monolayer
graphene (Fig. 8b), the size is only tens of nanometers, which
could be easily detected by TA super-resolution micro-
scopy50. As another important optoelectronic material,
halide perovskite has promising performance characteristics
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for low-cost optoelectronic applications143. The photovoltaic
performance of halide perovskite devices strongly depends
on the composition distribution, which could be chemically
mapped by MIP. With the help of MIP, spatially resolved
local cation-related compositional inhomogeneities in mixed
cation perovskite films were imaged144. In another research,
cation migration under different bias voltages in lead halide
perovskites devices was mapped using MIP145(Fig. 8e).
These studies suggest a materials design strategy for sup-
pressing cation instabilities in hybrid perovskites.

Environmental contamination detection
Micro(nano)plastics (MNPs) released from polymer-

based products are ubiquitous in the environment and
bring environmental and human health risks. SRCM has
been demonstrated to be a decent tool for studying MNPs
because of the sub-micrometer resolution, high sensitiv-
ity, and chemical imaging ability. With the help of MIP,
Kniazev et al.146 used the MIP to characterize MNPs
released from nylon tea bags that had been steeped in
water at different temperatures (Fig. 8g). They also che-
mically identify MNPs in sieved road dust. In another
study, Su et al. examined the MNPs released from
Silicone-rubber baby teats after steam disinfection by
using MIP, which indicated that >0.66 million elastomer-
derived micro-sized plastics could be ingested by a baby
by the age of 1 year147(Fig. 8f).

Cultural heritage conservation
SRCM has also been applied in mapping cultural heri-

tage such as paintings148,149 (Fig. 8i) and glass-metal
objects150(Fig. 8h). For paintings, the metal soaps are
detrimental and will degrade the appearance and integrity.
The root cause of metal soap formation was hindered by
the limited spatial resolution of FTIR. With the help of a
commercialized MIP, high signal-to-noise ratio and spa-
tial resolution distribution of phase-separated species
were mapped and analyzed148. Both crystalline zinc car-
boxylate phases (1530–1558 cm−1, sharp peaks) and dis-
ordered Zn-soap phases (1550–1660 cm−1, broad peaks)
were found to coexist within the 0.1 μm3 volume probed
(Fig. 8i). This result proves that SRCM is a reliable tool for
promoting the development of cultural heritage con-
servation practices.

Chip inspection
SRCM can also be applied in the inspection of ICs in

central processing unit (CPU) chips51. Using an antiphase
demodulation pump-probe (DPP) microscope, direct
super-resolution imaging with a lateral resolution of
60 nm was demonstrated on imaging the multilayered
copper interconnects in CPU (Fig. 8j). Compared with
conventional ICs inspection methods, such as scanning
electron microscopy (SEM), transmission electron

microscopy (TEM), atomic force microscopy (AFM)151,
ptychographic X-ray computed tomography (PXCT)152,
and ptychographic X-ray laminography (PyXL)153, SRCM
method opens the possibility of providing easy, fast, and
large-scale ICs inspections.

Summary and perspective
SRCMs are capable of revealing the chemical landscape

of cells (i.e., the composition and distribution of mole-
cules as well as the dynamical interactions) or materials at
the submicrometer level without tagging or genetically
encoding fluorescent labels. Up to now, the best resolu-
tion performance was achieved to be 10 nm by SMLM-
SERS, among various far-field SRCMs. In parallel, STED-
TA achieved a sub-50 nm resolution by inducing a visible
saturation laser50.
However, a trade-off exists between resolution and other

imaging performances, such as imaging depth, acquisition
speed, field of view, and spectrum channels. Such a trade-
off arises from the limited information throughput. For
example, SMLM-SERS and SI-SERS could achieve a high
resolution but sacrifice the imaging depth for using eva-
nescent illumination. In addition, for these methods, more
acquisition time is required when pursuing a better reso-
lution. Continuing developments in spectroscopy and
microscopy will render SRCM a more powerful chemical-
imaging platform in the foreseeable future.
The detection sensitivity undermines the SNR and

imaging speed especially when the resolution is down to
the nanometer scale. In chemical microscopy, the sensi-
tivity is fundamentally limited by the shot noise induced
by randomness in the times that photons are detected. For
samples with weak or without characteristic vibrational
features, one possible way of improving the sensitivity is
to apply small tags77,154,155 for SRCM imaging. Another
possible way of solving this problem is quantum photon
correlations156. The experiment has been performed by
combining coherent Raman scattering microscope with
quantum correlation technique, which allows imaging of
molecular bonds within a cell with a 35 percent improved
SNR compared with conventional microscopy157.
To further push the resolution, the key lies in the

integration of chemical microscopy with newly developed
super-resolution techniques or algorithms. Raman
scattering-based chemical microscopies have been physi-
cally studied and combined with various super-resolution
methods such as SIM, SMLM, and STED. However, the
application of these SRCMs is either limited by high
illumination intensity or a long acquisition time. Recently
reported deconvolution algorithm-based super-resolution
SRS microscopy indicated the possibility of further
reducing the resolution down to sub-60 nm by using the
newly developed algorithm158. While the IR absorption-
based SRCMs have achieved much success and found
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many applications from biomedical study to material
science, the best resolution achieved is still limited to the
probe light (around 300 nm47,62). We expect MIP could be
integrated with SIM to break the visible diffraction limit.
Moreover, scatter-based and absorption-based SRCMs

can be combined with each other or other chemical
imaging techniques to provide complementary informa-
tion on the samples131. For example, secondary ion mass
spectrometry (SIMS)159 and X-ray fluorescence160,161 can
be combined with SRCM to correlate elemental, isotopic,
and molecular information in two or three dimensions162.
As a highly efficient way to excite molecular vibration,
SRCM can also be coupled with other physical processes
and observables, such as optical coherence tomo-
graphy163,164, optical diffraction tomography165, photo-
induced force microscopy166, atomic force micro-
scopy151,167, and electron microscopy168, which could
offer benefits in terms of penetration, resolution or ima-
ging contrast.
Lastly, the large-scale application requires high-

throughput multispectral imaging, which will benefit
from the advanced spectral reconstruction methods,
combing with computational algorithms such as deep
learning method169. Quantitative analysis, such as multi-
variate curve resolution, previously used for the de-
composition of hyperspectral stimulated Raman scatter-
ing data, can be applied to extract both the spectral profile
and the concentration map of chemical content.
Looking forward, we envision that advanced SRCM

imaging and analysis will be a major force in future bio-
logical, medical, chemical, and material discovery.
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